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Abstract: We propose a new, precise integrality conjecture for the colored Kauffman
polynomial of knots and links inspired by large N dualities and the structure of topolog-
ical string theory on orientifolds. According to this conjecture, the natural knot invariant
in an unoriented theory involves both the colored Kauffman polynomial and the colored
HOMFLY polynomial for composite representations, i.e. it involves the full HOMFLY
skein of the annulus. The conjecture sheds new light on the relationship between the
Kauffman and the HOMFLY polynomials, and it implies for example Rudolph’s the-
orem. We provide various non-trivial tests of the conjecture and we sketch the string
theory arguments that lead to it.
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1. Introduction

The HOMFLY [12] and the Kauffman [23] polynomials are probably the most useful
two-variable polynomial invariants of knots and links. Both of them generalize the Jones
polynomial, and they have become basic building blocks of quantum topology. However,
many aspects of these polynomial invariants are still poorly understood. As Joan Birman
remarked in 1993, “we can compute the simplest of the invariants by hand and quickly
fill pages (...) without having the slightest idea what they mean” [6].

One particular interesting question concerns the relationship between the HOMFLY
and the Kauffman invariants. Since their discovery almost thirty years ago, a number of
isolated connections have been found between them. For example, when written in an
appropriate way, they have the same lowest order term [33]. Other connections can be
found when one considers their colored versions. The colored invariants can be formu-
lated in terms of skein theory, in terms of quantum groups, or in terms of Chern–Simons
gauge theory [53]. In the language of quantum groups or Chern–Simons theory, dif-
ferent colorings correspond to different choices of group representation. The original
HOMFLY and Kauffman invariants are obtained when one considers the fundamental
representation of SU(N ) and SO(N )/Sp(N ), respectively. One could consider other rep-
resentations, like for example the adjoint representation. An intriguing result of Rudolph
[49] states that the HOMFLY invariant of a link colored by the adjoint representation
equals the square of the Kauffman polynomial of the same link, after the coefficients are
reduced modulo two. This type of relationship has been recently extended by Morton
and Ryder to more general colorings [41,43]. In spite of these connections, no unified,
general picture has emerged to describe both invariants.

More recently, knot invariants have been reinterpreted in the context of string theory
thanks to the Gopakumar–Vafa conjecture [14], which postulates an equivalence between
the 1/N expansion of Chern–Simons theory on the three-sphere, and topological string
theory on a Calabi–Yau manifold called the resolved conifold. As a consequence of
this conjecture, correlation functions of Chern–Simons gauge theory with U(N ) gauge
group (i.e. colored HOMFLY invariants) are given by correlation functions in open
topological string theory, which mathematically correspond to open Gromov–Witten
invariants. Since Gromov–Witten invariants enjoy highly nontrivial integrality proper-
ties [13,31,44], this equivalence provides strong structural results on the colored HOM-
FLY polynomial [29,31,44] which have been tested in detail in various cases [29,36,48]
and finally proved in [37]. Moreover, there is a full cohomology theory behind these
invariants [31] which should be connected to categorifications of the HOMFLY poly-
nomial [16]. Therefore, the string theory description “explains” to a large extent many
aspects of the colored U(N ) invariants and leads to new predictions about their algebraic
structure.

The string theory perspective is potentially the most powerful tool to understand the
connections between the colored HOMFLY and Kauffman polynomials. From the point
of view of Chern–Simons theory, these polynomials correspond to the gauge groups
U(N ) and SO(N )/Sp(N ), respectively. But when a gauge theory has a string theory
large N dual, as is the case here, the theory with orthogonal or symplectic gauge groups
can be obtained from the theory with unitary gauge group by using a special type of
orbifold action called an orientifold. The building block of an orientifold is an involution
I in the target space X of the string theory, which is then combined with an orientation
reversal in the worldsheet of the string to produce unoriented strings in the quotient
space X/I. Very roughly, one finds that correlation functions in the orbifold theory are
given by correlation functions in the SO/Sp gauge theories. As for any orbifold, these
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functions are given by a sum over an “untwisted” sector involving oriented strings, and
a “twisted” sector involving the unoriented strings introduced by the orientifold. The
contributions from oriented strings are still given by correlation functions in the U(N )
gauge theory.

The use of orientifolds in the context of the Gopakumar–Vafa conjecture was ini-
tiated in [51], which identified the relevant involution of the resolved conifold and
studied the closed string sector. This line of research was developed in more detail in
[7,8]. In particular, [8] extended the orientifold action to the open string sector and
pointed out that, as a consequence of the underlying string/gauge theory correspon-
dence, the colored Kauffman invariant of a link should be given by the sum of an
appropriate HOMFLY invariant plus an “unoriented” contribution. The results of [8]
made possible to formulate some partial conjectures on the structure of the Kauffman
polynomial and test them in examples (see [45] for further tests)1. Unfortunately, these
results were not precise enough to provide a full, detailed string-based picture. The
reason was that one of the crucial ingredients –the appropriate HOMFLY invariant that
corresponds to the untwisted sector of the orientifold– was not identified.

In this paper we remedy this situation and we identify these invariants as HOMFLY
polynomials colored by composite representations of U(N ). This will allow us to state
a precise conjecture on the structure of the colored Kauffman polynomial of knots and
links. In skein-theoretic language, the appearance of composite representations means
that, in order to understand the colored Kauffman polynomial in the light of string
theory, one has to use the full HOMFLY skein of the annulus (see for example [19]).
We will indeed see that the natural link invariant to consider in an unoriented theory
involves both the colored Kauffman polynomial and the colored HOMFLY polynomial
for composite representations and for all possible orientations of the link components.
Our conjecture generalizes the results of [31,44] for the U(N ) case, and it “explains”
various aspects of the relationship between the HOMFLY and the Kauffman polynomi-
als, like for example Rudolph’s theorem. It also predicts some new, simple relationships
between the Kauffman and the HOMFLY polynomial of links.

In terms of open topological string theory, this paper adds little to the results of [8].
The bulk of the paper is then devoted to a detailed statement and discussion of the con-
jecture in the language of knot theory. Sect. 2 introduces our notation and reviews the
construction of the colored HOMFLY and Kauffman polynomials, as well as of their
relations. In Sect. 3 we review the conjecture of [31,44] and we state the new conjecture
for the colored Kauffman polynomial. Sect. 4 provides some nontrivial evidence for the
conjecture by looking at particular knots and links, and it explains how some standard
results relating the HOMFLY and the Kauffman polynomials follow easily from our
conjecture. In Sect. 5 we sketch the string theory arguments that lead to the conjecture,
building on [7,8,51]. Finally, Sect. 6 contains some conclusions and prospects for future
work.

2. Colored HOMFLY and Kauffman Polynomials

In this section we introduce various tools from the theory of symmetric polynomials and
we recall the construction of the colored Kauffman and HOMFLY polynomials, mainly
to fix notations.

1 Some of the proposals of [8] were reformulated and recently proved in [10].
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2.1. Basic ingredients from representation theory. Let R be an irreducible representa-
tion of the symmetric group S�. We will represent it by a Young diagram or partition,

R = {li }i=1,...,r(R), l1 ≥ l2 ≥ · · · lr(R), (2.1)

where li is the number of boxes in the i th row of the diagram and r(R) is the total number
of rows. Important quantities associated to the diagram are its total number of boxes,

�(R) =
r(R)∑

i=1

li (2.2)

which equals �, as well as the quantity

κR =
r(R)∑

i=1

li (li − 2i + 1). (2.3)

The ring of symmetric polynomials in an infinite number of variables {vi }i≥1 will
be denoted by �. It can be easily constructed as a direct limit of the ring of symmetric
polynomials with a finite number of variables, see for example [38] for the details. It has
a basis given by the Schur polynomials sR(v), which are labelled by Young diagrams.
The multiplication rule for these polynomials is encoded in the Littlewood–Richardson
coefficients

sR1(v)sR2(v) =
∑

R

N R
R1 R2

sR(v). (2.4)

The identity of this ring is the Schur polynomial associated to the empty diagram, which
we will denote by R = ·. We will also need the nth Adams operation

