
Asia-Pacific Financial Markets (2006) 12: 1–28

DOI: 10.1007/s10690-006-9010-0 C© Springer 2006

Intraday Empirical Analysis and Modeling

of Diversified World Stock Indices

WOLFGANG BREYMANN1,3, LEAH KELLY2 and ECKHARD PLATEN2
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Abstract. This paper proposes an approach to the intraday analysis of diversified world stock accu-

mulation indices. The growth optimal portfolio (GOP) is used as reference unit or benchmark in a

continuous financial market model. Diversified portfolios, covering the world stock market, are con-

structed and shown to approximate the GOP, providing the basis for a range of financial applications.

The normalized GOP is modeled as a time transformed square root process of dimension four. Its

dynamics are empirically verified for several world stock indices. Furthermore, the evolution of the

transformed time is modeled as the integral over a rapidly evolving mean-reverting market activity

process with deterministic volatility. The empirical findings suggest a rather simple and robust model

for a world stock index that reflects the historical evolution, by using only a few readily observable

parameters.
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1. Introduction

The purpose of this paper is the empirical construction of an intraday world stock
index (WSI) that provides a good approximation of the growth optimal portfolio
(GOP), see Kelly (1956) and Long (1990). It is the portfolio that maximizes loga-
rithmic expected utility of terminal wealth. For practical applications, which include
portfolio optimization and numeraire based derivative pricing, it is useful to be able
to construct approximations of the GOP from observed data. This can be achieved
by considering diversified portfolios, (see Platen, 2004, 2006). It is therefore the
objective of this paper to study such proxies and model the intraday dynamic proper-
ties. More specifically, we will (i) construct several GOP proxies with five minutes
data, (ii) compare their empirical quantities with theoretical model predictions, and
(iii) try to select one on the basis of theoretical requirements. Of interest is whether
the study will provide support for the theoretical findings in Platen (2006).
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Increasingly, diffusion processes are used to model financial markets in contin-
uous time, see Merton (1992). The well-known Black-Scholes (BS) framework, in
which volatility is a central concept, continues to provide the basis for quantitative
financial techniques in practice. The simplest form of the BS framework implies
Gaussian log-return distributions. The deviation of observed log-returns from a
Gaussian distribution is an increasingly established stylized empirical fact. This is
particularly apparent in the intraday regime and has been widely documented, see,
for example, Dacorogna et al. (2001).

In the discrete time setting, the most advanced time-series models are able to
reflect the main stylized empirical features reasonably well. For a review using
ARCH-type models, see for example Bollerslev et al. (1992). In general, however,
the time-aggregation properties of these models make it difficult to integrate intra-
day information into a typically daily discrete time framework. The unsatisfactory
behavior of the coefficients of a GARCH (1,1) model under time aggregation is
demonstrated in Dacorogna et al. (2001). Continuous time diffusion type models,
on the other hand, can resolve much of this problem. Furthermore, continuous time
models benefit from the high observation frequency realized with intraday data, in
particular, for the estimation of the diffusion coefficients.

The benchmark approach (BA), see Platen (2004, 2006), uses the GOP as a cen-
tral building block and generalizes existing financial market modeling approaches.
By using the BA, a GOP model is obtained that is able to accommodate many of the
known empirical feature of financial markets. The practical availability of a suitable
proxy for the GOP will be demonstrated. This allows a number of applications of
the BA with regards to portfolio optimization, derivative pricing, integrated risk
management and the efficient use of intraday data.

Diffusion processes are determined by the form of their drift and diffusion
coefficients. It is known that the drift coefficient of the discounted GOP is fully
determined by its diffusion coefficient, see Long (1990). Indeed, the risk premium
of the GOP simply equals its squared volatility. A similar property can be shown
for any other security under the BA, see Platen (2004, 2006). The BA provides an
extension to previous approaches insofar as it excludes arbitrage without requiring
the existence of an equivalent risk neutral martingale measure. As shown in Platen
(2002), the ideal dynamics of the GOP implies Student t distributed log-returns with
degrees of freedom four. This is consistent with empirical studies that indicate tail
indices around four, see Hurst and Platen (1997), Müller et al. (1998) and Breymann
et al. (2003).

In general, reliable estimation of the drift coefficient or trend using the rela-
tively short period of historical financial data available is extremely difficult for
financial market models. However, the diffusion coefficient is relatively simple to
determine from short observation periods. In fact, inference about the diffusion
coefficient benefits from the use of intraday data, allowing considerable precision.
Therefore, a market model that is fully determined by the diffusion coefficient, as
provided by the BA, is highly desirable since it allows the information about the
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drift to be automatically extracted. Analysis of high-frequency data requires spe-
cial techniques, see Dacorogna et al. (2001) and Goodhart and O’Hara (1997). This
includes the appropriate treatment of daily and weekly seasonal patterns apparent,
see Breymann et al. (2003). Thus, daily and weekly seasonal patterns need to be
integrated in the modeling. We will demonstrate that this can be done in a consis-
tent and robust manner. It leads to a reliable observation and estimation of market
activity, which under the BA turns out to be a more suitable financial quantity for
incorporating stylized empirical features than is volatility in the BS framework.

Initially, the analysis is illustrated using the Morgan Stanley Capital Growth
World Index (MSCI). It is shown that the MSCI, despite being observed daily,
approximates the GOP reasonably well. Deviations exist although these can be at-
tributed to two shortcomings. Firstly, the lack of intraday information and secondly,
the missing data from emerging markets that are not sufficiently accounted for in the
MSCI. Therefore, to rectify these problems we construct three new high-frequency
WSIs that are observed at five minute intervals. These appear to be more diversified
than the MSCI and approximate the GOP well.

