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Abstract For classes of symplectic and symmetric time-stepping methods—
trigonometric integrators and the Störmer–Verlet or leapfrog method—applied to spec-
tral semi-discretizations of semilinear wave equations in a weakly non-linear setting,
it is shown that energy, momentum, and all harmonic actions are approximately pre-
served over long times. For the case of interest where the CFL number is not a small
parameter, such results are outside the reach of standard backward error analysis. Here,
they are instead obtained via a modulated Fourier expansion in time.

Mathematics Subject Classification (2000) 35L70 · 65M70 · 65M15

1 Introduction

This paper is concerned with the long-time behaviour of symplectic integrators applied
to Hamiltonian non-linear partial differential equations, such as semilinear wave equa-
tions. For symplectic methods applied to Hamiltonian systems of ordinary differential
equations, the numerically observed long-time near-conservation of the total energy,
and of actions in near-integrable systems, can be rigorously proved with the help of
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114 D. Cohen et al.

backward error analysis. This interprets a step of a symplectic method as the exact
flow of a modified Hamiltonian system, up to an error which in the case of an analytic
Hamiltonian is exponentially small in 1/(hω), where h is the small step size and ω
represents the largest frequency in a local linearization of the system; see Benettin
and Giorgilli [2], Hairer and Lubich [11], Reich [16], and Chapter IX in Hairer et
al. [14]. When the symplectic method is applied to a semi-discretization of a partial
differential equation, however, then the product hω corresponds to the CFL number,
which in typical computations is not small but of size 1. In this situation, the “expo-
nentially small” remainder terms become of magnitude O(1), and no conclusions on
the long-time behaviour of the method can then be drawn from the familiar backward
error analysis. Nevertheless, long-time conservation of energy, and of momentum and
actions when appropriate, is observed in numerical computations with symplectic
methods used with reasonable CFL numbers. The present paper presents a proof of
such conservation properties in the case of semilinear wave equations in the weakly
non-linear regime, over time scales that go far beyond linear perturbation arguments.
To our knowledge, the results of this paper are the first results that rigorously prove
the remarkable long-time conservation properties of symplectic integrators on a class
of non-linear partial differential equations.

We consider the one-dimensional non-linear wave equation

utt − uxx + ρu + g(u) = 0 (1)

for t > 0 and −π ≤ x ≤ π subject to periodic boundary conditions. We assume
ρ > 0 and a non-linearity g that is a smooth real function with g(0) = g′(0) = 0. We
consider small initial data: in appropriate Sobolev norms, the initial values u(·, 0) and
ut (·, 0) are bounded by a small parameter ε. Notice that by rescaling u, this assumption
could be rephrased as a O(1) initial datum but a small non-linearity.

In Sect. 2 we recall the exact conservation of energy and momentum and, less
obvious, the near-conservation of actions over long times t ≤ ε−N , where N only
depends on a non-resonance condition on the frequencies, as shown by Bambusi [1]
and Bourgain [3]. With the technique of modulated Fourier expansions that is central
also to the present paper, the near-conservation of actions along solutions of (1) has
been studied in our paper [6], and for spatial semi-discretizations of (1) by spectral
methods in [13]. After discussing the semi-discretization in Sect. 3, we turn to the
time discretization in Sect. 4.

We consider a class of symplectic and symmetric trigonometric integrators discus-
sed in [14, Chap. XIII], and the familiar Störmer–Verlet or leapfrog method. In Sect. 4
we describe the trigonometric methods and present numerical experiments illustrating
their conservation properties, which appear particularly remarkable when confronted
with the behaviour of a standard explicit Runge–Kutta method.

In Sect. 5 we state the main result of this paper, concerning the long-time near-
conservation of energy, momentum and actions along numerical solutions in the full
discretization. The result is proved in Sects. 6 and 7, using the technique of modulated
Fourier expansions. This approach was first used for studying long-time conservation
properties of numerical methods for highly oscillatory ordinary differential equations
with a single high frequency in [12], and later extended to several frequencies in [5];
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Numerical conservation properties for non-linear wave equations 115

see also [14, Chap. XIII] and further references given there. The extension of this
technique to infinitely many frequencies, as occur in equation (1), was studied for the
analytical problem in [6], and our treatment here essentially follows the lines of this
previous work, with additional technical complications arising from the discretization.

In Sect. 8 we give similar long-time conservation results for the Störmer–
Verlet/leapfrog method used with stepsizes in the linear stability interval. These results
follow from the previous ones by interpreting the leapfrog method as a trigonometric
method with modified frequencies.

We are aware of two other papers that deal with long-time energy conservation of
symplectic integrators for partial differential equations. Cano [4] also considers the
non-linear wave equation and aims at extending the classical backward error analysis to
this situation. Long-time conservation properties are obtained under a list of unverified
conditions formulated as conjectures. For symplectic splitting methods applied to
the linear Schrödinger equation with a small potential, results on long-time energy
conservation are given by Dujardin and Faou [8].

2 The non-linear wave equation with small data

The semilinear wave equation (1) conserves several quantities along every solu-
tion (u(x, t), v(x, t)), with v = ∂t u. The total energy or Hamiltonian, defined for
2π -periodic functions u, v as

H(u, v) = 1

2π

π∫

−π

(
1

2

(
v2 + (∂x u)2 + ρ u2

)
(x)+ U (u(x))

)
dx, (2)

where the potential U (u) is such that U ′(u) = g(u), and the momentum

K (u, v) = 1

2π

π∫

−π
∂x u(x) v(x) dx = −

∞∑
j=−∞

i j u− j v j (3)

are exactly conserved along every solution (u(·, t), v(·, t)) of (1). Here, u j = F j u
and v j = F jv are the Fourier coefficients in the series u(x) = ∑∞

j=−∞ u j ei j x and
correspondingly v(x). Since we consider only real solutions, we note that u− j = u j

and v− j = v j . In terms of the Fourier coefficients, equation (1) reads

∂2
t u j + ω2

j u j + F j g(u) = 0, j ∈ Z, (4)

with the frequencies

ω j =
√
ρ + j2.
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116 D. Cohen et al.

The harmonic actions

I j (u, v) = ω j

2
|u j |2 + 1

2ω j
|v j |2, (5)

for which we note I− j = I j , are conserved for the linear wave equation, that is, for
g(u) ≡ 0. In the semilinear equation (1), they turn out to remain constant up to small
deviations over long times for almost all values of ρ > 0, when the initial data are
smooth and small [1,3,6]. We recall the precise statement of this result, because this
will help to understand related assumptions for the numerical discretizations.

We work with the Sobolev space, for s ≥ 0,

Hs = {v ∈ L2(T) : ‖v‖s < ∞}, ‖v‖s =
⎛
⎝ ∞∑

j=−∞
ω2s

j |v j |2
⎞
⎠

1/2

,

where v j denote the Fourier coefficients of a 2π -periodic function v. For the initial
position and velocity we assume that for suitably large s and small ε,

(
‖u(·, 0)‖2

s+1 + ‖v(·, 0)‖2
s

)1/2 ≤ ε. (6)

Since the analysis of the near-conservation of actions encounters problems with
small denominators, we prepare for the formulation of a non-resonance condition.
Consider sequences of integers k = (k�)∞�=0 with only finitely many k� �= 0. We
denote |k| = (|k�|)∞�=0 and let

‖k‖ =
∞∑
�=0

|k�|, k · ω =
∞∑
�=0

k� ω�, ωσ |k| =
∞∏
�=0

ω
σ |k�|
� (7)

for real σ , where we use the notation ω = (ω�)
∞
�=0. For j ∈ Z, we write 〈 j〉 =

(0, . . . , 0, 1, 0, . . .) with the only entry at the | j |-th position.
For an arbitrary fixed integer N ≥ 1 and for small ε > 0, we consider the set of

near-resonant indices

Rε =
{
( j,k) : j ∈ Z, k �= ±〈 j〉, ‖k‖ ≤ 2N with

∣∣ω j − |k · ω|∣∣ < ε1/2
}
. (8)

We impose the following non-resonance condition: there are σ > 0 and a constant C0
such that

sup
( j,k)∈Rε

ωσj

ωσ |k| ε
‖k‖/2 ≤ C0 ε

N . (9)

As is shown in [6], condition (9) is implied, for sufficiently large σ , by the non-
resonance condition of Bambusi [1], which holds true for almost all (w.r.t. Lebesgue
measure) ρ in any fixed interval of positive numbers.
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Numerical conservation properties for non-linear wave equations 117

Theorem 1 ([6, Theorem 1]) Under the non-resonance condition (9) and assumption
(6) on the initial data with s ≥ σ + 1, the estimate

∞∑
�=0

ω2s+1
�

|I�(t)− I�(0)|
ε2 ≤ Cε for 0 ≤ t ≤ ε−N+1

with I�(t) = I� (u(·, t), v(·, t)) holds with a constant C which depends on s, N , and
C0, but is independent of ε and t.