ψn(sR(v)) = sR(v
n) = sR(v

n
1 , v

n
2 , . . .). (2.5)

One can use elementary representation theory of the symmetric group to express sR(v
n)

as a linear combination of Schur polynomials labelled by representations U with n ·�(R)
boxes

sR(v
n) =

∑

U

cU
n;R sU (v). (2.6)

Let χR be the character of the symmetric group associated to the diagram R. Let Cμ be
the conjugacy class associated to the partition μ, and let |Cμ| be the number of elements
in the conjugacy class. It is easy to show that the coefficients cU

n;R are given by [36]

cU
n;R =

∑

μ

1

zμ
χR(Cμ)χU (Cnμ), (2.7)

where nμ = (nμ1, nμ2, · · · ) and

zμ = �(μ)!
|Cμ| . (2.8)
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Fig. 1. A composite representation made out of the diagrams R and S

We will also regard a Young diagram R as an irreducible representation of U(N ). The
quadratic Casimir of R is then given by

CR = κR + N�(R). (2.9)

The most general irreducible representation of U(N ) is a composite representation
(see for example [25] for a collection of useful results on composite representations).
Composite representations are labelled by a pair of Young diagrams

(R, S). (2.10)

This representation is usually depicted as in the left-hand side of Fig. 1, where the second
representation S is drawn upside down at the bottom of the diagram. When regarded
as a representation of SU(N ), the composite representation corresponds to the diagram
depicted on the right-hand side of Fig. 1, and it has in total

Nμ1 + �(R)− �(S) (2.11)

boxes, whereμ1 is the number of boxes in the first row of S. For example, the composite
representation ( , ) is the adjoint representation of SU(N ). It is easy to show that [15]

C(R,S) = CR + CS . (2.12)

The composite representation can be understood as the tensor product R ⊗ S, where S
is the conjugate representation to S, plus a series of “lower order corrections” involving
tensor products of smaller representations. The precise formula is [25]

(R, S) =
∑

U,V,W

(−1)�(U )N R
U V N S

U T W (V ⊗ W ). (2.13)

2.2. The colored HOMFLY polynomial. The HOMFLY polynomial of an oriented link
L, PL(t, ν), can be defined by using a planar projection of L. This gives an oriented
diagram in the plane which will be denoted as DL. The skein of the plane is the set of
linear combinations of these diagrams, modulo the skein relations

(2.14)
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Using the skein relations, the diagram of a link DL can be seen to be proportional to

the trivial diagram . The proportionality factor 〈DL〉 is a scalar and gives a regular

isotopy invariant (i.e. a quantity which is invariant under the Reidemeister moves II and
III, but not under the I). A true ambient isotopy invariant is obtained by defining

PL(t, ν) = ν−w(DL)〈DL〉, (2.15)

where w(DL) is the self-writhe of the link diagram D (see for example [33], p. 173).
This is defined as the sum of the signs of crossings at which all link components cross
themselves, and not other components. It differs from the standard writhew(D) in twice
the total linking number of the link, lk(L). Notice that the standard HOMFLY polyno-
mial is usually defined by using the total writhe in (2.15) [33]. Therefore, the HOMFLY
polynomial, as defined in (2.15), is given by the standard HOMFLY polynomial times a
factor

ν2 lk(L). (2.16)

As discussed in detail in [31], this is the natural version of the HOMFLY polynomial
from the string theory point of view. The HOMFLY invariant of the link is then defined
by

H(L) = PL(t, ν)H
( )

, (2.17)

and we choose the normalization

H
( )

= ν − ν−1

t − t−1 . (2.18)

From the skein theory point of view, the colored HOMFLY invariant of a link is
obtained by considering satellites of the knot. Let K be a framed knot, and let P be a
knot diagram in the annulus. Around K there is a framing annulus, or equivalently a
parallel of K. The satellite knot

K � P (2.19)

is obtained by replacing the framing annulus around K by P , or equivalently by mapping
P to S

3 using the parallel of K. Here, K is called the companion knot while P is called
the pattern. In Fig. 2 we show a satellite where the companion K is the trefoil knot.

Since the diagrams in the annulus form a vector space (called the skein of the annulus)
we can obtain the most general satellite of a knot by considering the basis of this vector
space. There is a very convenient basis constructed in [19] whose elements are labelled
by pairs of Young diagrams P(R,S). Given a knot K, the HOMFLY invariant colored by
the partitions (R, S) is simply

H(R,S)(K) = H (K � P(R,S)
)
. (2.20)

If we have a link L with L components K1, . . . ,KL , one can color each component
independently, and one obtains an invariant of the form

H(R1,S1),...,(RL ,SL )(L). (2.21)

The colored HOMFLY invariant has various important properties which will be
needed in the following:
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Fig. 2. An example of a satellite knot. The companion knot K is the trefoil knot, and below we show the
framing annulus. If we replace this framing annulus by the pattern P , we obtain the satellite K � P

1. The pattern P(S,R) is equal to the pattern P(R,S) with its orientation reversed. In
particular, coloring with ( , ·) gives the original knot K, while coloring with (·, )

gives the knot K with the opposite orientation. Since the HOMFLY invariant of a
knot is invariant under reversal of orientation, we have that

H(S,R)(K) = H(R,S)(K) = H(R,S)(K). (2.22)

However, the HOMFLY invariant of a link is only invariant under a global reversal
of orientation, therefore in general one has that

H(R1,S1),...,(S j ,R j ),...,(RL ,SL )(L) = H(R1,S1),...,(R j ,S j ),...,(RL ,SL )(L j ), (2.23)

where L j is the link obtained from the link L by reversing the orientation of the j th

component, see for example Fig. 3.
2. If one of the patterns is empty, say S = ·, the skein theory is simpler and it has been

developed in for example [3,4]. In this case, the HOMFLY invariant of the knot
K (which we denote by HR(K)) is equal to the invariant of K obtained from the
quantum group Uq(sl(N ,C)) in the representation R, with the identification

t = q1/2, ν = t N . (2.24)

In particular we have

HR

( )
= dimq R, (2.25)

where dimq R is the quantum dimension of R.
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Fig. 3. Changing (R, S) into (S, R) reverses the orientation of a knot. If the knot is a component of a link,
this leads in general to different HOMFLY invariants

Fig. 4. Examples of patterns for various representations. The patterns are written as formal combinations of
braids, and after closing them we find elements in the skein of the annulus. In the last example, 1 refers to the
empty diagram

3. For a general pattern labeled by two representations (R, S), the HOMFLY invariant
of the knot K, H(R,S)(K) equals the invariant of K obtained from the quantum group
Uq(gl(N ,C)) in the composite representation (R, S). In particular [19]

H(R,S)

( )
= dimq (R, S)

=
∑

U,V,W

(−1)�(U )N R
U V N S

U T W

(
dimq V

) (
dimq W

)
. (2.26)

Here, U T is the transposed Young diagram. The second equality follows from (2.13).

In Fig. 4 we show some examples of patterns associated to different representations.
The patterns are represented as elements in the braid group, which can be closed by
joining the endpoints to produce patterns in the annulus.

In the following we will denote

z = t − t−1. (2.27)
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Remark 2.1. In this paper, the above skein rules will be used to compute the values of the
HOMFLY and Kauffman invariants in the standard framing. Starting from this framing,
a change of framing by f units is done through [40]

HR(K) → (−1) f �(R)t f κR HR(K). (2.28)

This is the rule that preserves the integrality properties of the invariants that will be
discussed below. The framing of links is done in a similar way, with one framing factor
like (2.28) for each component.