Section 2 discusses the empirical features of the MSCI and the construction of
the high-frequency WSIs. Section 3 summarizes the BA for an intraday GOP and
Section 4 discusses the empirical analysis and models market activity of the WSIs.

2. World Stock Indices

2.1. A PRELIMINARY ANALYSIS OF A DAILY WORLD STOCK INDEX

Initially we examine the empirical features of the daily observed Morgan Stan-
ley Capital Growth World Index (MSCI), denominated in USD, and denoted by
V (MSCI)(t). This is one of the most diversified, readily available accumulation in-
dices. Since we are not interested in the interest rate dynamics we will study the
discounted MSCI

V̄ (MSCI)(t) = V (MSCI)(t) exp

{
−

∫ t

0

r (u) du

}
(2.1)

for t ∈ [0, T ]. Here r (t) is the short term interest rate for the USD market at time t .
The MSCI index includes stocks from 22 countries and is based on approxi-

mately 1200 stocks. Figure 1 shows the evolution of the discounted MSCI index
over the period from January 1970 until January 2003.

The discounted index displayed in Figure 1 appears, on average, to grow expo-
nentially. To compensate for this we introduce the normalization function

ᾱ(t) = ξ exp{η t}, (2.2)

for t ∈ [0, T ], where ξ > 0 is a normalization constant and η > 0 is called the net
growth rate of the market.
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Figure 1. The discounted MSCI World Index 1970–2003.

An empirical study by Dimson et al. (2002) suggests that over the last one
hundred years a discounted World Stock Index (WSI), denominated in USD, has
experienced an average rate of net growth of approximately η = 4.8%. This is
consistent with the parameter range that other earlier studies detected. Thus, we
introduce the normalized MSCI

Y (MSCI)(t) = V̄ (MSCI)(t)

ᾱ(t)
(2.3)

for t ∈ [0, T ]. In the following illustrations, we have chosen η = 0.048 and
ξ = 10.5, as in Platen (2004), which matches the long term growth of a market
capitalization weighted WSI, as will be shown in Section 2.2. Figure 2 displays the
resulting normalized MSCI over the period of thirty two years. As we will see, the
time series shown in Figure 2 is in essence stationary even though fluctuations on all
scales are evident and the mean reversion appears to be weak. It is interesting to note
that the strength of the fluctuation depends on the level of the normalized MCSI.
Periods of high values correspond to periods of large fluctuations and periods of
low values correspond to periods of small fluctuations.

An important observable, when considering the fluctuations of a stochastic pro-
cess X , is its quadratic variation 〈X〉t . It is given by the limit of the sum of the
squared increments of this process X when the step size of the underlying time
discretization tends to zero. For Brownian motion, the quadratic variation is simply
the time itself. Typically, the empirically observed quadratic variation of a security



INTRADAY EMPIRICAL ANALYSIS AND MODELING 5

Figure 2. Normalized MSCI Y (MSCI)(t) for 1970–2003.

or an index displays behavior more complicated than a linear function of time. The
slope of quadratic variation reflects phenomena like stochastic volatility. Ideally,
one would like to transform the time series of the normalized MSCI in a way that
results in a process with approximately level independent fluctuations. This means
that the corresponding quadratic variation should be approximately proportional to
time, which implies that the diffusion term of the transformed time series would
then be proportional to a Brownian motion.

With this goal in mind we consider the square root
√

Y (MSCI)(t). This particular
transformation is motivated by theoretical arguments which will be presented in
Section 3. Taking the square root increases fluctuations when the level of the nor-
malized index is low and decreases fluctuations when its level is high. According
to Figures 3 and 4, the fluctuations of

√
Y (MSCI)(t) seem to be reasonably similar

for high and low levels. To verify this impression Figure 5 shows the corresponding
quadratic variation 〈

√
Y (MSCI)〉t , which indeed appears to be approximately propor-

tional to time. Note that we observe in Figure 5 a slope of approximately 1
4

per year.
This empirical feature will be explained in Section 3.

2.2. CONSTRUCTION OF INTRADAY WORLD STOCK INDICES

To our knowledge there is no readily available high-frequency WSI that one could
use for an intraday analysis that extends over several years. To allow for comparison,
we construct three different intraday WSIs, for which we will compare key features
of their dynamics. Each WSI is constructed as a self-financing portfolio consisting



6 W. BREYMANN ET AL.

F
ig

ur
e

3.
S

q
u

ar
e

ro
o

t
√ Y

(M
S

C
I)

(t
)

o
f

n
o

rm
al

iz
ed

M
S

C
I.



INTRADAY EMPIRICAL ANALYSIS AND MODELING 7

Figure 4. Absolute returns of normalized MSCI Y (MSCI)(t) (above) and
√

Y (MSCI)(t) (below).