The smallness of the initial data, which implies that the non-linearity is small
compared to the linear terms, is essential for our analysis. Since we do not impose any
further restrictions on the non-linearity, such an assumption permits to avoid blow-up
in finite time.

3 Spectral semi-discretization in space

For the numerical solution of (1) we first discretize in space (method of lines) and then
in time (Sect. 4). Following [13], we consider pseudo-spectral semi-discretization in
space with equidistant collocation points xk = kπ/M (for k = −M, . . . ,M − 1).
This yields an approximation in form of real-valued trigonometric polynomials

uM (x, t) =
∑

| j |≤M

′
q j (t)e

i j x , vM (x, t) =
∑

| j |≤M

′
p j (t)e

i j x , (10)

where the prime indicates that the first and last terms in the sum are taken with the factor
1/2. We have p j (t) = d

dt q j (t), and the 2M-periodic coefficient vector q(t) = (q j (t))
is a solution of the 2M-dimensional system of ordinary differential equations

d2q

dt2 +Ω2q = f (q) with f (q) = −F2M g(F−1
2Mq). (11)

The matrix Ω is diagonal with entries ω j for | j | ≤ M , and F2M denotes the discrete
Fourier transform:

(F2Mw) j = 1

2M

M−1∑
k=−M

wk e−i j xk .

Since the components of the non-linearity in (11) are of the form

f j (q) = − ∂

∂q− j
V (q) with V (q) = 1

2M

M−1∑
k=−M

U
(
(F−1

2Mq)k
)
,
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118 D. Cohen et al.

we are concerned with a finite-dimensional complex Hamiltonian system with energy

HM (q, p) = 1

2

∑
| j |≤M

′ (|p j |2 + ω2
j |q j |2

)
+ V (q), (12)

which is exactly conserved along the solution (q(t), p(t))of (11) with p(t)=dq(t)/dt .
We further consider the actions (for | j | ≤ M) and the momentum

I j (q, p) = ω j

2
|q j |2 + 1

2ω j
|p j |2, K (q, p) = −

∑
| j |≤M

′′
i j q− j p j , (13)

where the double prime indicates that the first and last terms in the sum are taken with
the factor 1/4. The definition of these expressions is motivated by the fact that they
agree with the corresponding quantities of Sect. 2 along the trigonometric polynomials
uM , vM (with the exception of I±M , where a factor 4 has been included to get a
unified formula). Since we are concerned with real approximations (10), the Fourier
coefficients satisfy q− j = q j and p− j = p j , so that also I− j = I j .

On the space of 2M-periodic sequences q = (q j ) we consider the weighted norm

‖q‖s =
⎛
⎝ ∑

| j |≤M

′′
ω2s

j |q j |2
⎞
⎠

1/2

, (14)

which is defined such that it equals the Hs norm of the trigonometric polynomial
with coefficients q j . We assume that the initial data q(0) and p(0) satisfy a condition
corresponding to (6):

(
‖q(0)‖2

s+1 + ‖p(0)‖2
s

)1/2 ≤ ε. (15)

Theorem 2 ([13, Theorems 3.1 and 3.2]) Under the non-resonance condition (9)
with exponent σ and the assumption (15) of small initial data with s ≥ σ + 1, the
near-conservation estimates

M∑
�=0

ω2s+1
�

|I�(t)− I�(0)|
ε2 ≤ Cε

|K (t)− K (0)|
ε2 ≤ C t εM−s−1

for 0 ≤ t ≤ ε−N+1

for actions I�(t) = I� (q(t), p(t)) and momentum K (t) = K (q(t), p(t)) hold with a
constant C that depends on s, N , and C0, but is independent of ε, M, and t.

Since the expression
∑M
�=0 ω

2s+1
� I�(t) is essentially (up to the factors in the boun-

dary terms) equal to the squared Hs+1 × Hs norm of the solution (q(t), p(t)),
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Numerical conservation properties for non-linear wave equations 119

Theorem 2 implies long-time spatial regularity:

(
‖q(t)‖2

s+1 + ‖p(t)‖2
s

)1/2 ≤ ε(1 + Cε) for t ≤ ε−N+1. (16)

Theorems 1 and 2 have been included as a motivation of our results. They will not be
used in the following.

4 Full discretization and numerical phenomena

We consider the class of time discretization methods studied in [14, Chap. XIII], which
gives the exact solution for linear problems (11) with f (q) = 0, and reduces to the
Störmer–Verlet/leapfrog method for (11) with Ω = 0:

qn+1 − 2 cos(hΩ) qn + qn−1 = h2Ψ f (Φqn), (17)

where Ψ = ψ(hΩ) and Φ = φ(hΩ) with filter functions ψ and φ that are real-
valued, bounded, even, and satisfy ψ(0) = φ(0) = 1. A velocity approximation pn

is obtained from

2h sinc (hΩ) pn = qn+1 − qn−1 (18)

provided that sinc (hΩ) is invertible. Here we use the notation sinc ξ = sin ξ/ξ .
For an implementation it is more convenient to work with an equivalent one-step

mapping (qn, pn) �→ (qn+1, pn+1), which is obtained from adding and subtracting
the formulas (17) and (18) and which reads

qn+1 = cos(hΩ)qn + h sinc (hΩ)pn + 1

2
h2 Ψ f (Φqn)

(19)
pn+1 = −Ω sin(hΩ)qn + cos(hΩ)pn + 1

2
h

(
Ψ0 f (Φqn)+ Ψ1 f (Φqn+1)

)
.

Here, Ψ0 = ψ0(hΩ) and Ψ1 = ψ1(hΩ), where the functions ψi (ξ) are defined by
the relations ψ(ξ) = sinc (ξ)ψ1(ξ) and ψ0(ξ) = cos(ξ)ψ1(ξ). These methods are
symmetric for all choices of ψ and φ; they are symplectic if

ψ(ξ) = sinc (ξ) φ(ξ) for all real ξ . (20)

The methods (19) with this property are precisely the mollified impulse methods
introduced in [9]. Interpreted as a splitting method, they can be extended for fully
non-linear problems.

Condition (20) will be assumed in the following. We note, however, that for non-
symplectic methods, the transformation of variables

q̂ n = χ(hΩ)qn, p̂n = χ(hΩ)pn, (21)
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120 D. Cohen et al.

turns the method (19) into a symplectic method ifχ can be chosen as a positive solution
of χ(ξ)2 = φ(ξ) sinc (ξ)/ψ(ξ).

In our numerical experiments we consider the non-linear wave equation (1) with
the following data: ρ = 0.5, g(u) = −u2, and initial data

u(x, 0) = 0.1 ·
( x

π
− 1

)3 ( x

π
+ 1

)2
, ∂t u(x, 0) = 0.01 · x

π

( x

π
− 1

) ( x

π
+ 1

)2

for −π ≤ x ≤ π . The spatial discretization is (11) with dimension 2M = 27.
Considered as 2π -periodic functions, the initial data u(·, 0) and ∂t u(·, 0) have a jump
discontinuity in the second and first derivative, respectively. The assumption (15) is
therefore satisfied for s < 1.5.

We first apply a standard explicit Runge–Kutta method in the variable stepsize
implementation DOPRI5 of [15], with local error tolerances Atol = 10−5 and Rtol =
10−4. The program chose 32 735 accepted steps for the integration over the interval
0 ≤ t ≤ 550, which corresponds to an average stepsize h = 0.0168 and average CFL
number hωM = 1.075. In both pictures of Fig. 1 we plot the actions I j of (5), the
total energy HM of (12), and the momentum K of (13) along the numerical solution.
The left-hand picture illustrates that even on the short interval 0 ≤ t ≤ 1, the actions
with values below the tolerance are not at all conserved. The right-hand picture shows
substantial drifts in all the quantities over a longer time interval.