Example 2.2. The HOMFLY polynomial of the trefoil knot is, in our conventions,

P31(t, ν) = 2ν2 − ν4 − z2ν2, (2.29)

while the HOMFLY polynomial of the Hopf link is

P22
1
(t, ν) =

(
ν − ν−1

)
z−1 + νz. (2.30)

2.3. The colored Kauffman polynomial. The Kauffman polynomial is also defined by a
skein theory [23], but the diagrams correspond now to planar projections of unoriented
knots and links. The skein relations are

(2.31)

This is sometimes called the “Dubrovnik” version of the Kauffman invariant. As in the
case of HOMFLY, the diagram of an unoriented link L, which will be denoted by EL, is

proportional to the trivial diagram , and the proportionality factor 〈EL〉 is a regular

isotopy invariant. The Kauffman polynomial is defined as

FL(t, ν) = ν−w(EL)〈EL〉. (2.32)

Like before, this differs from the standard Kauffman polynomial (as defined for example
in [33]) in an overall factor (2.16). More importantly, the use of the self-writhe guaran-
tees that the resulting polynomial is still an invariant of unoriented links. The Kauffman
invariant of the link will be defined as

G(L) = FL(t, ν)G
( )

, (2.33)

and we choose the normalization

G
( )

= 1 +
ν − ν−1

t − t−1 . (2.34)

The colored Kauffman polynomial is obtained, similarly to the HOMFLY case, by con-
sidering the Kauffman skein of the annulus and by forming satellites with elements of
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this skein taken as patterns. There is again a basis yR labelled by Young tableaux [5],
and we define

GR(K) = G(K � yR). (2.35)

For a link of L components, we can color each component independently, and one obtains
in this way the colored Kauffman invariant of the link

GR1,...,RL (t, ν). (2.36)

The invariant defined in this way equals the invariant obtained from the quantum group
Uq(so(N ,C)) in the representation R, after identifying

t = q1/2, ν = q N−1. (2.37)

In particular, for the unknot the invariant is equal to the quantum dimension of R,

GR

( )
= dimSO(N)

q R. (2.38)

The results for the Kauffman invariants of knots and links will be presented in the
standard framing. The change of framing is also done with the rule (2.28).

Example 2.3. The Kauffman polynomial of the trefoil knot is, in our conventions,

F31(t, ν) = 2ν2 − ν4 + z(−ν3 + ν5) + z2(ν2 − ν4), (2.39)

while that of the Hopf link is

F22
1
(t, ν) = z−1

{
ν − ν−1 + z + z2(ν − ν−1)

}
. (2.40)

2.4. Relationships between the HOMFLY and the Kauffman invariants. As we men-
tioned in the Introduction, the colored HOMFLY and Kauffman invariants of a link are
not unrelated. The simplest relation concerns the invariants of a link L in which all com-
ponents have the coloring R = , i.e. the original HOMFLY and Kauffman polynomials.
It is easy to show that these polynomials have the structure

PL(z, ν) = z1−L
∑

i≥0

pi (ν)z
2i , FL(z, ν) = z1−L

∑

i≥0

ki (ν)z
i . (2.41)

It turns out that (see for example [33], Prop. 16.9)

p0(ν) = k0(ν). (2.42)

In general, the Kauffman polynomial contains many more terms than the HOMFLY
polynomial. In particular, as (2.41) shows, it contains both even and odd powers of z,
while the HOMFLY polynomial only contains even powers. In the case of torus knots
the HOMFLY polynomial can even be obtained from the Kauffman polynomial by the
formula [32]

H(z, ν) = 1

2
(G(z, ν)− G(−z, ν)). (2.43)



String Theory and the Kauffman Polynomial 623

There are also highly nontrivial relations between the two invariants when we con-
sider colorings. An intriguing theorem of Rudolph [49] states the following. Let L be
an unoriented link with L components. Pick an arbitrary orientation of L and consider
its HOMFLY invariant

H( , ),...,( , )(L). (2.44)

Due to (2.23), this invariant does not depend on the choice of orientation in L, and it
is therefore an invariant of the unoriented link. One can show (2.44) is an element in
Z[z±1, ν±1] (see for example [41]). The square of the Kauffman invariant of L, G2(L),
belongs to the same ring. By reducing the coefficients of these polynomial modulo 2, we
obtain two polynomials in Z2[z±1, ν±1]. Rudolph’s theorem states that these reduced
polynomials are the same. In other words,

G2(L) ≡ H( , ),...,( , )(L) mod 2, (2.45)

see [50] for this statement of Rudolph’s theorem. Morton and Ryder have recently
extended this result to more general colorings [41,43]. This generalization requires
more care since now the invariants have denominators involving products of tr − t−r ,
r ∈ Z>0. However, one can still make sense of the reduction modulo 2, and one obtains
that, for any unoriented link L,

G2
(R1,...,RL )

(L) = H(R1,R1),...,(RL ,RL )(L) mod 2. (2.46)

3. The Conjecture

3.1. Review of the conjecture for the colored HOMFLY invariant. We start by recall-
ing the conjecture of [30,31,44] on the integrality structure of the colored HOMFLY
polynomial. We first state the conjecture for knots, and then we briefly consider the
generalization to links. Notice that these conjectures have now been proved in [37].

Let K be a knot, and let HR(K) be its colored HOMFLY invariant with the coloring
R. We first define the generating functional

ZH(v) =
∑

R

HR(K)sR(v), (3.1)

understood as a formal power series in sR(v). Here we sum over all possible colorings,
including the empty one R = ·. We also define the free energy

FH(v) = log ZH(v) (3.2)

which is also a formal power series. The reformulated HOMFLY invariants of K,
fR(t, ν), are defined through the equation

FH(v) =
∞∑

d=1

∑

R

1

d
fR(t

d , νd)sR(v
d). (3.3)

One can easily prove [30] that this equation determines uniquely the reformulated HOM-
FLY invariants fR in terms of the colored HOMFLY invariants of K. Explicit formulae
for fR in terms of HR for representations with up to three boxes are listed in [30].



624 M. Mariño

If �(R) = �(S) we define the matrix

MRS =
∑

μ

1

zμ
χR(Cμ)χS(Cμ)

∏�(μ)
i=1

(
tμi − t−μi

)

t − t−1 , (3.4)

which is zero otherwise. It is easy to show that this matrix is invertible (see for example
[31,30]). We now define

f̂ R(t, ν) =
∑

S

M−1
RS fS(t, ν). (3.5)

In principle, f̂ R(t, ν) are rational functions, i.e. they belong to the ring Q[t±1, ν±1] with
denominators given by products of tr − t−r . However, we have the following

Conjecture 3.1. f̂ R(t, ν) ∈ z−1
Z[z2, ν±1], i.e. they have the structure

f̂ R(t, ν) = z−1
∑

g≥0

∑

Q∈Z

NR;g,Qz2gνQ, (3.6)

where NR;g,Q are integer numbers and are called the BPS invariants of the knot K. The
sum appearing here is finite, i.e. for a given knot and a given coloring R, the NR;g,Q
vanish except for finitely many values of g, Q.

The conjecture can be generalized to links. Let L be a link of L components K1, . . . ,

KL , and let vl , l = 1, . . . , L , be formal sets of infinite variables. The subindex l refers
here to the l th component of the link, and each vl has the form vl = ((vl)1, (vl)2, · · · ).
We define

ZH(v1, . . . , vL) =
∑

R1,...,RL

HR1,...,RL (L)sR1(v1) · · · sRL (vL) (3.7)

as well as the free energy

FH(v1, . . . , vL) = log ZH(v1, . . . , vL). (3.8)

If any of the Ri s are given by the trivial coloring Ri = ·, it is understood that HR1,...,RL (L)
is the HOMFLY invariant of the sublink of L obtained after removing the corresponding
Ki s. The reformulated invariants are now defined by

FH(v1, . . . , vL) =
∞∑

d=1

∑

R1,...,RL

fR1,...,RL (t
d , νd)sR1(v

d
1 ) · · · sRL (v

d
L) (3.9)

and

f̂ R1,...,RL (t, ν) =
∑

S1,...,SL

M−1
R1 S1

· · · M−1
RL SL

fS1,...,SL (t, ν). (3.10)

Remark 3.1. Notice that, for the fundamental representation,

f̂ ,..., (t, ν) = f ,..., (t, ν). (3.11)

We can now state the conjecture for links.