Figure 5. Quadratic variation 〈
√

Y (MSCI)〉t .

of local stock market indices taken from almost all financial markets throughout the
world. The WSIs, which will be denominated in USD, are constructed from d = 34
local stock market accumulation indices. Many of the local indices used are spot
price indices. We denote by P ( j,i)(t) the local stock spot price index at time t of stock
market j ∈ {1, 2, . . . , d}, when denominated in currency i ∈ {USD, CHF, . . . }.
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As a first step we transform the original local spot price index into an accumulation
index I ( j,i)(t) by forming the expression

I ( j,i)(t) = P ( j,i)(t) exp

{ ∫ t

0

y( j)(u) du

}
(2.4)

for t ∈ [0, T ], j ∈ {1, 2, . . . , d} and i ∈ {USD, CHF, . . . }. Here y( j)(t) is the
continuously compounding dividend rate for the j th local stock index at time t .
Secondly, in order to form a WSI in USD, all local accumulation indices must be
denominated in USD. The corresponding foreign exchange rate X (i,USD)(t) is the
spot price of one US Dollar at time t when measured in units of the i th currency.
Thus, the j th local accumulation index denominated in USD is given by

I ( j,USD)(t) = I ( j,i)(t) X (i,USD)(t) (2.5)

for t ∈ [0, T ]. We then obtain a WSI at time t , denoted by V (WSI)(t), which is
denominated in USD, by forming the portfolio

V (WSI)(t) =
d∑

j=1

δ
( j)
(WSI)(t) I ( j,USD)(t). (2.6)

Here δ
( j)
(WSI)(t) denotes the number of units of the j th local accumulation index

held in the WSI at time t ∈ [0, T ]. The value used for δ
( j)
(WSI)(t) corresponds to the

j th weight or proportion π
( j)
(WSI)(t). Throughout our analysis we separate the USD

interest rate evolution from our study by considering the discounted WSI V̄ (WSI)(t)
at time t , which is computed from V (WSI)(t) in the same manner as shown in (2.1).

To have a small range of accumulation indices to study we construct three
WSIs: the approximately Equal Weighted Index (EWI), the Market Capitalization
Weighted Index (MCI) and the Gross Domestic Product Weighted Index (GDPI).
The values δ

( j)
(WSI)(t) for each WSI are adjusted such that the proportions π

( j)
(WSI)(t) for

the MCI and GDPI correspond to the respective weights of the j th local accumu-
lation index, j ∈ {1, 2, . . . , d}. Despite its name, the EWI is not equally weighted
for all markets. Developed markets were given a weight of 0.0357 and emerging
markets only a weight of 0.0179. The markets were classified as either developed
or emerging to be consistent with the classification used by Morgan Stanley Capital
International. The stock markets considered in the MCI account for more than 95%
of the total world market capitalization, while the GDPI weights account for more
than 85% of the total world GDP. In each of the WSIs, the number of units of
each of the accumulation indices is kept piecewise constant. The WSIs are rebal-
anced after one year has elapsed or when a local stock index is to be added to the
WSI, whichever occurs first. The rebalancing dates are 05/04/1996, 17/12/1996,
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31/01/1997, 30/01/1998, 20/10/1998, 20/10/1999 and 20/10/2000. Table III at the
end of this paper shows a list of the weights of the local stock indices.

To ensure that the WSIs are comparable, each index must have the same initial
value. Additionally, to enable the convenient comparison of the WSIs to a readily
available market index, each WSI is rescaled to have the same initial value as the
MSCI at the starting date t0 = 05/04/1996 00:00:00 Greenwich Mean Time (GMT)
of our sample.

As any single local accumulation index represents a portfolio consisting of a
cross section of the stocks in that local market, a WSI can be regarded as a diversified
portfolio containing the stocks of all local stock markets considered. To include as
many stocks as possible in the WSIs constructed, all local accumulation indices for
which we could obtain high-frequency data were included. As a result of this, the
three WSIs are based on between two and three thousand stocks.

In addition to local stock indices we rely on high-frequency FX spot data to trans-
form the value of the different local stock indices into USD. The high-frequency
index and FX data consists of tick-by-tick data, which was collected and filtered by
Olsen Data. The period explored is from 4 April 1996 until 29 June 2001. Intraday
data for a number of local stock indices start at later dates and are included into
the WSIs as soon as they became continuously available. Both the original high-
frequency local stock indices and FX time series are irregularly spaced. Previous
tick interpolation was used to transform the observed data to regularly spaced time
series with an observation time of five minutes. Furthermore, in order to form the
discounted accumulated WSIs we used daily dividend rates and USD interest rates.
Omitting the high-frequency information in dividends and short rates is justified
because only the exponentials of integrals of these quantities, but not the values
themselves, enter the formulae for the relevant quantities in our construction of the
WSIs, see (2.1) and (2.4).

Figure 6 displays the three different WSIs in addition to the daily observed
MSCI. It is striking that, in spite of significant differences in the weights, all WSIs
appear to be very similar. In particular, the similar fluctuations of all four indices
are apparent. Using the normalization function ᾱ(t), given in (2.2), enables us to
calculate the normalized WSI

Y (t) = V̄ (WSI)(t)

ᾱ(t)
(2.7)

for t ∈ [0, T ], as in (2.3) .
We omit a plot of the normalized WSIs, however the normalized MCI is shown

in Figure 15 in an alternative time scale. The normalized WSIs all display similar
dynamics. In Platen (2004) the diversification of the WSI is shown to give a theo-
retical argument for this stylized fact. The hourly log-returns of the high-frequency
MCI are shown in Figure 7, those of the EWI and GDPI are very similar. On the
basis of their similar visual appearance it is reasonable to expect that the statistical
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Figure 6. World Stock indices with equal weights (EWI), market capitalization adjusted

weights (MCI), GDP adjusted weights (GDPI) and MSCI, where initial values are matched to

the MSCI.

Figure 7. Hourly log-returns of the MCI.
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characteristics of the intraday WSIs will be similar as well. However, this is not
obvious and needs to be explored. To place this type of analysis in a theoretically
sound context, the benchmark approach (BA) is introduced in the next section.

3. Benchmark Approach

In the following we summarize essential facts about the BA in a somewhat infor-
mal way. To ensure the readability of this section, mathematical technicalities are
omitted. For more detailed information we refer to Platen (2004).