We now consider method (19) with ψ = sinc and φ = 1, which was originally
proposed in [7]. The method can also be viewed as a special case of the impulse method
used in molecular dynamics [10,17]. We apply the method with stepsize h = 0.1 to the
above problem. The CFL number then is hωM ≈ 6.4. Figure 2 illustrates that energy,
momentum and actions are very well conserved. Since the regularity of our initial data
is not very high (s < 1.5), this shows that the regularity assumption s ≥ σ + 1, where
σ = 29 already for N = 2 (cf. [6]) can be relaxed in concrete examples when a fixed
ρ is considered.

.0 .2 .4 .6 .8 1.0

10−12

10−10

10−8

10−6

10−4

10−2

100 200 300 400 500

Fig. 1 Actions, total energy (upper bold line), and momentum (lower bold line) along the numerical
solution of DOPRI5, average CFL number 1.075
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0 100 200 300 400 500
10−14

10−12

10−10

10−8

10−6

10−4

10−2

Fig. 2 Actions, total energy (upper bold line), and momentum (lower bold line) along the numerical
solution of the trigonometric integrator (19) with ψ = sinc and φ = 1 for the CFL number hωM ≈ 6.4

0 10000 20000

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10000 20000 10000

Fig. 3 Illustration of numerical resonance; method (19) with ψ = sinc and φ = 1

In a further experiment with the same problem, we choose stepsizes such that hω4
is close to π (Fig. 3). In this situation of a numerical resonance, the action I4 is no
longer preserved, which on longer time scales also affects the conservation of energy.
The resonance behaviour depends strongly on the choice of the filter functions, cf.
[14, Sect. XIII.2]. For example, with φ = sinc and ψ = sinc 2, a method proposed
in [9], no numerical resonance is visible.

5 Main results

To get rigorous statements on the good long-time behaviour illustrated in Sect. 4,
we combine the techniques of [6], where the long-time preservation of the harmonic
actions along exact solutions of the semilinear wave equation (1) is shown, with
those of [5], where the long-time behaviour of the numerical method (17) is studied
for oscillatory Hamiltonian systems with a fixed number of large frequencies. As
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for spectral semi-discretizations (cf. [13]), we are interested in results that are valid
uniformly in M , where 2M is the dimension of the spatially discretized system (11).

The analytical tool for understanding the long-time behaviour of the numerical
solution of (11) is given by a modulated Fourier expansion in time (see [14, Chap.
XIII] and [6]),

q̃(t) =
∑

‖k‖≤2N

z k(εt)ei(k·ω)t , (22)

approximating the numerical solution qn at t = nh. We use the notation introduced
in (7), where now k� = 0 for � > M , since only the frequencies ω� for 0 ≤ � ≤ M
appear in the spatial discretization (11).

In our analysis, we must deal with small denominators (see Sect. 6). To control
these terms, we will use non-resonance conditions. As soon as, for a given stepsize h,
the inequality

∣∣∣∣sin

(
h

2
(ω j − k · ω)

)
· sin

(
h

2
(ω j + k · ω)

)∣∣∣∣ ≥ ε1/2h2 (
ω j + |k · ω|) (23)

is violated, we have to make an assumption on the pair of indices ( j,k). For a fixed
integer N ≥ 1, subsequently used in the truncation of the expansion (22), the set of
near-resonant indices becomes, instead of (8),

Rε,h = {( j,k) : | j | ≤ M, ‖k‖ ≤ 2N , k �= ±〈 j〉, not satisfying (23)} .

Similar to (9), we require the following non-resonance condition: there are σ > 0 and
a constant C0 such that

sup
( j,k)∈Rε,h

ωσj

ωσ |k| ε
‖k‖/2 ≤ C0 ε

N . (24)

Notice that, in the limit h → 0, condition (23) becomes equivalent (up to a non-zero

constant factor) to
∣∣∣ω2

j − (k · ω)2
∣∣∣ ≥ ε1/2 · ∣∣ω j + |k · ω|∣∣, so that (24) corresponds

precisely to the non-resonance condition (9) for the semilinear wave equation.
We assume the further numerical non-resonance condition

| sin(hω j )| ≥ hε1/2 for | j | ≤ M. (25)

Yet another non-resonance condition, which leads to improved conservation estimates,
reads as follows:

∣∣∣∣sin

(
h

2
(ω j − k · ω)

)
· sin

(
h

2
(ω j + k · ω)

)∣∣∣∣ ≥ c h2 |ψ(hω j )|
for ( j,k) of the form j = j1 + j2 and k = ±〈 j1〉 ± 〈 j2〉, (26)
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Numerical conservation properties for non-linear wave equations 123

with a positive constant c > 0. In the limit h → 0, this inequality becomes∣∣∣ω2
j − (k · ω)2

∣∣∣ ≥ 4c which is automatically fulfilled for the considered pairs ( j,k).
We are now in the position to state the main result of this paper.

Theorem 3 Under the symplecticity condition (20), under the non-resonance condi-
tions (24) with exponentσ and (25)–(26), and under the assumption (15) of small initial
data with s ≥ σ + 1 for (q0, p0) = (q(0), p(0)), the near-conservation estimates

|HM (qn, pn)− HM (q0, p0)|
ε2 ≤ Cε

|K (qn, pn)− K (q0, p0)|
ε2 ≤ C

(
ε + M−s + εt M−s+1

)
M∑
�=0

ω2s+1
�

|I�(qn, pn)− I�(q0, p0)|
ε2 ≤ Cε

for energy, momentum and actions hold for long times

0 ≤ t = nh ≤ ε−N+1

with a constant C which depends on s, N , and C0, but is independent of the small
parameter ε, the dimension 2M of the spatial discretization, the time stepsize h, and
the time t = nh. If condition (26) fails to be satisfied, then Cε is weakened to Cε1/2

in the above bounds.

In addition we obtain, by the argument of Sect. 6.2 in [13], that the original
Hamiltonian H of (2) along the trigonometric interpolation polynomials (un(x), vn(x))
with Fourier coefficients (qn

j , pn
j ) satisfies the long-time near-conservation estimate

|H(un, vn)− H(u0, v0)|
ε2 ≤ Cε for 0 ≤ nh ≤ ε−N+1.

For a non-symplectic symmetric method (19) the result remains valid in the transfor-
med variables (21).

The proof of Theorem 3 is given in the subsequent Sects. 6 and 7. It is based on
the idea of interpolating the numerical solution by a function where different time
scales are well separated. This is done by the ansatz (22) which is a truncated series of
products of eiω j t (oscillations with respect to the fast time t) with coefficient functions
that are smooth in the slow time τ = εt . The proof then proceeds as follows:

− Proving existence of smooth functions z k(τ ) with derivatives bounded indepen-
dently of ε (on intervals of length ε−1). This is the technically difficult part and
elaborated in Sect. 6. It requires non-resonance conditions and a careful truncation
of the series.

− Establishing a Hamiltonian structure and the existence of formal invariants in the
differential and algebraic equations for the functions z k(τ ) (Sects. 7.1–7.3).

− Proving closeness (on intervals of length ε−1) of the formal invariants to actions
I�, to the total energy H , and to the momentum K (Sect. 7.4).
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124 D. Cohen et al.

− Stretching from short to long intervals of length ε−N+1 by patching together
previous results along an invariant.

6 Modulated Fourier expansion

Our principal tool for the long-time analysis of the non-linearly perturbed wave equa-
tion is a short-time modulation expansion constructed in this section. To construct this
expansion, we combine the tools and techniques developed in [5,6,13].

6.1 Statement of the result

In this section we consider, instead of the symplecticity condition (20), the weaker
condition

|ψ(hω j )| ≤ C | sinc (hω j )| for | j | ≤ M. (27)

In the following result we use the abbreviations (7) and set

[[k]] =
⎧⎨
⎩

1

2
(‖k‖ + 1), k �= 0,

3

2
, k = 0.