Conjecture 3.2. f̂ R1,...,RL (t, ν) ∈ zL−2
Z[z2, ν±1], i.e. they have the structure

f̂ R1,...,RL (t, ν) = zL−2
∑

g≥0

∑

Q∈Z

NR1,...,RL ;g,Qz2gνQ . (3.12)

These conjectures also hold for framed knots and links [40].
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3.2. The conjecture for the colored Kauffman invariant. We will first state the conjec-
ture for knots. Let K be an oriented knot, and let H(R,S) be its HOMFLY invariant in
the composite representation (R, S). The composite invariant of the knot K, colored by
the representation R, and denoted by RR , is given by

RR(K) =
∑

R1,R2

N R
R1 R2

H(R1,R2)(K), (3.13)

where N R
R1 R2

are the Littlewood–Richardson coefficients defined by (2.4). Notice that,
due to (2.22), this invariant is independent of the choice of orientation of the knot, and
it is therefore an invariant of unoriented knots.

Example 3.2. We give some simple examples of the composite invariant for colorings
with up to two boxes:

R = 2H ,

R = 2H + H( , ), (3.14)

R = 2H + H( , ).

Using these invariants we define the generating functionals

ZR(v) =
∑

R

RR(K)sR(v), FR(v) = log ZR(v). (3.15)

We also define the generating functionals for colored Kauffman invariants of K as

ZG(v) =
∑

R

GR(K)sR(v), FG(v) = log ZG(v). (3.16)

This allows us to define two sets of reformulated invariants, h R and gR , as follows. The
h R are defined by a relation identical to (3.3),

FR(v) =
∞∑

d=1

∑

R

1

d
h R(t

d , νd)sR(v
d), (3.17)

while the gR are defined by

FG(v)− 1

2
FR(v) =

∑

d odd

∑

R

1

d
gR(t

d , νd)sR(v
d). (3.18)

Here the sum over d is over all positive odd integers. h R can be explicitly obtained in
terms of colored HOMFLY invariants for composite representations, while the gR can
be written in terms of these invariants and the colored Kauffman invariants.

Example 3.3. We list here explicit expressions for the reformulated invariants gR of a
knot, where R is a representation of up to three boxes. We have

g = G − H ,

g = G − 1

2
G2 − H + H2 − 1

2
H( , ), (3.19)

g = G − 1

2
G2 − H + H2 − 1

2
H( , ),
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as well as

g = G − G G +
1

3
G3 − 1

3
g (t3, ν3)

− H − H( , ) + 2H H + H( , )H − 4

3
H3 ,

g = G − G G − G G +
2

3
G3 +

1

3
g (t3, ν3)

− H − H( , ) − H
( , )

+ 2H H + 2H H

+ 2H( , )H − 8

3
H3 ,

g = G − G G +
1

3
G3 − 1

3
g (t3, ν3)

− H − H
( , )

+ 2H H + H( , )H − 4

3
H3 .

(3.20)

The invariants ĥ R , ĝR are defined by a relation identical to (3.5),

ĥ R(t, ν) =
∑

S

M−1
RS hS(t, ν), ĝR(t, ν) =

∑

S

M−1
RS gS(t, ν). (3.21)

Like before, ĥ R(t, ν) and ĝR(t, ν) belong in principle to the ring Q[t±1, ν±1] with
denominators given by products of tr − t−r . The conjecture for the colored Kauffman
polynomial states an integrality property similar to the one we stated for the colored
HOMFLY invariant.

Conjecture 3.3. We have that

ĥ R(t, ν) ∈ z−1
Z[z2, ν±1], ĝR(t, ν) ∈ Z[z, ν±1], (3.22)

i.e. they have the structure

ĥ R(t, ν) = z−1
∑

g≥0

∑

Q∈Z

N c=0
R;g,Qz2gνQ,

ĝR(t, ν) =
∑

g≥0

∑

Q∈Z

(
N c=1

R;g,Q z2gνQ + N c=2
R;g,Qz2g+1νQ

)
,

(3.23)

where N c=0,1,2
R;g,Q are integers.

Again, there is a generalization to links as follows. Let L be an unoriented link, and
pick an arbitrary orientation. We define the composite invariant of L as

RR1,...,RL (L) =
∑

U1,V1,··· ,UL ,VL

N R1
U1V1

· · · N RL
UL VL

H(U1,V1),...,(UL ,VL )(L). (3.24)

Due to (2.23), this invariant does not depend on the choice of orientation of L, and it is
therefore an invariant of unoriented links. We further define the generating functionals

ZR(v1, . . . , vL) =
∑

R1,...,RL

RR1,...,RL (L)sR1(v1) · · · sRL (vL),

ZG(v1, . . . , vL) =
∑

R1,...,RL

GR1,...,RL (L)sR1(v1) · · · sRL (vL),
(3.25)
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as well as the free energies

FR(v1, . . . , vL)= log ZR(v1, . . . , vL), FG(v1, . . . , vL)= log ZG(v1, . . . , vL).

(3.26)

The reformulated invariants h R1,...,RL , gR1,...,RL are now defined by

FR(v1, . . . , vL) =
∞∑

d=1

∑

R1,...,RL

h R1,...,RL (t
d , νd)sR1(v

d
1 ) · · · sRL (v

d
L) (3.27)

and

FG(v1, . . . , vL)− 1

2
FR(v1, . . . , vL)

=
∑

d odd

∑

R1,...,RL

gR1,...,RL (t
d , νd)sR1(v

d
1 ) . . . sRL (v

d
L). (3.28)

Finally, the “hatted” invariants are defined by the relation

ĥ R1,...,RL (t, ν) =
∑

S1,...,SL

M−1
R1 S1

. . .M−1
RL SL

hS1,...,SL (t, ν),

ĝR1,...,RL (t, ν) =
∑

S1,...,SL

M−1
R1 S1

. . .M−1
RL SL

gS1,...,SL (t, ν).
(3.29)

Example 3.4. For links L of two components K1, K2 we have

g (L) = G , (L)− G (K1)G (K2)− H , (L)− H , (L)
+ 2H (K1)H (K2),

g (L) = G , (L)− G , (L)G (K1)− G (K1)G (K2)

+ G (K1)
2G (K2)

−H , (L)− H , (L)− H( , ), (L)
+ 2

(H , (L) + H , (L))H (K1)

+ 2H (K1)H (K2)+H( , )(K1)H (K2)−4H (K1)
2H (K2),

g (L) = G
,
(L)− G , (L)G (K1)− G (K1)G (K2)

+ G (K1)
2G (K2)

−H
,
(L)− H

,
(L)− H( , ), (L)

+ 2
(H , (L) + H , (L))H (K1)

+ 2H (K1)H (K2) + H( , )(K1)H (K2)

− 4H (K1)
2H (K2). (3.30)

In these equations, L is the link obtained from L by inverting the orientation of one of
its components.
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Fig. 5. The reformulated invariant of an unoriented link L, ĝR1,...RL (L), involves the Kauffman invariant of
L, together with the HOMFLY invariants of all possible choices of orientations for the components of the link.
Here we illustrate it for the fundamental representation and for a two-component link

Example 3.5. For general links of L components it is easy to write down a general for-
mula for g ,..., (L). We first define the connected Kauffman invariant of a link L as
the term multiplying s (v1) · · · s (vL) in the expansion of FG(v1, · · · , vL). It is given
by

G(c)(L) = G(L)−
L∑

j=1

G(K j )G(L j ) + · · · , (3.31)

where the link L j is obtained from L by removing the j th component. Further corrections
involve all possible sublinks of L, and the combinatorics appearing in the formula is the
same one that appears in the calculation of the cumulants of a probability distribution.
A similar definition gives the connected HOMFLY invariant of a link, H(c)(L), which
was studied in detail in [29,31]. We now consider all possible oriented links that can
be obtained from an unoriented link L of L components by choosing different orien-
tations in their component knots. In principle there are 2L oriented links that can be
obtained in this way, but they can be grouped in pairs that differ in an overall reversal of
orientation, and therefore lead to the same HOMFLY invariant. We conclude that there
are 2L−1 different links which differ in the relative orientation of their components and
have a priori different HOMFLY invariants. We will denote these links by Lα , where
α = 1, · · · , 2L−1. Using (2.23), it is easy to see that the oriented invariant (3.24) for
R1 = · · · = RL = involves the sum over all possible orientations of the link, and we
have

R ,..., (L) = 2
2L−1∑

α=1

H(Lα). (3.32)

The reformulated invariant g ,..., (L) is then given by

g ,..., (L) = G(c)(L)−
2L−1∑

α=1

H(c)(Lα). (3.33)

In general, the reformulated invariant of an unoriented link L, ĝR1,...RL (L), involves col-
ored Kauffman invariants of L, together with colored HOMFLY invariants of all possible
choices of orientations of the link. This is an important feature of the reformulated invari-
ants, and we illustrate it graphically for a two-component link in Fig. 5. The fact that one
has to consider all possible orientations of the unoriented link bears some resemblance
to Jaeger’s model for the Kauffman polynomial in terms of the HOMFLY polynomial
(see for example [24], pp. 219–222), and it has appeared before in the context of the
Kauffmann invariant in [46].