3.1. PRIMARY SECURITY ACCOUNTS AND PORTFOLIOS

We consider a continuous financial market with d + 1 primary security accounts
with values S(0)(t), . . . , S(d)(t) at time t ∈ [0, T ], where T is finite. A primary
security account contains units of a given asset with all accrued income reinvested.
Here S(0)(t) models the riskless money market savings account and S( j)(t), the j th
accumulation stock index at time t as mentioned in Section 2.2. Note however that
a primary security account can consist of any type of asset class. Without loss of
generality, the j th primary security account is supposed to satisfy the stochastic
differential equation (SDE)

d S( j)(t) = S( j)(t)

(
(r (t) dt +

d∑
k=1

b j,k(t)(θ k(t) dt + dW k(t))

)
(3.1)

for t ∈ [0, T ] with S( j)(0) > 0, j ∈ {0, 1, . . . , d}.
The uncertainties are modeled by d independent standard Brownian motions

W k = {W k(t), t ∈ [0, T ]}, k ∈ {1, 2, . . . , d} fulfilling the usual conditions, see
Øksendal (1998). Only d sources of uncertainty are necessary in our complete
market since one of the assets is riskless. The kth market price for risk θ k(t) is
proportional to the expected excess return that an investor obtains at time t for
taking risk that is modeled by the kth Brownian motion.

The savings account is given by

S(0)(t) = exp

{ ∫ t

0

r (s) ds

}
(3.2)

where r (t) denotes the interest rate at time t . Zero volatility b0,k(t) applies for
S(0) in (3.1) for all t ∈ [0, T ] and k ∈ {1, 2, . . . , d}. The volatility matrix b(t) =
[b j,k(t)]d

j,k=1 is assumed to be invertible to ensure that the uncertainties of the
underlying securities are uniquely securitized.

Central to the BA is a portfolio that is used as benchmark and numeraire. The j th
component δ( j)(t) ∈ (−∞, ∞) of the strategy δ denotes the number of units of the
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j th primary security account, which are held at time t ∈ [0, T ] in the corresponding
portfolio, j ∈ {0, 1, . . . , d}. The value V (δ)(t) of the corresponding portfolio at time
t can be written as the sum

V (δ)(t) =
d∑

j=0

δ( j)(t) S( j)(t) (3.3)

for t ∈ [0, T ]. The portfolio is called self-financing if

dV (δ)(t) =
d∑

j=0

δ( j)(t) d S( j)(t) (3.4)

for all t ∈ [0, T ]. That is, all changes in the value of the portfolio are due to gains
from trade in the primary security accounts.

The self-financing portfolio value V (δ)(t) satisfies according to (3.4) and (3.1)
the SDE

dV (δ)(t) = V (δ)(t)

(
r (t) dt +

d∑
k=1

βk
δ (t) (θ k(t) dt + dW k(t))

)
(3.5)

with kth volatility

βk
δ (t) =

d∑
j=0

π
( j)
δ (t) b j,k(t) (3.6)

and j th proportion

π
( j)
δ (t) = δ( j)(t)

S( j)(t)

V (δ)(t)
(3.7)

for t ∈ [0, T ], k ∈ {1, 2, . . . , d} and j ∈ {0, 1, . . . , d}.

3.2. GROWTH OPTIMAL PORTFOLIO

From (3.5) it follows by application of the Itô formula for the logarithm of a strictly
positive portfolio V (δ)(t) the SDE

d ln
(
V (δ)(t)

) = gδ(t) dt +
d∑

k=1

βk
δ (t) dW k(t) (3.8)
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with portfolio growth rate

gδ(t) = r (t) +
d∑

k=1

βk
δ (t)

(
θ k(t) − 1

2
βk

δ (t)

)
(3.9)

for t ∈ [0, T ].
The growth optimal portfolio (GOP), see Long (1990), is the portfolio that

maximizes the portfolio growth rate (3.9). By solving the first order conditions
for the corresponding quadratic maximization problem one obtains the j th GOP
proportion

π
( j)
(δ∗)(t) =

d∑
k=1

[b−1(t)]k, j θ k(t) (3.10)

for t ∈ [0, T ] and j ∈ {1, 2, . . . , d}. Here [b−1(t)]k, j denotes the (k, j)th element
of the inverse b−1(t) of the volatility matrix. The GOP value V (δ∗)(t) at time t
satisfies the SDE

dV (δ∗)(t) = V (δ∗)(t)

(
r (t) dt +

d∑
k=1

θ k(t) (θ k(t) dt + dW k(t))

)
(3.11)

for t ∈ [0, T ]. It can be seen from (3.11) that the GOP volatilities θ k(t), k ∈
{1, 2, . . . , d}, are the corresponding market prices for risk. Consequently, the drift
of the GOP can be identified via its diffusion coefficients.

To form the GOP using the proportions (3.10) is a difficult task, see for example,
Long (1990). However, the GOP can be approximated in a robust manner. It is well-
known that well diversified stock portfolios behave in a similar fashion, see Figure 6.
In Platen (2004) it has been shown given some weak regularity conditions, that any
well diversified world stock portfolio approximates the GOP. See also Platen (2004)
for a more general discussion of approximate GOPs. This makes it reasonable to
assume that the WSIs constructed in Section 2.2 approximate the GOP of the world
stock market. The most intuitive property of the GOP is that it systematically
outperforms all other portfolios in the long run. From this perspective, the MCI
in Figure 6 seems to emerge as the best approximate GOP because it outperforms
the other WSIs over the observation period considered. This is consistent with the
finding in Platen (2006), where the GOP equals under natural assumptions the MCI.