Theorem 4 Under the assumptions of Theorem 3 (with the symplecticity assumption
(20) relaxed to (27)), there exist truncated asymptotic expansions (with N from (24))

q̃(t) =
∑

‖k‖≤2N

z k(εt) ei(k·ω)t ,

p̃(t) = sinc (hΩ)−1 q̃(t + h)− q̃(t − h)

2h
,

(28)

such that the numerical solution qn, pn given by method (19), satisfies

‖qn − q̃(t)‖s+1 + ‖pn − p̃(t)‖s ≤ CεN for 0 ≤ t = nh ≤ ε−1. (29)

The truncated modulated Fourier expansion is bounded by

‖q̃(t)‖s+1 + ‖ p̃(t)‖s ≤ Cε for 0 ≤ t ≤ ε−1. (30)

On this time interval, we further have, for | j | ≤ M,

q̃ j (t) = z〈 j〉
j (εt) eiω j t + z−〈 j〉

j (εt) e−iω j t + r j , with ‖r‖s+1 ≤ Cε2. (31)

(If condition (26) fails to be satisfied, then the bound is ‖r‖s+1 ≤ Cε3/2.) The modu-
lation functions z k are bounded by
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∑
‖k‖≤2N

(
ω|k|

ε[[k]] ‖z k(εt)‖s

)2

≤ C. (32)

Bounds of the same type hold for any fixed number of derivatives of z k with respect

to the slow time τ = εt . Moreover, the modulation functions satisfy z−k
− j = z k

j . The

constants C are independent of ε, M, h, and of t ≤ ε−1.

The proof of this result will cover the remainder of this section. It is organized in
the same way as the proof of the analogous result for the analytical solution in [6].

6.2 Formal modulation equations

We are looking for a truncated series (28) such that, up to a small defect,

q̃(t + h)− 2 cos(hΩ) q̃(t)+ q̃(t − h) = h2Ψ f (Φq̃(t))

with q̃(0) = q0, p̃(0) = p0, see (17) and (28). We insert the ansatz (28) into this
equation, expand the right-hand side into a Taylor series around zero and compare the
coefficients of ei(k·ω)t . We then get

L k
j zk

j = −h2ψ(hω j )
∑
m≥2

g(m)(0)

m!
×

∑
k1+···+km=k

∑
j1+···+ jm≡ jmod2M

′
φ(hω j1)z

k1

j1 · · · · · φ(hω jm )z
km

jm , (33)

where the right-hand side is obtained as in [13]. The prime on the sum over j1, . . . , jm
indicates that with every appearance of zki

ji
with ji = ±M a factor 1/2 is included.

The operator L k
j is given as

(
L k

j zk
j

)
(τ ) = eih(k·ω)z k

j (τ + εh)− 2 cos(hω j )z
k
j (τ )+ e−ih(k·ω)z k

j (τ − εh)

= 4s〈 j〉+ks〈 j〉−kzk
j (τ )+ 2is2khεżk

j (τ )+ c2kh2ε2 z̈k
j (τ )+ . . . . (34)

Here, sk = sin(
h

2
k · ω) and ck = cos(

h

2
k · ω), and the dots on zk

j represent derivatives
with respect to the slow time τ = εt . The higher order terms are linear combinations
of the r th derivative of zk

j (for r ≥ 3) multiplied by hrεr and containing one of the
factors s2k or c2k.

The first term in (34) vanishes for k = ±〈 j〉, so that in this case the dominating
term becomes ±2ih sin(hω j )εż±〈 j〉

j due to condition (25). For k �= ±〈 j〉 the first
term becomes dominant, if the inequality (23) holds. Else, it is not clear which term
is dominant, but then the non-resonance condition (24) will ensure that the defect in
simply setting z k

j ≡ 0 is of size O(εN+1) in an appropriate Sobolev-type norm.
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In addition, the initial conditions q̃(0) = q0 and p̃(0) = p0 need to be taken care
of. The condition q̃(0) = q0 reads

∑
‖k‖≤2N

z k
j (0) = q0

j , (35)

and for p̃(0) = p0, we obtain from (28)

1

2h sinc (hω j )

∑
‖k‖≤2N

(
z k

j (εh)e
i(k·ω)h − z k

j (−εh)e−i(k·ω)h)
= p0

j . (36)

6.3 Reverse Picard iteration

We now turn to an iterative construction of the functions z k
j such that after 4N iteration

steps, the defect in equations (33), (35), and (36) is of size O(εN+1) in the Hs norm.
The iteration procedure we employ can be viewed as a Picard iteration on (33) to (36),
where we keep only the dominant terms on the left-hand side. We call it reverse Picard
iteration, because the highest appearing derivatives do not carry the new iteration
number n + 1.

Indicating by [·]n the nth iterate of all appearing variables z k
j taken within the

bracket, we set for k = ±〈 j〉

±2ihεs2 j

[
ż±〈 j〉

j

]n+1 =
⎡
⎣−h2ψ(hω j )

∑
m≥2

g(m)(0)

m!

×
∑

k1+···+km=k

∑
j1+···+ jm≡ jmod2M

′
φ(hω j1)z

k1

j1 · · · · · φ(hω jm )z
km

jm

−
(

c2 j h
2ε2 z̈±〈 j〉

j + . . .
) ⎤

⎦
n

(37)

with the sines and cosines s2 j and c2 j defined after formula (34). For k �= ±〈 j〉 and
j that are non-resonant with (23), we set

4s〈 j〉+ks〈 j〉−k

[
z k

j

]n+1 =
⎡
⎣−h2ψ(hω j )

∑
m≥2

g(m)(0)

m!

×
∑

k1+···+km=k

∑
j1+···+ jm≡ jmod2M

′
φ(hω j1)z

k1

j1 · · · · · φ(hω jm )z
km

jm

−
(

2is2khεżk
j + c2kh2ε2 z̈k

j + . . .
) ⎤

⎦
n

, (38)
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whereas we let z k
j = 0 for k �= ±〈 j〉 in the near-resonant set Rε,h . The dots indicate

the remainder in (34), truncated after the εN term.
On the initial conditions we iterate by

[
z〈 j〉

j (0)+ z−〈 j〉
j (0)

]n+1 =
⎡
⎣q0

j −
∑

k �=±〈 j〉
z k

j (0)

⎤
⎦

n

(39)

and on (36) by

iω j

[
z〈 j〉

j (0)− z−〈 j〉
j (0)

]n+1 = p0
j

− 1

2h sinc (hω j )

⎡
⎣ ∑

k �=±〈 j〉
z k

j (0)
(

ei(k·ω)h − e−i(k·ω)h)

−
∑

‖k‖≤K

((
z k

j (εh)− z k
j (0)

)
ei(k·ω)h −

(
z k

j (−εh)− z k
j (0)

)
e−i(k·ω)h)⎤

⎦
n

. (40)

In all the above formulas, it is tacitly assumed that ‖k‖ ≤ K := 2N and ‖ki‖ ≤ K
for i = 1, . . . ,m. In each iteration step, we thus have an initial value problem of
first-order differential equations for z±〈 j〉

j (for | j | ≤ M) and algebraic equations for

z k
j with k �= ±〈 j〉.

The starting iterates (n = 0) are chosen as z k
j (τ ) = 0 for k �= ±〈 j〉, and z±〈 j〉

j (τ ) =
z±〈 j〉

j (0) with z±〈 j〉
j (0) determined from the above formula.

For real initial data we have q0− j = q0
j and p0− j = p0

j , and we observe that the

above iteration yields
[
z−k
− j

]n =
[
z k

j

]n
for all iterates n and all j,k and hence gives

real approximations (28).

6.4 Rescaling and estimation of the non-linear terms

As in [6], we will work with the more convenient rescaling

c k
j = ω|k|

ε[[k]] z k
j , c k =

(
c k

j

)
| j |≤M

= ω|k|

ε[[k]] z k

considered in the space Hs = (Hs)K = {c = (c k)k∈K : c k ∈ Hs} with norm
‖|c‖|2s = ∑

k∈K ‖c k‖2
s and where the superscripts k are in the set

K = {k = (k�)
M
�=0 with integers k� : ‖k‖ ≤ K }
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with K = 2N . The non-linear function f = ( f k
j ) defined as

f k
j (c) = ω|k|

ε[[k]]
N∑

m=2

g(m)(0)

m!
∑

k1+···+km=k

ε[[k1]]+···+[[km ]]

ω|k1|+···+|km |

×
∑

j1+···+ jm≡ jmod2M

′
φ(hω j1)c

k1

j1 · · · · · φ(hω jm )c
km

jm

expresses the non-linearity in (33) in the rescaled variables. With the fact that Hs is
a normed algebra, the following bounds are obtained as in [6, Sect. 3.5] by exploi-
ting the connection between the 2M-periodic sequence c k

j and the corresponding
trigonometric polynomial (cf. [13]):

∑
‖k‖≤K

‖ f k(c)‖2
s ≤ εP(‖|c‖|2s ), (41)

∑
| j |≤M

‖ f ±〈 j〉(c)‖2
s ≤ ε3 P1(‖|c‖|2s ), (42)

where P and P1 are polynomials with coefficients bounded independently of ε, h, and
M . Notice that the function φ is bounded.