We can now state our conjecture for the Kauffman invariant of links.
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Conjecture 3.4. We have that

ĥ R1,...,RL (t, ν) ∈ zL−2
Z[z2, ν±1], ĝR1,...,RL (t, ν) ∈ zL−1

Z[z, ν±1], (3.34)

i.e. they have the structure

ĥ R1,...,RL (t, ν) = zL−2
∑

g≥0

∑

Q∈Z

N c=0
R1,...,RL ;g,Qz2gνQ,

ĝR1,...,RL (t, ν)= zL−1
∑

g≥0

∑

Q∈Z

(
N c=1

R1,...,RL ;g,Qz2gνQ +N c=2
R1,...,RL ;g,Q z2g+1νQ

)
.

(3.35)

Remark 3.6. It follows from this conjecture that

h R1,...,RL ∈ zL−2
Z[t±1, ν±1], gR1,...,RL ∈ zL−1

Z[t±1, ν±1]. (3.36)

As in the colored HOMFLY case, the conjecture is supposed to hold as well for framed
knots and links.

4. Evidence

4.1. Direct computations. In this section we provide some evidence for our conjectures
concerning the colored Kauffman invariant of knots and links. The first type of evidence
follows from direct computation of the invariants ĥ R1,...,RL , ĝR1,...,RL for simple knots
and links and for representations with small number of boxes.

Example 4.1. The simplest example is of course the unknot. The colored HOMFLY and
Kauffman invariants are just quantum dimensions. For the standard framing one finds
that the only nonvanishing ĥ R , ĝR are

ĥ = 2(ν − ν−1)z−1,

ĥ = −z−1,

ĥ = −z−1,

ĝ = 1.

(4.1)

Although we have only computed the reformulated invariants up to four boxes, we con-
jecture that the ĥ R , ĝR vanish for all remaining representations. Of course, this has the
structure predicted by our conjecture.

We now consider more complicated examples. As in [29,31], a useful testing ground
are torus knots and links, since for them one can write down general expressions for
the colored invariants in any representation. Torus knots are labelled by two coprime
integers n,m, and we will denote them by Kn,m . Torus links are labelled by two integers,
and their g.c.d. is the number of components of the link, L . We will denote a torus link
by LLn,Lm , where n,m are coprime. Explicit formulae for the HOMFLY invariant of
a torus knot Kn,m , colored by a representation R, can be obtained in many ways. In
the context of Chern–Simons theory, one can use for example the formalism of knot
operators of [28] to write down general expressions [29]. In fact [52], one can obtain
formulae in the knot operator formalism which are much simpler than those presented
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in [29] and make contact with the elegant result derived in [36] by using Hecke algebras.
The formula one obtains is simply

HR(Kn,m) = tnmCR
∑

U

cU
n;R t−

m
n CU dimq U, (4.2)

where cU
n;R is defined in (2.7). Of course one has to set t N = ν. This formula is also valid

for composite representations, which after all are just a special type of representations
of U(N ). The generalization to torus links is immediate, as noticed in [31], and the
invariant for LLn,Lm is given by

HR1,...,RL (LLn,Lm) =
∑

S

N S
R1,...,RL

t
mn

(
CS−∑L

j=1 CR j

)

HS(Kn,m). (4.3)

This expression is also valid for composite representations, but one has to use the appro-
priate Littlewood–Richardson coefficients (as computed in for example [25]).

Example 4.2. By using these formulae one obtains, for the trefoil knot,

H( , )(K2,3) = dimq ( , )
{

4ν4 − 4ν6 + ν8 + z2
(

4ν4 − 7ν6 + 2ν8 + ν10
)

+ z4
(
ν4 − 2ν6 + ν8

)}
, (4.4)

while for the Hopf link we have for example

H( , ),( ,·)(L2,2) = (
dimq ( , )

) (
dimq

)
(1 + z2). (4.5)

Remark 4.3. In the case of the Hopf link, a general expression for H(R1,S1),(R2,S2) in
terms of the topological vertex [1] can be read from the results for the “covering con-
tribution” in [8]. This expression has reappeared in other studies of topological string
theory, see [2,22]. Particular cases have been computed by using skein theory in [42].

One also needs to compute the colored Kauffman invariants of torus knots and links.
Very likely, the expression (4.2) generalizes to the Kauffman case by using the group
theory data for SO(N )/Sp(N ), but we have used the expression presented in [8] for torus
knots of the type (2, 2m + 1), based on the approach of [11]. With these ingredients it
is straightforward to compute the reformulated invariants ĝR for torus knots, although
the expressions quickly become quite complicated. We have verified the conjecture for
various framed torus knots and links and representations with up to four boxes.
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Example 4.4. For the trefoil knot in the standard framing one finds

ĝ = −21ν11 + 79ν9 − 111ν7 + 69ν5 − 16ν3 + 21z
(
ν12 − 3ν10 + 3ν8 − ν6

)

+ z2
(
−70ν11 + 251ν9 − 307ν7 + 146ν5 − 20ν3

)

+ 7z3
(

10ν12 − 33ν10 + 33ν8 − 10ν6
)

− 2z4
(

42ν11 − 165ν9 + 183ν7 − 64ν5 + 4ν3
)

+ 14z5
(

6ν12 − 23ν10 + 23ν8 − 6ν6
)

+ z6
(
−45ν11 + 220ν9 − 230ν7 + 56ν5 − ν3

)

+ 3z7
(

15ν12 − 73ν10 + 73ν8 − 15ν6
)

+ z8
(
−11ν11 + 78ν9 − 79ν7 + 12ν5

)
+ z9

(
−11ν11 + 78ν9 − 79ν7 + 12ν5

)

+ z10
(
−ν11 + 14ν9 − 14ν7 + ν5

)
+ z11

(
ν12 − 14ν10 + 14ν8 − ν6

)

+ z12
(
ν9 − ν7

)
+ z13

(
ν8 − ν10

)
,

ĝ = −15ν11 + 53ν9 − 69ν7 + 39ν5 − 8ν3 + 15z
(
ν12 − 3ν10 + 3ν8 − ν6

)

+ z2
(
−35ν11 + 126ν9 − 146ν7 + 61ν5 − 6ν3

)

+ 5z3
(

7ν12 − 24ν10 + 24ν8 − 7ν6
)

+ z4
(
−28ν11 + 120ν9 − 128ν7 + 37ν5 − ν3

)

+ 7z5
(

4ν12 − 17ν10 + 17ν8 − 4ν6
)

+ z6
(
−9ν11 + 55ν9 − 56ν7 + 10ν5

)
+ z7

(
9ν12 − 55ν10 + 55ν8 − 9ν6

)

+ z8
(
−ν11 + 12ν9 − 12ν7 + ν5

)
+ z9

(
ν12 − 12ν10 + 12ν8 − ν6

)

+ z10
(
ν9 − ν7

)
+ z11

(
ν8 − ν10

)
. (4.6)

From these expressions one can read the BPS invariants N c=1,2
;g,Q and N c=1,2

;g,Q . In [8]

the invariants with c = 1 were obtained by exploited parity properties of the Kauffman
invariant, but the c = 2 invariants were not determined. Notice that our convention for
the matrix MRS is different from the one in [8], so in order to compare with the results
for c = 1 presented in [8] one has to change NR;g,Q → (−1)�(R)−1 NRT ;g,Q .