3.3. DISCOUNTED GOP

Let us discount the GOP value V (δ∗)(t), see (3.11), at time t by the savings account
value S(0)(t), see (3.2). By application of the Itô formula together with (3.2) and
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(3.11), the discounted GOP

V̄ (δ∗)(t) = V (δ∗)(t)

S(0)(t)
(3.12)

satisfies the SDE

dV̄ (δ∗)(t) = V̄ (δ∗)(t) |θ (t)| (|θ (t)| dt + dŴ (t)) (3.13)

where

dŴ (t) = 1

|θ (t)|
d∑

k=1

θ k(t) dW k(t) (3.14)

and the GOP volatility |θ (t)| equals the total market price for risk

|θ (t)| =
√√√√ d∑

k=1

(θ k(t))2. (3.15)

The discounted GOP drift α(t) is defined to be

α(t) = V̄ (δ∗)(t) |θ (t)|2. (3.16)

Allowing α(t) to be a, possibly stochastic, parameter process leads to a GOP volatil-
ity of the form

|θ (t)| =
√

α(t)

V̄ (δ∗)(t)
. (3.17)

We will demonstrate in this paper that one can model the discounted GOP drift
in the form

α(t) = ᾱ(t) m(t) (3.18)

for t ∈ [0, T ], where ᾱ(t) is given in (2.2). Here m = {m(t), t ∈ [0, T ]} denotes the
nonnegative market activity process that fluctuates around one and will be specified
below. This process is particularly important when modeling intraday indices as
short term fluctuations in GOP volatility are captured by m(t).
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3.4. NORMALIZED GOP AND MARKET ACTIVITY

Based on the market activity m(t) introduced in the previous section the market
activity time can be defined as ψ = {ψ(t), t ∈ [0, T ]} with

ψ(t) =
∫ t

0

m(s) ds (3.19)

for t ∈ [0, T ]. Note that (3.19) requires proper normalization of the market activ-
ity. It is reasonable to normalize m(t) in such a way that on average the market
activity time scale elapses approximately as fast as physical time. The choice in
our case is such that t = 0 years corresponds to the starting date of our sam-
ple 05/04/1996 00:00:00 GMT and ψ(T ) = 5.25 years, which is equivalent to
30/05/2001 00:00:00 GMT, the terminal date of the data available. Furthermore,
we assume that

lim
T →∞

1

T
E (ψ(T )) = 1. (3.20)

The normalized GOP Y = {Yψ, ψ ∈ [0, ψ(T )]}, see (2.3) and (2.7), in market
activity time is defined to be

Yψ(t) = Y (t) = V̄ (δ∗)(t)

ᾱ(t)
. (3.21)

It is straightforward to show via the Itô formula, by using (3.13) and (3.18), that
(3.21) satisfies the SDE

dYψ(t) = V̄ (δ∗)(t)

ᾱ(t)
((|θ (t)|2 − η)dt + |θ (t)| dŴ (t))

and thus

dYψ = η

(
1

η
− Yψ

mψ

)
dψ + √

Yψ dŴψ (3.22)

for ψ ∈ [0, ψ(T )]. Here we set

dŴψ(t) =
√

m(t) dŴ (t) and mψ(t) = m(t) (3.23)

for t ∈ [0, T ]. The normalized GOP in market activity time in (3.22), is for mψ = 1,
a square root process with dimension four, which is a CIR process, see Cox et al.
(1985). As such, the solution of (3.22) has a long term mean of 1

η
and a speed of

adjustment parameter η. One observes that the only relevant parameter in (3.22) is
the net growth rate η, which is also a key parameter for the economy. If we consider
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the square root of the normalized GOP, then by (3.22) and application of the Itô
formula, it evolves according to the SDE

d(
√

Yψ ) =
(

3

8
√

Yψ

− η
√

Yψ

2 mψ

)
dψ + 1

2
dŴψ (3.24)

for ψ ∈ [0, ψ(T )]. It is crucial to note that the diffusion coefficient in (3.24) is
constant. Therefore we obtain in market activity time the quadratic variation of

√
Y

in the form

〈
√

Y 〉ψ = ψ

4
(3.25)

for ψ ∈ [0, ψ(T )], see Platen (2004). Relation (3.25) holds under general circum-
stances since no restrictive assumptions have been imposed on the actual model
dynamics. The market activity process can still be freely chosen.

Note that from the market activity time given in (3.19) and the quadratic variation
of

√
Y in (3.25), the market activity can be calculated as

m(t) = dψ(t)

dt
= 4

d〈√Y 〉t

dt
(3.26)

for t ∈ [0, T ]. This implies that market activity is directly observable. A measure of
the slope of the quadratic variation of the square root of the normalized GOP is all
that is required. For the daily observed MSCI the quadratic variation of its square
root has been shown in Figure 5. The slope of this graph is then the corresponding
market activity, which remains to be modeled. However, seasonal patterns are to be
expected in intraday market activity since the market experiences active and non-
active periods that depend on the time of the week, see, for example, Dacorogna
et al. (2001) and Breymann et al. (2003).

4. Intraday Market Activity

4.1. MARKET ACTIVITY OF THE WSIS

As a next step we investigate the three intraday WSIs introduced in Section 2.2.
According to (3.25) their market activity time is simple to calculate. In Figure 8
we show the market activity time of the MCI for the period covered by the intraday
data. This allows us to calculate the market activity directly. We simply calculate
the numerical derivative corresponding to (3.26) using five minute time steps. This
derivative fluctuates over a wide range. Therefore, we show the logarithm ln(m(t))
of this derivative in Figure 9 for the MCI over a few weeks in April/May 1996.
It appears that the observed market activity process shows some seasonal patterns
and reverts quickly back to a reference level.
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Figure 8. The market activity time for the MCI.