With the different rescaling

ĉ k
j = ωs|k|

ε[[k]] z k
j , ĉ k =

(̂
c k

j

)
| j |≤M

= ωs|k|

ε[[k]] z k (43)

considered in the space H1 = (H1)K with norm ‖|̂c‖|21 = ∑
‖k‖≤K ‖̂c k‖2

1, for f̂ k
j

defined as f k
j but with ω|k| replaced by ωs|k|, we have similar bounds

∑
‖k‖≤K

‖ f̂ k (̂c)‖2
1 ≤ ε P̂(‖|̂c‖|21),

∑
| j |≤M

‖ f̂ ±〈 j〉(̂c)‖2
1 ≤ ε3 P̂1(‖|̂c‖|21)

(44)

with other polynomials P̂ and P̂1.

6.5 Abstract reformulation of the iteration

For c = (c k
j ) ∈ Hs with c k

j = 0 for all k �= ±〈 j〉 with ( j,k) ∈ Rε,h , we split
the components of c corresponding to k = ±〈 j〉 and k �= ±〈 j〉 and collect them in
a = (a k

j ) ∈ Hs and b = (b k
j ) ∈ Hs , respectively:

a k
j = c k

j if k = ±〈 j〉, and 0 else,

b k
j = c k

j if (23) is satisfied, and 0 else.
(45)
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We then have a + b = c and ‖|a‖|2s + ‖|b‖|2s = ‖|c‖|2s . We now introduce differential
operators A, B acting on functions a(τ ) and b(τ ), respectively:

(Aa)±〈 j〉
j (τ ) = 1

±2ihεs2 j

(
c2 j h

2ε2ä±〈 j〉
j (τ )+ · · ·

)

(Bb) k
j (τ ) = 1

4s〈 j〉+ks〈 j〉−k

(
2is2khεḃ k

j (τ )+ c2kh2ε2b̈ k
j (τ )+ · · ·

)

for ( j,k) satisfying (23). These definitions are motivated by formulas (37) and (38),
and as in these formulas, the dots represent a truncation after the εN terms. In terms
of the non-linear function f of the preceding subsection, we introduce the functions
F = (F k

j ) and G = (G k
j ) with non-vanishing entries

F±〈 j〉
j (a,b) = − 1

±iε

ψ(hω j )

sinc (hω j )
f ±〈 j〉

j (a + b),

Gk
j (a,b) = −h2(ω j + |k · ω|)

4s〈 j〉+ks〈 j〉−k
f k

j (a + b)

for ( j,k) satisfying (23). Further we write

(Ωc) k
j = (ω j + |k · ω|) c k

j , (Ψ c) k
j = ψ(hω j ) c k

j .

In terms of a and b, the iterations (37) and (38) then become of the form

ȧ(n+1) = Ω−1F(a(n),b(n))− Aa(n),
b(n+1) = Ω−1Ψ G(a(n),b(n))− Bb(n).

(46)

By (42), condition (27) gives the bound ‖|F‖|s ≤ Cε1/2, whereas condition (25) yields
‖|Ψ −1Ω−1F‖|s ≤ C . By (41) and (23), we have the bound ‖|G‖|s ≤ C . These bounds
hold uniformly in ε, h,M on bounded subsets of Hs . Analogous bounds are obtained
for the derivatives of F and G. The operators A and B are estimated as

‖|(Aa)(τ )‖|s ≤ C
N∑

l=2

hl−2εl−3/2‖| dl

dτ l
a(τ )‖|s,

‖|(Bb)(τ )‖|s ≤ Cε1/2‖|ḃ(τ )‖|s + C
N∑

l=2

hl−2εl−1/2‖| dl

dτ l
b(τ )‖|s .

The bound for A is obtained with (25), that for B uses (23) and the trivial estimate
|s2k| = | sin(h k · ω)| ≤ h|k · ω|.

The initial value conditions (39) and (40) translate into an equation for a(n+1) of
the form

a(n+1)(0) = v + Pb(n)(0)+ Q(a + b)(n)(εh), (47)

123



130 D. Cohen et al.

where v has the components

v
±〈 j〉
j = ω j

ε

(
1

2
q0

j ∓ i

2ω j
p0

j

)
.

By assumption (15), v is bounded in Hs . The operators P and Q are given by

(Pb)±〈 j〉
j (0) = − ω j

2εs2 j

∑
k �=±〈 j〉

(
sin(ω j h)± sin ((k · ω)h)

) ε[[k]]

ω|k| b k
j (0)

(Qc)±〈 j〉
j (τ ) = ∓ ω j

4iεs2 j

∑
‖k‖≤K

(
ei(k·ω)h ε[[k]]

ω|k|
(

c k
j (τ )− c k

j (0)
)

− e−i(k·ω)h ε[[k]]

ω|k|
(

c k
j (−τ)− c k

j (0)
))
.

For these expressions we have the bounds

‖|(Pb)(0)‖|s ≤ C ‖|Ψ −1Ω b(0)‖|s,
‖|(Qc)(εh)‖|s ≤ C ε sup

−εh<τ<εh
‖|Ψ −1ċ(τ )‖|s

with a constant C that is independent of ε, h, and M , but depends on K = 2N . For the
first estimate we use | sin(ω j h) ± sin((k · ω)h)| ≤ h(ω j + |k · ω|) , condition (27),
and the Cauchy–Schwarz inequality together with the bound (cf. Lemma 2 of [6])

∑
‖k‖≤K

ω−2|k| ≤ C < ∞. (48)

Similarly, applying the mean value theorem to c(τ ) yields the second estimate.
The starting iterates are a(0)(τ ) = v and b(0)(τ ) = 0.

6.6 Bounds of the modulation functions

In view of the non-resonance conditions (23) and (25), and using the assumption on
the filter function (27), we can show by induction that the iterates a(n) and b(n) and
their derivatives with respect to the slow time τ = εt are bounded in Hs for 0 ≤ τ ≤ 1
and n ≤ 4N : more precisely, the (4N )-th iterates a = a(4N ) and b = b(4N ) satisfy

‖|a(0)‖|s ≤ C, ‖|Ω ȧ(τ )‖|s ≤ Cε1/2, ‖|Ψ −1ȧ(τ )‖|s ≤ C,
‖|Ψ −1Ωb(τ )‖|s ≤ C,

(49)

with a constant C independent of ε, h,M , but dependent on N . We also obtain
analogous bounds for higher derivatives of a and b with respect to τ = εt . For
zk

j = ε[[k]]ω−|k| c k
j with (c k

j ) = c(4N ) = a(4N ) + b(4N ), the bounds for a and b
together yield the bound (32).
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These bounds imply ‖|c(τ ) − a(0)‖|s+1 ≤ C and as in [6, Sect. 3.7] give, using
(48), the bound (30) for q̃(t). For the function p̃(t), defined in (28), we use z k

j (εt +
εh)ei(k·ω)h − z k

j (εt − εh)e−i(k·ω)h = z k
j (εt)2i sin ((k · ω)h) + r k

j , where by the

mean value theorem |r k
j | ≤ 2εh max−εh<τ<εh |ż k

j (τ )|. Using the condition (27), the
bounds (49) yield in a similar way also the statement (30) for the function p̃(t).

Using (42) and (46) we also obtain the bound, for b = b(4N ),

⎛
⎝ ∑

‖k‖=1

‖(Ψ −1Ωb) k‖2
s

⎞
⎠

1/2

≤ Cε.

Moreover, condition (26) ensures that

∑
| j |≤M

∑
j1+ j2= j

∑
k=±〈 j1〉±〈 j2〉

ω
2(s+1)
j |b k

j |2 ≤ Cε.