Example 4.5. For the Hopf link one finds

ĝ , = z(ν − ν−1),

ĝ , = z(ν2 − 1), (4.7)

ĝ
,

= z(ν−2 − 1).
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4.2. General predictions for knots. We now discuss general predictions of our conjec-
ture. We will see that it makes contact with well-known properties of the Kauffman invari-
ant, and that it makes some simple, new predictions for the structure of the Kauffman
invariant of links. We start by discussing general predictions for knots.

From their definition (2.17), (2.33) we can write

G(K) =
(

1 +
ν − ν−1

z

) ∑

i≥0

kK
i (ν)z

i ,

H(K) = ν − ν−1

z

∑

i≥0

pK
i (ν)z

2i .

(4.8)

According to our conjecture, ĝ = g has no terms in z−1, therefore one must have

kK
0 (ν) = pK

0 (ν), (4.9)

which is (2.42) in the case of knots. Therefore, the equality of the lowest order terms
of the HOMFLY and Kauffman polynomials is a simple consequence of our conjecture.
This was already noticed in [8].

We now consider the reformulated polynomial gR for representations with two boxes.
Our conjecture implies that this quantity belongs to z−1

Z[ν±1, t±1]. By looking at the
definition of g (K), g (K) in terms of colored Kauffman and HOMFLY invariants,

we see that the only possible term which might spoil integrality is

1

2
(G(K)2 + H( , )(K)). (4.10)

Therefore our conjecture implies that

G(K)2 ≡ H( , )(K) mod 2. (4.11)

This is precisely Rudolph’s theorem (2.45) for knots.
Very likely, our integrality conjecture also leads to the generalization of Rudolph’s

theorem due to Morton and Ryder (2.46), although the combinatorics becomes more
involved. As an example, we will briefly show how to derive (2.46) in the case of knots
(L = 1) and with R = . To do this, we look at g , which is given by

g = G − G G − 1

2
G2 +

1

2
G2 G − 1

4
G4

−1

2

(
R − R R − 1

2
R2 +

1

2
R2 R − 1

4
R4

)
. (4.12)

Most terms in the r.h.s. are manifestly elements in Z[t±1, ν±1] with denominators given
by products of tr − t−r . The only possible source for rational coefficients is the term

− 1

2

(
G2 + H( , )

)
− 1

4

(
G4 − H2

( , )

)
. (4.13)

However, the last two terms inside the bracket are also in Z[t±1, ν±1] thanks to Rudolph’s
theorem, and we conclude that integrality of g requires

G2 ≡ H( , ) mod 2. (4.14)

This is Morton–Ryder’s theorem (2.46) for a knot colored by R = . It seems likely
that the general case of their theorem, for an arbitrary representation R, follows from
integrality of gS , where S ∈ R ⊗ R.
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4.3. General predictions for links. Let us now consider two-component links. When
both components are colored by , the HOMFLY and Kauffman invariants have the
form

G(L) =
(

1 +
ν − ν−1

z

) ∑

i≥0

kL
i (ν)z

i−1,

H(L) = ν − ν−1

z

∑

i≥0

pL
i (ν)z

2i−1.

(4.15)

Our conjecture says that g , (L) belongs to Z[ν±1, z], i.e. it has no negative powers
of z. From its explicit definition in terms of the HOMFLY and Kauffman polynomials
of L we find that this condition leads to three different relations. The first one is

kL
0 (ν) = (ν − ν−1)kK1

0 (ν)kK2
0 (ν). (4.16)

The conjecture in the case of HOMFLY leads to a similar relation [31]

pL
0 (ν) = (ν − ν−1)pK1

0 (ν)pK2
0 (ν). (4.17)

Notice that, due to (4.9), we also have from (4.17) and (4.16), that

pL
0 (ν) = kL

0 (ν) (4.18)

for links of two components. The second relation determines the second coefficient of
the Kauffman polynomial of a link as

kL
1 (ν) = kK1

0 (ν)kK2
0 (ν) + (ν − ν−1)

(
kK1

0 (ν)kK2
1 (ν) + kK1

1 (ν)kK2
0 (ν)

)
. (4.19)

Finally, the third relation gives an equation for kL
2 (ν),

kL
2 (ν) = pL

1 (ν) + pL
1 (ν)− 2

(
pK1

0 (ν)pK2
1 (ν) + pK1

1 (ν)pK2
0 (ν)

)

+ kK1
0 (ν)kK2

1 (ν) + kK1
1 (ν)kK2

0 (ν)

+ (ν − ν−1)
(

kK1
0 (ν)kK2

2 (ν) + kK1
2 (ν)kK2

0 (ν) + kK1
1 (ν)kK2

1 (ν)
)
. (4.20)

These results can be easily generalized to a general link L with L components K j ,
j = 1, . . . , L , as follows. If we calculate the connected invariants of the link from their
definitions in terms of invariants of sublinks, we obtain an expression of the form

G(c)(L) =
(

1 +
ν − ν−1

z

) ∑

i≥0

k(c),Li (ν)zi+1−L ,

H(c)(L) = ν − ν−1

z

∑

i≥0

p(c),Li (ν)z2i+1−L ,

(4.21)

where p(c),Li (ν), k(c),Li (ν) can be obtained in terms of the polynomials p(c),L
′

i (ν),

p(c),L
′

i (ν) of the different sublinks of L, L′ ⊂ L. For example,

p(c),L0 (ν) = pL
0 (ν)− (ν − ν−1)L−1

L−1∏

j=1

p
K j
0 (ν). (4.22)

The conjecture of [30,31,44] for the colored HOMFLY invariant implies in particular
that the connected HOMFLY invariant belongs to zL−2

Z[z2, ν±1]. This leads to[30,31]
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Fig. 6. A Brunnian link with four components

p(c),L0 (ν) = · · · = p(c),LL−2 (ν) = 0 (4.23)

for any link L. The fact that p(c),L0 (ν) = 0 is a result of Lickorish and Millett [34], and

the vanishing of p(c),L1,2 (ν) has been proved in [21].

Our conjecture for the colored Kauffman implies that (3.33) belongs to zL−1
Z[z, ν±1].

This gives the relations

k(c),L0 (ν) = · · · = k(c),L2L−3(ν) = 0 (4.24)

as well as

k(c),L2L−2(ν) =
2L−1∑

α=1

p(c),LαL−1 (ν). (4.25)

The relations (4.24) generalize (4.16) and (4.19), while (4.25) generalizes (4.20) to any
link. The equality (2.42) for any link now follows from the vanishing of p(c),L0 (ν),

k(c),L0 (ν) and the equality in the case of knots (4.9).

The vanishing of k(c),Li (ν) with i = 0, · · · , 3 has been proved by Kanenobu in [20].
More evidence for (4.24) comes from Brunnian links. A Brunnian link is a nontrivial
link with the property that every proper sublink is trivial. The Hopf link is a Brunnian
link of two components, while the famous Borromean rings give a Brunnian link of three
components. A Brunnian link with four components is shown in Fig. 6. It is easy to see
that the connected invariants of a Brunnian link B with L components are of the form

G(c)(B) =
(

1 +
ν − ν−1

z

)
FB(z, ν)−

(
1 +

ν − ν−1

z

)L

,

H(c)(B) = ν − ν−1

z
PB(z, ν)−

(
ν − ν−1

z

)L

.

(4.26)

Conjectures (4.23) and (4.24) imply that, for Brunnian links,

PB(z, ν)−
(
ν − ν−1

z

)L−1

= O(zL−1),

FB(z, ν)−
(

1 +
ν − ν−1

z

)L−1

= O(zL−1).

(4.27)

This has been proved in [18,47].
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Fig. 7. The two oriented links L and L tabulated as 42
1, and differing in the relative orientation of their

components

The relation (4.25) (and in particular (4.20) for links with two components) seems
however to be a new result in the theory of the Kauffman polynomial. It relates the
Kauffman polynomial of an unoriented link L to the HOMFLY polynomial of all the
oriented links that can be obtained from L, modulo an overall reversal of the orientation.
In the case of links made out of two unknots, it further simplifies to

kL
2 (ν) = pL

1 (ν) + pL
1 (ν), (4.28)

and it can be easily checked in various cases by looking for example at the tables pre-
sented in [35].