Figure 9. Logarithm of market activity, ln(m(t)), for the MCI.
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Figure 10. Quadratic variation of the logarithm of the market activity, 〈ln(m)〉t , process for

the MCI.

The observed market activity processes for the EWI and GDPI look very similar
and are therefore omitted. This segment of the logarithm of market activity illus-
trates the seasonality apparent in the average level of market activity and to some
degree also some seasonality present in the average fluctuation. The presence of
seasonality within the fluctuations of market activity is further confirmed by the
quadratic variation 〈ln(m)〉t of the logarithm of the market activity, which is shown
for the above segment in Figure 10. Here we see that the weekends are characterized
by a plateau in the quadratic variation. Notably, despite the seasonal pattern, the
quadratic variation in Figure 10 appears to be almost linear for the periods when
the global market is open and actively trading. Of interest is whether the seasonal
patterns in the level and fluctuations of ln(m(t)) can be extracted leaving only an
almost stationary residual market activity process. The deseasonalization of m(t)
requires a two stage procedure. The first step deseasonalizes the average of the
market activity and the second its diffusion coefficient.

In order to model the market activity it is necessary to characterize the rela-
tionship between its fluctuations and those of the normalized WSI. For each WSI
we analyzed the covariation of the square root of the normalized WSI with the
logarithm of the corresponding market. The quadratic covariation is the sum of the
product of the increments of the respective processes. We observed in all three cases
over the entire period that the observed covariation remains close to zero. There
seems to be some evidence of a slight positive trend. However, for simplicity we
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assume that the noise that drives market activity is independent of that driving the
WSI. This assumption will be relaxed in forthcoming work.

4.2. MODELING MARKET ACTIVITY

The expected value of the market activity is deseasonalized by the average seasonal
market activity m̂(t) at time t , which is defined as the expectation

m̂(t) = E (m(t)) . (4.1)

By the law of large numbers we obtain an estimate for m̂(t) for each five minute
interval of the week during the full observation period, 258 weeks in total, from
the arithmetic average of the corresponding observed market activity. This means,
we simply estimate the expectation of the market activity at time t by assuming the
same pattern for each week and sampling over all weeks of observation. Figure 11
displays the estimated Northern Hemisphere summertime weekly pattern of the
average market activity m̂(t). A similar graph arises when one displays the weekly
pattern for average market activity in wintertime. The average wintertime market
activity turns out to be simply shifted by one hour. Note that Figure 11 is calculated
from market activity, not the logarithm. The overall daily pattern is composed
of several U-shaped patterns of different magnitude. The individual patterns are

Figure 11. Weekly pattern of average market activity m̂(t) for summertime in the Northern

Hemisphere.
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characteristic of localized, exchange-traded markets. As expected, the magnitude
is highest when the European and American market are simultaneously active. It
is lowest during the pacific gap, that is 21:00 till 00:00 GMT, and of course on the
weekends.

Figure 10 suggests that the market activity m(t) is likely to have multiplicative
noise when global markets are open, with some seasonal activity volatility since
the quadratic variation of its logarithm shows a piecewise linear pattern. For the
open market regime, a possible model for m(t) with multiplicative noise is given
by the SDE

dm(t) = γ

2
β2(t) m(t)

(
p(t) − 1

γ
− m(t)

)
dt + β(t) m(t) dW (t) (4.2)

with speed of adjustment γ > 0, reference level p(t) > 0 and activity volatility
β(t) > 0 for t ∈ [0, T ]. The reference level p(t) and the activity volatility β(t) are
assumed to exhibit some weekly periodic seasonal patterns. The specification of
the drift coefficient in (4.2) is not necessary at this stage. However, this particular
drift function matches the shape of the observed stationary density of the market
activity that we will exploit in the following. The activity volatility β(t) is estimated
by averaging over the weekly observations of β2(t). Figure 12 shows the estimated
values for β(t) for the MCI during summertime in the Northern Hemisphere. These

Figure 12. Average weekly pattern of activity volatility β(t) for summertime in the Northern

Hemisphere.
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estimates are also obtained from the five minute observations. Here we have set
the activity volatility to zero during the weekends, since spurious observations do
not allow a meaningful calculation of β(t) outside the open market regime. Note
that during the open market trading days the activity volatility is almost constant
and slightly larger than one. We see that the activity volatility spikes once the
Asia-Pacific markets have opened.

The activity volatility β(t) allows us to introduce activity volatility time τ =
{τ (t), t ∈ [0, T ]} as

τ (t) = 〈ln(m)〉t =
∫ t

0

(β(u))2 du (4.3)

for t ∈ [0, T ].
It is useful to consider the market activity in activity volatility time τ (t), denoted

by mτ (t) = m(t), as the presence of seasonal patterns may overshadow empirical
features. Then, by (4.3) we obtain the SDE (4.2) in activity volatility time,

dmτ = γ

2
mτ

(
pτ − 1

γ
− mτ

)
dτ + mτ dWτ , (4.4)

where τ ∈ [0, τ (t)], pτ (t) = p(t) and

dWτ (t) = β(t) dW (t) (4.5)

for t ∈ [0, T ]. By considering the logarithm of market activity in activity volatility
time and using Itô’s formula together with (4.4) we obtain the SDE

d ln(mτ ) = γ

(
pτ

γ
− mτ

)
dτ + dWτ (4.6)

for τ ∈ [0, T ]. Note that the diffusion coefficient in (4.6) is constant and equal to
one. Furthermore, we see that, for the open market regime, the dynamics of the
logarithm of market activity are described by a mean-reverting model with speed
of adjustment γ and time dependent reference level pτ

γ
. By considering (4.6), we

may set pτ ≈ m̂τ γ + d E(ln(mτ ))
dτ

to account for the seasonal patterns in the reference
level.