These bounds together with (49) yield (31).
With the alternative scaling (43) we obtain the same bounds (for τ = εt ≤ 1),

‖|̂a(0)‖|1 ≤ C, ‖|Ω ˙̂a(τ )‖|1 ≤ Cε1/2, ‖|Ψ −1Ωb̂(τ )‖|1 ≤ C, (50)

and again

⎛
⎝ ∑

‖k‖=1

‖(Ψ −1Ωb̂)
k‖2

1

⎞
⎠

1/2

≤ Cε. (51)

For the function â(τ ) these statements follow at once from the fact that ‖̂a k‖1 =
‖a k‖s . For the function b̂(τ ) one has to repeat the argumentation from before, but
one needs no longer take care of initial values.

In addition to these bounds, we also obtain that the map

Bε ⊂ Hs+1 × Hs → H1 : (u(0), v(0)) �→ ĉ(0)

(with Bε the ball of radius ε centered at 0) is Lipschitz continuous with a Lipschitz
constant proportional to ε−1: at t = 0,

‖|̂a2 − â1‖|21 + ‖|Ω (̂b2 − b̂1)‖|21 ≤ C

ε2

(
‖u2 − u1‖2

s+1 + ‖v2 − v1‖2
s

)
. (52)

123



132 D. Cohen et al.

6.7 Defects

We consider the defect δ(t) = (
δ j (t)

)
| j |≤M in (17) divided by h2ψ(hω j ):

δ j (t) = q̃ j (t + h)− 2 cos(hω j )q̃ j (t)+ q̃ j (t − h)

h2ψ(hω j )
− f j (Φq̃(t)),

where f = ( f j ) is given in (11) and the approximation q̃(t) = (
q̃ j (t)

)
is given by

(28) with z k
j = (z k

j )
(4N ) obtained after 4N iterations of the procedure in Sect. 6.3.

We write this defect as

δ(t) =
∑

‖k‖≤N K

d k(εt) ei(k·ω)t + RN+1(q̃)(t).

Here we have set

d k
j = 1

h2ψ(hω j )
L̃ k

j z k
j +

N∑
m=2

g(m)(0)

m!
×

∑
k1+···+km=k

∑
j1+···+ jm≡ jmod2M

′
φ(hω j1)z

k1

j1 · · · · · φ(hω jm )z
km

jm , (53)

which is to be considered for ‖k‖ ≤ N K , and where we set z k
j = 0 for ‖k‖ > K =

2N . The operator L̃ k
j denotes the truncation of the expansion (34) after the εN term.

The function RN+1 collects the remainder term of the Taylor expansion of f after N
terms, and that due to the truncation of the series in (34) after the εN term. Using the
bound (30) for the remainder in the Taylor expansion of f and the estimates (49) for
the (N + 1)-th derivative for z k

j (τ ), we have ‖RN+1(q̃)‖s+1 ≤ CεN+1.
We now use the bound of [6, Sect. 3.8] to obtain

∥∥∥∥∥∥
∑

‖k‖≤N K

d k(εt) ei(k·ω)t
∥∥∥∥∥∥

2

s

≤ C
∑

‖k‖≤N K

∥∥∥ω|k| d k(εt)
∥∥∥2

s
. (54)

In the following two subsections we estimate the right-hand side of (54) by Cε2(N+1).

6.8 Defect in the truncated and near-resonant modes

For ‖k‖ > K = 2N (truncated modes) and for ( j,k) in the set Rε,h of near-resonances
we have by definition z k

j = 0. In both situations the defect reads
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d k
j =

N∑
m=2

g(m)(0)

m!
×

∑
k1+···+km=k

∑
j1+···+ jm≡ jmod2M

′
φ(hω j1)z

k1

j1 · · · · · φ(hω jm )z
km

jm .

For truncated modes we write the defect as d k
j = ε[[k]] ω−|k| f k

j , and we notice that

by (49) and (41), used with N K in place of K , the bound ‖|f‖|2s ≤ Cε holds. We thus
have

∑
‖k‖>K

∑
| j |≤M

′
ω2s

j

∣∣∣ω|k| d k
j

∣∣∣2 =
∑

‖k‖>K

∑
| j |≤M

′
ω2s

j

∣∣∣ f k
j

∣∣∣2
ε2[[k]]

and hence, since 2[[k]] = ‖k‖ + 1 ≥ K + 2 = 2(N + 1),

∑
‖k‖>K

∑
| j |≤M

′
ω2s

j

∣∣∣ω|k| d k
j

∣∣∣2 ≤ Cε2(N+1).

For the near-resonant modes we consider the rescaling (43), so that d k
j =

ε[[k]] ω−s|k| f̂ k
j . We have ‖|̂f‖|21 ≤ Cε by (50) and (44), so that

∑
( j,k)∈Rε,h

ω2s
j

∣∣∣ω|k| d k
j

∣∣∣2 =
∑

( j,k)∈Rε,h

ω
2(s−1)
j

ω2(s−1)|k| ε
2[[k]] ω2

j | f̂ k
j |2

≤ C sup
( j,k)∈Rε,h

ω
2(s−1)
j ε2[[k]]+1

ω2(s−1)|k| .

The non-resonance condition (24) is formulated such that the supremum is bounded
by C2

0 ε
2(N+1), and hence

∑
( j,k)∈Rε,h

ω2s
j

∣∣∣ω|k| d k
j

∣∣∣2 ≤ C ε2(N+1). (55)

6.9 Defect in the non-resonant modes

We now assume that ‖k‖ ≤ K and that ( j,k) satisfies the non-resonance condition
(23), so that in the scaled variables c k

j of Sect. 6.4 the defect satisfies

ω|k|d k
j = ε[[k]]

(
1

h2ψ(hω j )
L̃ k

j c k
j + f k

j (c)
)
.
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Written in terms of the components a and b of (45) we have

ω j d
±〈 j〉
j = ε

(
±2iεω j

sinc (hω j )

ψ(hω j )

(
ȧ±〈 j〉

j + (Aa)±〈 j〉
j

)
+ f ±〈 j〉

j (a + b)
)

ω|k|d k
j = ε[[k]]

(
4 s〈 j〉+ks〈 j〉−k

h2ψ(hω j )

(
b k

j + (Bb) k
j

)
+ f k

j (a + b)
)
.

It should be noted that the functions in this defect are actually the 4N -th iterates a(4N )

and b(4N ) of the iteration in Sect. 6.3. Expressing f ±〈 j〉
j (a + b) and f k

j (a + b) in
terms of F(a,b) and G(a,b) and inserting F and G from (46) into this defect, relates
it to the increment of the iteration in the following way:

ω j d
±〈 j〉
j = 2ω jα

±〈 j〉
j

([
ȧ±〈 j〉

j

](4N ) −
[
ȧ±〈 j〉

j

](4N+1)
)
,

α
±〈 j〉
j := ±iε2 sinc (hω j )

ψ(hω j )
,

ω|k|d k
j = β k

j

([
bk

j

](4N ) −
[
bk

j

](4N+1)
)
,

βk
j := ε[[k]] 4 s〈 j〉+ks〈 j〉−k

h2ψ(hω j )
.

Motivated by these relations we introduce new variables

ã±〈 j〉
j := α

±〈 j〉
j a±〈 j〉

j , b̃ k
j := β k

j b k
j . (56)

Collecting these variables into vectors and using the transformed functions

F̃±〈 j〉
j (̃a, b̃) := α

±〈 j〉
j F±〈 j〉

j (α−1̃a,β−1b̃),

= −ε f ±〈 j〉
j (α−1̃a + β−1b̃),

G̃k
j (̃a, b̃) := βk

j ψ(hω j )

ω j + |k · ω| Gk
j (α

−1̃a,β−1b̃),

= −ε[[k]] f k
j (α

−1̃a + β−1b̃)

the iteration (46)–(47) becomes

˙̃a(n+1)= Ω−1F̃(̃a, b̃)− Ãa(n),
b̃(n+1)= G̃(̃a, b̃)− Bb̃(n),

ã(n+1)(0)= αv + P̃b̃(n)(0)+ Qã(n)(εh)+ Q̃b̃(n)(εh).
(57)
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In the iteration for the initial values we abbreviate P̃ = αPβ−1, Q̃ = αQβ−1, which
are bounded by

‖|(P̃b̃)(0)‖|s ≤ C ε1/2 ‖|̃b(0)‖|s,
‖|(Qã)(εh)‖|s ≤ C ε1/2 sup

−εh<τ<εh
‖| ˙̃a(τ )‖|s,

‖|(Q̃b̃)(εh)‖|s ≤ C ε3/2 sup
−εh<τ<εh

‖|Ω−1 ˙̃b(τ )‖|s .