Example 4.6. Let us check (4.28) for some simple links made out of two unknots. The
easiest example is of course the Hopf link, where L and L are depicted in Fig. 3. Their
HOMFLY polynomials are given by

PL = ν − ν−1

z
+ νz, PL = ν − ν−1

z
− ν−1z, (4.29)

and

pL
1 (ν) + pL

1 (ν) = ν − ν−1. (4.30)

By comparing with (2.40), we see that (4.28) holds. Let us now consider the pair of
oriented links depicted in Fig. 7. Their HOMFLY polynomials are

PL =
(
ν − ν−1

)
z−1 +

(
ν − 3ν−1

)
z − ν−1z3,

PL =
(
ν − ν−1

)
z−1 +

(
ν + ν3

)
z,

(4.31)

while the Kauffman polynomial is

FL =
(
ν−ν−1

)
z−1+1+

(
ν3+2ν−3ν−1

)
z+

(
1 − ν2

)
z2+

(
ν−ν−1

)
z3. (4.32)

Again, the relation (4.28) holds. Finally, we consider the link depicted in Fig. 8, and
tabulated as 52

1. This link is invariant under reversal of orientation of its components,
hence L = L, and its HOMFLY polynomial equals

PL =
(
ν − ν−1

)
z−1 +

(
−ν−1 + 2ν − ν3

)
z + νz3, (4.33)
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Fig. 8. The oriented link L, tabulated as 52
1. It is invariant under reversal of orientation of its components,

hence L = L

while its Kauffman polynomial is

FL =
(
ν − ν−1

)
z−1 + 1 +

(
−2ν−1 + 4ν − 2ν3

)
z +

(
−1 + ν4

)
z2

+
(
−ν−1 + 3ν − 2ν3

)
z3 + (−1 + ν2)z4. (4.34)

Here, kL
2 (ν) = 2pL

1 (ν), again in agreement with (4.28).

Finally, it is easy to see that Rudolph’s theorem for a link L can be obtained by
requiring integrality of, for example, the reformulated invariant g ,..., , generalizing
in this way our analysis for knots. It is likely that (2.46) follows from looking at gS1,...,SL

with Si ∈ Ri ⊗ Ri .

5. String Theory Interpretation

The conjecture stated in this paper is mostly based on the analysis performed in [8],
which in turn builds upon previous work on the large N duality between Chern–Simons
theory and topological strings (see [39] for a review of these developments). In this
section we sketch some of the string theory considerations which lead to the above con-
jecture. For simplicity we will restrict ourselves to the case of knots. The extension of
these considerations to the case of links is straightforward.

5.1. Chern–Simons theory and D-branes. In [54], Witten showed that Chern–Simons
theory on a three-manifold M can be obtained by considering open topological strings
on the cotangent space T ∗M with boundaries lying on M , which is a Lagrangian sub-
manifold of T ∗M . Equivalently, one can say that the theory describing N topological
branes wrapping M inside T ∗M is U(N ) Chern–Simons theory.

To incorporate knots and links into this framework one has to introduce a different
set of branes, as explained by Ooguri and Vafa [44]. This goes as follows: given any
knot K in S

3, one can construct a natural Lagrangian submanifold NK in T ∗S3. This
construction is rather canonical, and it is called the conormal bundle of K. Let us para-
metrize the knot K by a curve q(s), where s ∈ [0, 2π ]. The conormal bundle of K is the
space

NK =
{
(q(s), p) ∈ T ∗S3

∣∣∣
∑

i

pi q̇i = 0, 0 ≤ s ≤ 2π

}
, (5.1)
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where qi , pi are coordinates for the base and the fibre of the cotangent bundle, respec-
tively, and q̇i denote derivatives w.r.t. s. The space NK is an R

2-fibration of the knot
itself, where the fiber on the point q(s) is given by the two-dimensional subspace of
T ∗

q(s)S
3 of planes orthogonal to q̇(s). NK has the topology of S

1 × R
2, and intersects S

3

along the knot K. As a matter of fact, for some aspects of the construction, the appro-
priate submanifolds to consider are deformations of NK which are disconnected from
the zero section. For example, [26] considers a perturbation

NK,ε =
{
(q(s), p + εq̇(s)) ∈ T ∗S3

∣∣∣
∑

i

pi q̇i = 0, 0 ≤ s ≤ 2π

}
. (5.2)

Let us now wrap M probe branes around NK. There will be open strings with one
endpoint on S

3, and another endpoint on NK. These open strings lead to the insertion
of the following operator (also called the Ooguri–Vafa operator) in the Chern–Simons
theory on S

3 [44]:

ZU(N )(v) =
∑

R

TrU(N )
R (UK) sR(v). (5.3)

Here UK is the holonomy of the Chern–Simons gauge field around K, while v is a U (M)
matrix associated to the M branes wrapping NK. After computing the expectation value
of this operator in Chern–Simons theory, we obtain the generating functional (3.1).

In order to describe the Kauffman polynomial, we need a Chern–Simons theory on
S

3 with gauge group SO(N ) or Sp(N ). From the point of view of the open string descrip-
tion, we need an orientifold of topological string theory on T ∗

S
3. This orientifold was

constructed in [51], and it can be described as follows. As a complex manifold, the
cotangent space T ∗

S
3 is a Calabi–Yau manifold called the deformed conifold. It can be

described by the equation

4∑

i=1

x2
i = μ, (5.4)

where xi are complex coordinates. For real μ > 0, the submanifold Im xi = 0 is noth-
ing but S

3, while Im xi are coordinates of the cotangent space. We now consider the
following involution of the geometry

I : xi → x̄i . (5.5)

This leaves the S
3 invariant, and acts as a reflection on the coordinates of the fiber:

pi → −pi . (5.6)

If we now wrap N D-branes on S
3, the corresponding gauge theory description is Chern-

Simons theory with gauge group SO(N ) or Sp(N ), depending on the choice of orientifold
action on the gauge group [51]. Since an orientifold theory is a particular case of a Z2
orbifold, the partition function is expected to be the sum of the partition function in the
untwisted sector, plus the partition function of the twisted sector. The partition function
in the untwisted sector corresponds to a theory of oriented open strings in the “covering
geometry,” i.e. the original target space geometry but with the closed moduli identified
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according to the action of the involution. The partition function in the twisted sector is
given by the contributions of unoriented strings. We can then write [7,51]

ZSO(N )/Sp(N ) = 1

2
Zcov + Zunor. (5.7)

In the case considered in [51], the partition function for the covering geometry is just
the U(N ) partition function.

We can introduce Wilson loops around knots and links by following the strategy of
Ooguri and Vafa, i.e. by introducing branes wrapping the Lagrangian submanifold NK.
This leads to the insertion of the operator [7,8]

ZSO(N )/Sp(N )(v) =
∑

R

TrSO(N )/Sp(N )
R (UK) sR(v). (5.8)

After computing the expectation value of this operator in Chern–Simons theory, we
obtain the generating functional (3.16). In this paper we have used the Kauffman invari-
ant which follows naturally from the gauge group SO(N ), but in fact the two choices
of gauge group lead to essentially identical theories due to the “SO(N ) = Sp(−N )”
equivalence, see [7] for a discussion and references.

How does (5.8) decompose into a sum (5.7) of covering and unoriented contribu-
tions? In general, if we have a geometry X with a submanifold L , there will be two
submanifolds in the covering geometry: the original submanifold L and its image under
the involution I (L) [8]. Although I (NK) = NK, if one considers deformations of the
conormal bundle, the resulting submanifolds will be different (this has been previously
noticed in [17]). For example, for the deformation (5.2) one has that I (NK,ε) = NK,−ε .
Therefore, after deformation we will have two sets of probe D-branes in T ∗

S
3, wrap-

ping two different submanifolds related by the involution I , and leading to two different
sources v1 and v2 [8]. In particular, we have two sets of open strings, going from the two
sets of probe branes to the branes wrapping S

3 in the orientifold plane, and related by
the orientifold action. This action involves both the target space involution pi → −pi
and an orientation reversal which conjugates the Chan-Paton charges. We then conclude
that one set of open strings will lead to the insertion of Wilson lines in S

3 involving rep-
resentations R = ·, , , . . ., while the other set of open strings will lead to conjugate
representations S = . . . , , , . . .. This is illustrated in Fig. 9.