The quadratic variation of the logarithm of market activity is shown in Figure 13.
It confirms the theoretical slope of one of the quadratic variation 〈ln(m)〉τ = τ that
follows from (4.6).

4.3. ESTIMATION OF THE SPEED OF ADJUSTMENT

The speed of adjustment parameter γ in (4.4) remains to be estimated. In Figure 14
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Figure 13. Quadratic variation 〈ln(m)〉τ of the logarithm of the normalized market activity

process in activity volatility time.

Figure 14. Histogram and estimated probability density function of ln (mτ ).
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we plot the histogram of all observations of the logarithm lτ = ln (mτ ) of the market
activity. One notes a very distinct shape of the histogram with a concentration of
negative spikes around −0.4. These negative spikes and other negative values result
from the effects of market opening and closing, which can be interpreted as the
typical levels of market activity in the opening and closing regimes. The given
model dynamics for market activity during the open market regime, see (4.2) and
(4.4), are not intended to include the opening and closing market regimes. For this
reason we will ignore values less than l = −0.2 in the histogram in Figure 14 for
the estimation of the drift parameters for the open market regime that is modeled
by (4.6). A more detailed model would need to incorporate the probability mass
created in the lower tail by the superposition of the stationary densities for the
different regimes.

Under the simplifying assumption that pτ = p is constant, by the Fokker-Planck
equation for the transition density of the solution of the SDE (4.4) the market activity
process can be shown to have as stationary density a gamma density. The stationary
density of the logarithm l of the corresponding market activity process in activity
volatility time can be written as

p̄l(l; γ, p) = (γ )p

� (p)
exp{−γ el}el(p−1). (4.7)

Here �(·) is the gamma function and γ and p are the only free parameters. It is well-
known that the estimation of parameters for ergodic diffusions can be performed by
fitting the observed stationary density, see Prakasa Rao (1999) and Kessler (1997).
One can show for discretely observed ergodic diffusions, see, for instance, Kelly
et al. (2004), that as estimators for the parameters of the stationary density one
can use, for convenience, the maximum likelihood estimators for the parameters
of the corresponding density of independent identically distributed observables.
However, these estimators are not the most efficient ones, see Prakasa Rao (1999),
as has been pointed out by an anonymous referee. A future study will investigate
this problem further. In our case we perform some kind of a restricted estimation.
We exclude most of the distortions caused by the effects of market opening and
closing from our estimation by forming a restricted log-likelihood function

L(γ, p) =
nT∑

n=1

1{lτn ≥l} ln( p̄l(lτn ; γ, p)). (4.8)

Here nT = 523585 is the total number of observations and 1{lτn ≥l} denotes the
indicator function, which takes only observations with lτn ≥ l into account, n ∈
{1, 2, . . . , nT }. A plot of the estimated probability density function of lτ = ln(mτ )
based on the resulting estimate γ̂ ≈ 103 and p̂ ≈ 106 is shown in Figure 14. We
see from the effects of market opening and closing that the left tail of the histogram
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Table I. Estimates for the drift parameters of market activity in activity volatility time

with 99% confidence intervals

Index γ̂ [year−1] p̂ [year−1]

MCI 103.2 (89.3, 116.4) 105.8 (92.3, 119.2)

GDPI 136.6 (120.7, 152.5) 138.9 (122.5, 155.3)

EWI 137.3 (121.2, 153.4) 139.7 (123.5, 155.8)

is fatter than what is given by the theoretical gamma density. The estimates for each
of the WSIs, together with 99% confidence intervals, are shown in Table I.

We point out that the assumption pτ = p is not fully consistent with the seasonal
patterns found in Figure 11. However, due to the small impact of the exact form of
the drift function in (4.4) for values of mτ near zero the differences are negligible.
For extreme values of ln (mτ ) the drift in (4.4) captures for constant pτ = p well
the modeled mean reversion and yields a stationary density that is very similar to
the one shown in Figure 11. This can also be confirmed by simulation of solutions
of the SDE (4.4) when using the observed seasonal average m̂τ .

4.4. ANALYSIS OF NORMALIZED WSIS IN MARKET ACTIVITY TIME

In Section 3 it was shown that the normalized GOP, when observed in market ac-
tivity time, see (3.19), is a square root process of dimension four, see (3.22). The
trajectory of the normalized MCI in market activity time is plotted in Figure 15.
By using market activity time we know that the quadratic variation of the square
root of the normalized MCI should be linear with a slope close to 0.25, see (3.25).
This relationship can be confirmed by performing a simple linear regression of
the quadratic variation of the square root of the normalized WSI against the corre-
sponding observed market activity time. Note that each WSI implies its own market
activity time scale, which is equivalent to four times the quadratic variation of the
square root of the normalized WSI, see (3.26). For instance, the market activity
time of the MCI is shown in Figure 8, where that of the GDPI and EWI are similar.
The slope coefficient and R2 value are given in Table II for all three WSIs. Of note
is that the slope coefficients in Table II are not exactly 0.25. The reason for this are

Table II. Slope coefficients and R2 values for the quadratic variation

of the square root of normalized WSIs in market activity time

Index Slope coefficient R2

MCI 0.245 0.9968

GDPI 0.232 0.9969

EWI 0.198 0.9919
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Table III. List of stock indices. The date indicates when the Index has been included in the