In an Hs neighbourhood of 0 where the bounds (49) hold, the partial derivatives of
F̃ with respect to ã and b̃ and those of G̃ with respect to b̃ are bounded by O(ε1/2),
whereas the derivatives of G̃ with respect to ã is only O(1). This is the same situation
as we had for the exact solution in [6]. As in that paper one proves

‖|Ω( ˙̃a(4N+1)
(τ )− ˙̃a(4N )

(τ ))‖|s ≤ C εN+2,

‖|̃b(4N+1)(τ )− b̃(4N )(τ )‖|s ≤ C εN+2,

‖|̃a(4N+1)(0)− ã(4N )(0)‖|s ≤ C εN+2.

These estimates yield the desired bound of the defect in the non-resonant modes
( j,k) �∈ Rε,h . Combined with the corresponding estimates of Sect. 6.8 we obtain

⎛
⎝ ∑

‖k‖≤K

‖ω|k|d k(τ )‖2
s

⎞
⎠

1/2

≤ CεN+1 for τ ≤ 1. (58)

Consequently, the defect δ(t) (see Sect. 6.7) satisfies

‖Ω−1δ(t)‖s+1 = ‖δ(t)‖s ≤ CεN+1 for t ≤ ε−1. (59)

For the defect in the initial conditions (35) and (36) we obtain

‖q̃(0)− q0‖s+1 + ‖ p̃(0)− p0‖s ≤ CεN+1.

For the alternative scaling ĉ k
j = ωs|k|z k

j , we obtain

⎛
⎝ ∑

‖k‖≤K

‖ωs|k|d k(τ )‖2
1

⎞
⎠

1/2

≤ CεN+1 for τ ≤ 1. (60)
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6.10 Remainder term of the modulated Fourier expansion

We write the method (19) in the form

(
qn+1

Ω−1 pn+1

)
=

(
cos(hΩ) sin(hΩ)

− sin(hΩ) cos(hΩ)

) (
qn

Ω−1 pn

)

+h

2
Ψ1

(
sin(hΩ) f n

cos(hΩ) f n + f n+1

)
,

where f n = Ω−1 f (Φqn), and we notice thatΨ1 is a matrix, bounded independently of
h and the dimension M . The differences∆qn := q̃(tn)− qn and∆pn := p̃(tn)− pn ,
where tn := nh, satisfy the same relation with f n replaced by Ω−1( f (Φq̃(tn)) −
f (Φqn)) + δ(tn). Using the Lipschitz bound (cf. Sect. 4.2 in [13] on the relation
between f (q) and g(u) of (1))

∥∥∥Ω−1 ( f (q1)− f (q2))

∥∥∥
s+1

= ‖ f (q1)− f (q2)‖s

≤ Cε‖q1 − q2‖s ≤ Cε‖q1 − q2‖s+1

for q1, q2 ∈ Hs satisfying ‖qi‖s ≤ Mε, and the estimate (59) for the defect yields

∥∥∥∥
(

∆qn+1

Ω−1∆pn+1

)∥∥∥∥
s+1

≤
∥∥∥∥
(

∆qn

Ω−1∆pn

)∥∥∥∥
s+1

+h

2

(
Cε‖∆qn‖s+1 + Cε‖∆qn+1‖s+1 + CεN+1

)
.

Solving this inequality gives the estimate

‖∆qn‖s+1 + ‖Ω−1∆pn‖s+1 ≤ C(1 + tn)ε
N+1 for tn ≤ ε−1

and thus completes the proof of Theorem 4.

7 Conservation properties

We now show that the system of equations determining the modulation functions has
almost-invariants close to the actions, the momentum and the total energy along nume-
rical solutions given by the full discretization (17)–(18). The proof takes up arguments
of [6] for the conservation of actions, of [13] for the conservation of momentum and
aspects of the space discretization, and of [14, Chap. XIII] for the conservation of
energy and for the aspects arising from the time discretization.

123



Numerical conservation properties for non-linear wave equations 137

7.1 The extended potential

The defect formula (53) can be rewritten as

1

h2ψ(hω j )
L̃ k

j z k
j + ∇−k

− j U(Φz) = d k
j , (61)

where ∇−k
− j U(y) is the partial derivative with respect to y−k

− j of the extended potential
(see [13])

U(y) =
N∑

l=−N

Ul(y), (62)

Ul(y) =
N∑

m=2

U (m+1)(0)

(m + 1)!
∑

k1+···+km+1=0

∑
j1+···+ jm+1=2Ml

′
yk1

j1 . . . ykm+1

jm+1
,

where again ‖ki‖ ≤ 2N and | ji | ≤ M , and U (u) is the potential in (2).

7.2 Invariance under group actions

The existence of almost-invariants for the system (61) turns out to be a consequence,
in the spirit of Noether’s theorem, of the invariance of the extended potential under
continuous group actions: for an arbitrary real sequence µ = (µ�)�≥0 and for θ ∈ R,
let

Sµ(θ)y =
(

ei(k·µ)θ y k
j

)
| j |≤M,‖k‖≤K

,

T (θ)y =
(

ei jθ y k
j

)
| j |≤M,‖k‖≤K

.
(63)

Since the sum in the definition of U is over k1 + · · · + km+1 = 0 and that in U0 over
j1 + · · · + jm+1 = 0, we have

U(Sµ(θ)y) = U(y), U0(T (θ)y) = U0(y) for θ ∈ R.

Differentiating these relations with respect to θ yields

0 = d

dθ

∣∣∣∣
θ=0

U(Sµ(θ)y) =
∑

‖k‖≤K

∑
| j |≤M

′
i(k · µ) y k

j ∇ k
j U(y),

0 = d

dθ

∣∣∣∣
θ=0

U0(T (θ)y) =
∑

‖k‖≤K

∑
| j |≤M

′
i j y k

j ∇ k
j U0(y).

(64)
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7.3 Almost-invariants of the modulation system

We now multiply (61) once with i(k ·µ)φ(hω j )z
−k
− j and once with i jφ(hω j )z

−k
− j , and

sum over j and k with | j | ≤ M and ‖k‖ ≤ K . Thanks to (64), we obtain

∑
‖k‖≤K

∑
| j |≤M

′
i(k · µ)

φ(hω j )

h2ψ(hω j )
z−k
− j L̃ k

j z k
j

=
∑

‖k‖≤K

∑
| j |≤M

′
i(k · µ)φ(hω j ) z−k

− j d k
j , (65)

∑
‖k‖≤K

∑
| j |≤M

′
i j

φ(hω j )

h2ψ(hω j )
z−k
− j L̃ k

j z k
j

=
∑

‖k‖≤K

∑
| j |≤M

′
i jφ(hω j ) z−k

− j

⎛
⎝d k

j −
∑
l �=0

∇−k
− j Ul(Φz)

⎞
⎠ . (66)

By the expansion (34) of the operator L̃ k
j , only expressions of the following type

appear for z(τ ) = z k
j (τ ) and z(τ ) = z−k

− j (τ ) on the left-hand side of the above
equations:

Re zz(2l+1) = Re
d

dτ

(
zz(2l) − · · · ± z(l−1)z(l+1) ∓ 1

2
z(l)z(l)

)

Im zz(2l+2) = Im
d

dτ

(
zz(2l+1) − żz(2l) + · · · ± z(l)z(l+1)

)
.

(67)

Therefore, the left-hand sides can be written as total derivatives of functions εJµ[z](τ )
and εK[z](τ )which depend on z(τ ) and its derivatives ε�z(�)(τ ) for � = 1, . . . , N −1.
In this way, (65) and (66) become

− ε
d

dτ
Jµ[z] =

∑
‖k‖≤K

∑
| j |≤M

′
i(k · µ)φ(hω j ) z−k

− j d k
j , (68)

−ε d

dτ
K[z] =

∑
‖k‖≤K

∑
| j |≤M

′
i jφ(hω j ) z−k

− j

⎛
⎝d k

j −
∑
l �=0

∇−k
− j Ul(Φz)

⎞
⎠ . (69)

In the following we consider the special case of µ = 〈�〉. From the smallness of the
right-hand sides in (68) and (69) we infer the following.