The partition function of the covering geometry will then have the structure

Zcov(v) =
∑

R,S

TrU(N )
(R,S)(UK) sR(v)sS(v). (5.9)

Since we have to identify the closed and open moduli according to the action of the invo-
lution, in (5.9) we have set v1 = v2 = v in the source terms sR(v1) and sS(v2). After
computing the expectation value of this operator in Chern–Simons theory, we obtain the
generating functional ZR in (3.15).

This argument by itself does not make it possible to decide if the representation
induced by the orientifold action is the composite representation (R, S) or the tensor
product representation R ⊗ S, which differ in “lower order corrections” as specified
in (2.13). One needs in principle a more detailed study of the orientifold, but as we
will see in a moment, by looking at the topological string theory realization for simple
knots and links, we can verify that the covering geometry involves indeed the composite
representation.
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Fig. 9. The two sets of open strings in the covering geometry, going from the probe branes to the orientifold
“plane” in S

3 and extending along the cotangent directions. They are related by the target space involution,
which sends pi → −pi , and by orientation reversal. The Chan–Paton charges ending on S

3 lead to a Wilson
line colored by (R, S), while the Chan-Paton charges in the probe branes lead to sources v1, v2 which have
to be identified by the involution: v1 = v2

5.2. Topological string dual. It was conjectured in [14] that open topological string the-
ory on T ∗

S
3 with N D-branes wrapping S

3 is equivalent to a closed topological string
theory on the resolved conifold

X = O(−1)⊕ O(−1) → P
1. (5.10)

This leads to a large N duality between Chern–Simons theory on S
3 and the closed

topological string on (5.10). The open string theory on the deformed conifold is related
to the closed string theory on the resolved conifold by a so-called geometric transition.
In this case this is the conifold transition.

This duality was extended by Ooguri and Vafa to the situation in which one has probe
branes in T ∗

S
3 wrapping the Lagrangian submanifold NK. They postulated that, given

any knot K, one can construct a Lagrangian submanifold in the resolved conifold, LK ,
which can be understood as a geometric transition of the Lagrangian NK in the deformed
conifold. The total free energy in the deformed conifold can be computed in terms of
Chern–Simons theory and it is given by FH(v). By the large N duality, it should be
equal to the free energy of an open topological string theory on the resolved conifold X
with Lagrangian boundary conditions given by LK . Since open topological string ampli-
tudes can be reformulated in terms of counting of BPS invariants and satisfy integrality
conditions [13,31,44], one obtains the conjecture about the integrality properties of the
colored HOMFLY invariant [30,39] which we reviewed above.

As first shown in [51], one can extend the large N duality of [14] to the orientifold
case and obtain an equivalence between Chern–Simons theory on S

3 with SO(N )/Sp(N )
gauge groups and topological string theory on an orientifold of the resolved conifold. A
convenient description of (5.10) is as a toric manfiold, defined by the equation

|X1|2 + |X2|2 − |X3|2 − |X4|2 = t (5.11)
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and a further quotient by a U (1) action where the coordinates (X1, . . . , X4) have charges
(1, 1,−1,−1). In this description, the orientifold is defined by the involution

(X1, X2, X3, X4) → (X2,−X1, X4,−X3). (5.12)

Let us now consider the open topological string theory on the resolved conifold
defined by the Lagrangian submanifold LK associated to a knot. If we perform the ori-
entifold action (5.12) we obtain an orientifold of this open topological string theory.
The total partition function of this orientifold of the resolved conifold should be equal
to the total partition function of the orientifold of the deformed conifold, namely ZG(v).
The contribution of the covering geometry will be given by the partition function of
topological open strings on X in the presence of two Lagrangian submanifolds, LK
and I (LK ), after identifying the sources. This should be equal to the contribution of
the covering of the deformed geometry, i.e. ZR(v). This partition function can then be
expressed in terms of integer BPS invariants N c=0

R;g,Q .
On the other hand, the unoriented contribution to the orientifold partition function

will be given by the partition function of unoriented topological open strings in the
quotient geometry X/I with a brane LK . This unoriented partition function also has an
integrality structure [7,8] generalizing [13]. In particular, it can be written in terms of
BPS invariants N c=1,2

R;g,Q related to the counting of curves with boundaries ending on LK

and with one or two crosscaps. This explains the integrality properties for the colored
Kauffman polynomial that we conjectured in this paper.

Remark 5.1. Note that the two choices of orientifold action which lead to the gauge
groups SO(N )/Sp(N ) in the deformed conifold become here a choice of overall sign
for the c = 1 contribution, see for example [7] for a discussion and examples.

Remark 5.2. The sum over odd positive integers d in (3.18) seems to be a general feature
of multicovering formulae for unoriented surfaces, as noticed in [7,8,51]. See [27] for
recent examples.

When K is the unknot it is possible to construct explicitly the corresponding Lagrang-
ian submanifold LK in X . It turns out to be given by a toric construction, and it is possi-
ble to compute ZR(v) by using the topological vertex [8]. The explicit computation in
Eq. (3.10) of [8] confirms that the vacuum expectation value of the operator appearing
in (5.9) is indeed the quantum dimension of the composite representation (2.26),

〈TrU(N )
(R,S)(UK)〉 = dimq (R, S). (5.13)

One can also find an explicit description of the Lagrangian submanifolds in X corre-
sponding to the Hopf link [8], and compute the covering contribution to the orientifold
partition function by using the topological vertex. The resulting expression (Eq. (3.17)
of [8]) agrees again with the HOMFLY invariant of the Hopf link for general composite
representations, which was computed in [2,22] in a different context.

6. Conclusions and Outlook

In this paper we have formulated a new conjecture on the structure of the colored Kauff-
man polynomial of knots and links. This conjecture is mainly based on the results of [8],
but it adds a crucial ingredient which was missing in that paper: the fact that partition
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functions in the untwisted sector of the orientifold are given by HOMFLY invariants col-
ored by composite representations. This makes possible to extend the results obtained
for the colored HOMFLY invariant in [30,31,44] to the colored Kauffman polynomial.
According to our conjecture, the natural invariant of unoriented knots and links involves
both the Kauffman polynomial and the HOMFLY polynomial colored with composite
representations. In particular, in the case of links, it involves considering all possible
orientations for the components of a link. This is probably the most interesting aspect
of the conjecture, and it “explains” many aspects of the relationship between these
invariants, like Rudolph’s theorem [49]. It also leads to new, simple results about the
Kauffman polynomial, like for example (4.25). From the point of view of physics, the
results presented in this paper provide new precision tests of a large N string/gauge
theory correspondence.

It would be very interesting to relate the integrality properties conjectured here to
appropriate generalizations of Khovanov homology, as in [16]. Indeed, as in the case
of the colored HOMFLY invariants, the integers N c=0,1,2

R1,...,RL ;g,Q are Euler characteristics
of cohomology theories associated to BPS states, and it is natural to conjecture that
these cohomologies give categorifications of the colored Kauffman invariant. There has
been already work in this direction for knots colored by the fundamental representa-
tion [17]. The case of links and/or higher representations should involve, as conjectured
in this paper, both the Kauffman invariant and the HOMFLY invariant for composite
representations.

Finally, it was noticed in [29] that the reformulated invariants fR , when expanded
in power series, t = exp(x/2), lead to Vassiliev invariants. On the other hand, some of
the properties that follow from our conjectures (like (4.27)) have a natural interpretation
in Vassiliev theory. Therefore, it would be interesting to have a precise interpretation
of our conjectures in terms of Vassiliev invariants, especially now that we have a rather
complete understanding of Chern–Simons invariants for all classical gauge groups in
terms of string theory.

Note added. After this paper was submitted, two papers appeared [9,52] with extensive
checks of conjecture 3.3 for framed torus knots and links.
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