World Index. In some cases large data gaps are present at the beginning of the series, and

inclusion of the indices concerned is delayed. In the last columns the weights of the indices in

the different versions of the World Index are displayed: (i) nearly equal weighted; (ii) weights

adjusted to market capitalization; and (iii) weights adjusted to GDP

America Weights

Country Index Currency Date (i) (ii) (iii)

Argentinia MERV ARS 17.12.1996 0.0179 0.0023 0.0102

Brasil BVSP BRL 17.12.1996 0.0357 0.0013 0.004

CA TSE300 CAD 05.04.1996 0.0357 0.0251 0.0225

Mexico IPC MXP 17.12.1996 0.0179 0.0016 0.0112

US S&P 500 USD 05.04.1996 0.0357 0.4301 0.2859

Asia-Pacific Weights

Country Index Currency Date (i) (ii) (iii)

Australia AORD AUD 05.04.1996 0.0357 0.0161 0.014

Hong Kong HSI HKD 05.04.1996 0.0357 0.0231 0.0054

India BSESI INR 17.12.1996 0.0179 0.0201 0.0146

Indonesia JSX IDR 17.12.1996 0.0179 0.0047 0.0081

Japan Nikkei225 JPY 17.12.1996 0.0357 0.155 0.204

Korea KOSPIC KRW 31.01.1997 0.0179 0.0072 0.0195

Malaysia KLSE MYR 17.12.1996 0.0179 0.0158 0.0036

Philippines PCI PHP 17.12.1996 0.0179 0.0041 0.0029

Singapore STI SGD 05.04.1996 0.0357 0.0079 0.0033

Taiwan TWI TWD 17.12.1996 0.0179 0.0141 0.0102

Thailand SETI THB 17.12.1996 0.0179 0.0049 0.0066

Europe Weights

Country Index Currency Date (i) (ii) (iii)

Austria ATX ATS, EUR 12.12.1996 0.0357 0.0017 0.0089

Belgium BEL20 BEF, EUR 12.12.1996 0.0357 0.0061 0.0105

Denmark KFX DKK 05.04.1996 0.0357 0.0037 0.0069

Finland HEX FIM, EUR 05.04.1996 0.0357 0.0032 0.005

France CAC40 FRF, EUR 05.04.1996 0.0357 0.0302 0.0586

Germany DAX DEM, EUR 05.04.1996 0.0357 0.0342 0.0924

Greece ATG GRD, EUR 17.12.1996 0.0357 0.0012 0.0045

Hungary BUXI HUF 31.01.1997 0.0179 0.0023 0.0017

Ireland ISEQ IRP, EUR 17.12.1996 0.0357 0.0055 0.0027

Italy MIB30 ITL, EUR 17.12.1996 0.0357 0.0132 0.0414

Netherland AEX NLG, EUR 20.10.1998 0.0357 0.0193 0.0153

(Continued on next page)
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Table III. (Continued)

Europe Weights

Country Index Currency Date (i) (ii) (iii)

Norway OSETOT NOK 05.04.1996 0.0357 0.0029 0.0057

Portugal BVL30 PTE, EUR 17.12.1996 0.0357 0.0013 0.004

Spain IBEX ESP, EUR 17.12.1996 0.0357 0.0124 0.0224

Sweden SGI SEK 17.12.1996 0.0357 0.0124 0.0091

Switzerland SMI CHF 05.04.1996 0.0357 0.0206 0.0115

Turkey ICI TRL 31.01.1997 0.0179 0.0018 0.0068

UK FTSE ALL GBP 05.04.1996 0.0357 0.0846 0.0435

Figure 15. Normalized MCI in market activity time.

twofold. Firstly, none of these portfolios equals exactly the GOP and secondly, the
net growth rate η is not exactly constant. It should be noted that already a constant
net growth rate provides a good fit. Admittedly, the regression results seem almost
to be too good for a statistical analysis. However, it is the strength of the resulting
model that it fits the data extremely well. Note that the MCI outperforms the EWI
and the GDPI, when the quadratic variations of the square root of the corresponding
normalized index are considered. However, there is not a great difference between
the MCI and the GDPI. Additionally, the corresponding market activity processes
in activity volatility time are shown to have the hypothesized dynamics, when the
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opening and closing regimes are omitted. Moreover, it follows from Figure 6 that
the MCI has the maximum value in relation to all other indices considered, at the
end of the observation period. It is a main property of the GOP that its path outper-
forms those of all other portfolios over long time periods. It should be emphasized
that the given time period is relatively short but the fluctuations of all WSIs are
extremely similar. In this respect, one may at least conclude that the above findings
do not contradict a hypothesis where one considers the MCI to be the best proxy
for the GOP. This provides some empirically support for the theoretical finding in
Platen (2006) that in a market where all investors prefer more for less, the market
portfolio equals the GOP.

5. Conclusion

We constructed and examined three diversified high-frequency world stock indices.
A simple and robust way of calculating and modeling market activity is demon-
strated. Market activity is found to contain seasonal patterns in both the drift and
the diffusion term. We showed that the market activity can be modeled as a strongly
mean reverting process with constant speed of adjustment incorporating the weekly
periodicities contained in average market activity and activity volatility. Further-
more, we confirmed that, in market activity time, the normalized indices represent
square root processes of dimension four. The world stock portfolio appears to pro-
vide a proxy for the GOP. Work is in progress on the use of the MCI for applications
of the benchmark approach in derivative pricing, portfolio management and inte-
grated risk management.
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