Theorem 5 Under the conditions of Theorem 4 we have, for τ ≤ 1,

M∑
�=0

ω2s+1
�

∣∣∣∣ d

dτ
J〈�〉[z](τ )

∣∣∣∣ ≤ C εN+1,

∣∣∣∣ d

dτ
K[z](τ )

∣∣∣∣ ≤ C
(
εN+1 + ε2 M−s+1

)
.
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Proof The result is obtained from (68) and (69) with the arguments of [6,13] as follows.
With the bounds (50) and (60), the estimate for the functions J〈�〉[z] follows with the
proof of Theorem 3 in [6]. With the bound (32) and with the bounds ‖|z‖|1 ≤ Cε and
‖|d‖|0 ≤ CεN+1, which follow from (32) and (58), the estimate for K[z] is obtained
as in Theorem 5.2 of [13]. ��

A further almost-invariant is obtained by multiplying (61) with the expression

φ(hω j )
(

i(k · ω)z−k
− j + εż−k

− j

)
, summing over j and k, and using (64):

∑
‖k‖≤K

∑
| j |≤M

′ φ(hω j )

h2ψ(hω j )

(
i(k · ω)z−k

− j + εż−k
− j

)
L̃ k

j z k
j (70)

+ ε
d

dτ
U(Φz) =

∑
‖k‖≤K

∑
| j |≤M

′
φ(hω j )

(
i(k · ω)z−k

− j + εż−k
− j

)
d k

j .

In addition to the identities (67) we also use

Re żz(2l) = Re
d

dt

(
żz(2l−1) − · · · ∓ z(l−1)z(l+1) ± 1

2
z(l)z(l)

)
,

Im żz(2l+1) = Im
d

dt

(
żz(2l) − z̈z(2l−1) + · · · ∓ z(l)z(l+1)

)
.

Therefore, the left-hand side of (70) can be written as the total derivative of a function
εH[z](τ ), so that (70) becomes

ε
d

dτ
H[z] =

∑
‖k‖≤K

∑
| j |≤M

′
φ(hω j )

(
i(k · ω)z−k

− j + εż−k
− j

)
d k

j . (71)

As in Theorem 5, the Cauchy-Schwarz inequality and the estimates for z k
j and d k

j
then yield the following estimate.

Theorem 6 Under the conditions of Theorem 4 we have, for τ ≤ 1,

∣∣∣∣ d

dτ
H[z](τ )

∣∣∣∣ ≤ C εN+1.

7.4 Relationship with actions, momentum, and energy

We now show that the almost-invariant J〈�〉 of the modulated Fourier expansion is
close to the corresponding harmonic action (13) of the numerical solution,

J� = I� + I−� = 2I� for 0 < � < M, J0 = I0, JM = IM ,

and that H and K are close to the Hamiltonian HM and the momentum K of (12) and
(13), respectively.
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Theorem 7 Under the conditions of Theorem 3, along the numerical solution (qn, pn)

of (19) and the associated modulation sequence z(εt), it holds that

H[z](εtn) = HM (qn, pn)+ O(ε3),

K[z](εtn) = K (qn, pn)+ O(ε3)+ O(ε2 M−s),

J〈�〉[z](εtn) = J� (qn, pn)+ γ�(tn) ε3

with
∑M
�=0 ω

2s+1
� γ�(tn) ≤ C for tn ≤ ε−1. All appearing constants are independent

of ε, M, h, and n.

Proof With the identities (67) we obtain from (66) that

K[z] =
∑

‖k‖≤K

∑
| j |≤M

′
j
φ(hω j )

ψ(hω j )

(
(k · ω) sinc (h k · ω)|z k

j |2

+ 2εc2k Im
(

z−k
− j ż k

j

)
+ . . .

)
.

Separating the terms with k = ±〈 j〉 and using the symplecticity condition (20), and
applying the bounds (50) and (51) to the remaining terms, we find

K[z] =
∑

| j |≤M

′
j ω j

(
|z〈 j〉

j |2 − |z−〈 j〉
j |2

)
+ O(ε3).

In terms of the Fourier coefficients of the modulated Fourier expansion q̃ j (t) =∑
‖k‖≤K z k

j (εt) ei(k·ω)t , we have at t = tn

K[z] =
∑

| j |≤M

′
j
ω j

4

(∣∣∣̃q j + (iω j )
−1 p̃ j

∣∣∣2 −
∣∣∣̃q j − (iω j )

−1 p̃ j

∣∣∣2
)

+ O(ε3)

= K (q̃, p̃)+ O(ε3)+ O(ε2 M−s)

= K (qn, pn)+ O(ε3)+ O(ε2 M−s),

where we have used (31). The O(ε2 M−s) terms come from the boundary terms in the
sum. The last equality is a consequence of the remainder bound of Theorem 4.

Similarly, we obtain from (70) that

H[z] =
∑

‖k‖≤K

∑
| j |≤M

′
(k · ω)

φ(hω j )

ψ(hω j )

(
(k · ω) sinc (h k · ω)|z k

j |2 + · · ·
)

+ U(Φz),

which yields, using in addition U(Φz) = O(ε3),

H[z] =
∑

| j |≤M

′
ω2

j

(
|z〈 j〉

j |2 + |z−〈 j〉
j |2

)
+ O(ε3),

and shows that H[z] = HM (qn, pn)+ O(ε3).
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The result for J� is obtained in the same way, using in addition Lemma 3 of [6] to
estimate the remainder terms. ��

With an identical argument to that of [6, Sect. 4.5], Theorems 5 and 6 together with
the estimates of Theorem 4 and the Lipschitz continuity (52) yield the statement of
Theorem 3 by patching together many intervals of length ε−1.

8 The Störmer–Verlet/leapfrog discretization

The leapfrog discretization of (11) reads, in the two-step formulation,

qn+1 − 2 qn + qn−1 = h2
(
−Ω2qn + f (qn)

)
, (72)

with the velocity approximation pn given by

2h pn = qn+1 − qn−1. (73)

The starting value is chosen as q1 = q0 +hp0 + h2

2 f (q0). Conservation properties of
this method will be obtained by reinterpreting it as a trigonometric method (17) with
modified frequencies ω̂ j satisfying 1 − 1

2 h2ω2
j = cos(hω̂ j ), that is,

sin
(

1

2
hω̂ j

)
= 1

2
hω j . (74)

This is possible as long as hω j ≤ 2.

Theorem 8 Under the stepsize restriction hωM ≤ c < 2, under the non-resonance
conditions (24) and (26) for the modified frequencies ω̂ j of (74), and under the assump-
tion (15) of small initial data with s ≥ σ + 1 for (q0, p0) = (q(0), p(0)), the near-
conservation estimates

|HM (qn, pn)− HM (q0, p0)|
ε2 ≤ C(ε + h2),

|K (qn, pn)− K (q0, p0)|
ε2 ≤ C

(
ε + h2 + M−s + εt M−s+1

)
,

M∑
�=0

ω2s−1
�

|I�(qn, pn)− I�(q0, p0)|
ε2 ≤ C(ε + h2)

for energy, momentum and actions hold for long times

0 ≤ t = nh ≤ ε−N+1

with a constant C which depends on s, N , C0, and c, but is independent of ε, M, h,
and t.
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Fig. 4 Actions, energy, and momentum along the numerical solution of the leapfrog method, every 5th
action is plotted

Proof Denoting by Ω̂ the diagonal matrix with entries ω̂ j , we introduce the transfor-
med variables

q̂ n = sinc (hΩ̂) qn, p̂ n = pn,

which are solutions to the symplectic trigonometric method (17)–(18) with ψ = sinc
and φ = 1. Under the stepsize restriction hωM ≤ c < 2 the non-resonance condition
(25) is trivially satisfied for ω̂ j , and we have

ω j ≤ ω̂ j ≤ Cω j ,

where C depends only on c. Hence, the assumption (15) of small initial data is satisfied
with the same exponent s for the weighted norms defined with ω̂ j or ω j . We can
therefore apply Theorem 3 in the transformed variables (q̂ n, p̂ n). With the estimate
| sinc (hω̂ j ) − 1| ≤ 1

6 h2ω̂2
j , the result stated for the original variables (qn, pn) then

follows. ��
We apply the leapfrog method to the problem of Sect. 4 with stepsize h = 0.3, so

that the CFL number hωM ≈ 1.92 is close to the linear stability limit. In Fig. 4 we
observe oscillations with large relative amplitude proportional to h2ω2

j for the actions
I j corresponding to high frequencies, but no drift in actions, energy, and momentum.
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