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Abstract. We investigate the combinatorial structure of linear programs on simple d-
polytopes with d + 2 facets. These can be encoded by admissible grid orientations. Ad-
missible grid orientations are also obtained through orientation properties of a planar point
configuration or by the dual line arrangement. The point configuration and the polytope
corresponding to the same grid are related through an extended Gale transform.

The class of admissible grid orientations is shown to contain nonrealizable examples,
i.e., there are admissible grid orientations which cannot be obtained from a polytope or a
point configuration. It is shown, however, that every admissible grid orientation is induced
by an arrangement of pseudolines. This later result is used to prove several nontrivial facts
about admissible grid orientations.

1. Introduction

In this paper we investigate the graphs of simple d-polytopes with d + 2 facets (also
called (d, d+2)-polytopes), oriented by means of linear or abstract objective functions.
Abstract objective functions are designed to capture the combinatorial essence of linear
objective functions and have been studied by several researchers [1], [27], [28], [17], [20].

The vertex-edge graph of a (d, d + 2)-polytope is an (n,m)-grid for some n,m with
n+m = d + 2. This is a graph whose vertex set is the Cartesian product of an n-set and
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100316/1.
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(a) (b)

Fig. 1. (a) A (3, 4)-grid and (b) the double-twist.

an m-set, with edges connecting all pairs of vertices that differ in exactly one coordinate,
see Fig. 1(a). Therefore, we are concerned with orientations of grids.

Via an extended Gale transform, a (d, d + 2)-polytope P , along with a linear func-
tion f , maps to a planar point configuration in such a way that the orientations of certain
point triples encode the order in which the vertices of P appear under f . This is the setup
of One line and N points [11]. We introduce a dual scenario of No point and N lines in
which the grid orientation can be read off a planar arrangement of red and blue lines.

If f is an abstract objective function (meaning that it orders the vertices—and thus
orients the graph—in such a way that each nonempty face of P induces a subgraph with
a unique sink), we only get a point configuration (or a line arrangement) if f is linear. In
the general case, the vertex order can still be encoded by (abstract) oriented triples, but
it is not clear that they have a geometric interpretation. In fact, a more recent result of
Holt and Klee shows that abstract objective functions are missing a crucial combinatorial
feature of linear functions: whenever the graph of a (not necessarily simple) d-polytope
is oriented by means of a generic1 linear function, there must be d directed paths from
the unique source to the unique sink with pairwise disjoint interiors (we simply call them
vertex-disjoint in the following). Of course, the same statement applies to all faces, the
number of paths being the dimension of the face [18]. Imposing this Holt–Klee condi-
tion on our grid orientations, in addition to the axioms of abstract objective functions,
we arrive at the class of admissible grid orientations. The double-twist of Fig. 1(b) is
the smallest example of a nonadmissible orientation induced by an abstract objective
function.

Even though admissible grid orientations seem close to linear functions from a combi-
natorial point of view, they still fail to capture the geometry: with a construction involving
a deformed Pappus-configuration we show that admissible grid orientations exist that
are not induced by linear functions. Nevertheless, the main result of this paper shows
that not much is missing: we prove that an arrangement of red and blue pseudolines
exists that encodes the orientation. Because it also holds that any such arrangement in-
duces an admissible grid orientation, we get a complete characterization of the latter.
For simple (d, d + 2)-polytopes, we therefore exactly understand the difference be-

1 We call a linear function generic if it is not constant on any edge.
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tween vertex orderings induced by actual linear functions and the orderings we get from
Holt–Klee functions that just behave like linear functions under the known combinatorial
criteria. Because there are many more pseudoline arrangements than line arrangements,
our characterization implies that the fraction of linear functions among the Holt–Klee
functions tends to zero as d tends to infinity. This was previously shown by Develin for
(d, 2d)-polytopes, more precisely, for d-cubes [6].

Mihalisin and Klee have shown that for 3-polytopes, Holt–Klee functions induce the
same class of vertex orderings as linear functions [23]. Morris gave an example of a
4-cube orientation which is induced by a Holt–Klee function but not by a linear function
[24]. Our Pappus-configuration yields an orientation of a simple (d, d + 2)-polytope
with this property, for d = 7. This is smallest possible, a consequence of the fact that
any arrangement of fewer than d + 2 = 9 pseudolines is stretchable [4].

The paper is organized as follows. In Section 2 we formally introduce admissible
grid orientations as combinatorial models for linear functions on (d, d + 2)-polytopes,
and we show how they arise from One line and N points, equivalently, from No point
and N lines. Section 3 contains our main result, the characterization of admissible grid
orientations in terms of arrangements of red and blue pseudolines. Actually, we show
more: every grid orientation which is induced by an abstract objective function can be
represented by a red–blue arrangement of curves with the property that curves of different
color cross exactly once. In the admissible case, it also holds that there are no multiple
crossings between curves of the same color.

In Section 4 a number of interesting properties of admissible grid orientations is de-
rived from the characterization. For example, it is shown that any two admissible and
more generally any two unique sink orientations of the (n,m)-grid (Definition 2.1) can
be transformed into each other by a sequence of edge-flips, with all intermediate orien-
tations being admissible or unique sink, respectively. Section 5 constructs an admissible
orientation of the (3, 6)-grid that is not induced by a linear function. Moreover, we show
that any admissible orientation of the (2,m)-grid is linearly induced, for all m.

The concluding Section 6 briefly discusses grids of higher dimension and addresses
an interpretation of our result in the context of (partial) chirotopes.

2. Admissible Grid Orientations

2.1. From Polytopes to Grid Graphs

All d-polytopes with d + 1 facets are combinatorially equivalent to the standard d-
simplex �d , defined as �d = conv{e1, . . . , ed+1}, where ei is the i th unit vector in
IRd+1. The 1-skeleton, or vertex-edge graph, of the d-simplex is the complete graph
Kd+1, and acyclic orientations are transitive tournaments, i.e., permutations. It follows
easily that every acyclic orientation of the graph of the simplex is induced by some linear
function f . This means that there is an arc (v,w) between adjacent vertices if and only
if f (v) > f (w).

Having just one extra facet compared with a simplex of the same dimension, the
(d, d + 2)-polytopes still have a simple, though nontrivial, structure. The vertex-edge
graph of a (d, d + 2)-polytope is a grid: a graph consisting of n rows and m columns,
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n + m = d + 2, with the property that the vertices in any fixed row or column induce a
complete graph, see Fig. 1(a). This is implied by the following:

Lemma 2.1. Any simple d-polytope with d + 2 facets is combinatorially equivalent to
the product of simplices �n−1 ×�m−1, where n + m = d + 2 and n,m > 1.

Proof. We use a well-known theorem by Grünbaum [15], [16, Result 5.1.1]: every
d-polytope with e ≥ d + 1 facets is the intersection of an (e − 1)-simplex with a
d-dimensional flat. Thus, for P being a simple (d, d + 2)-polytope, there is a (d + 1)-
simplex � ⊆ IRd+1 and a hyperplane h ⊆ IRd+1 such that P = � ∩ h. Because P is
simple, we can slightly perturb h without changing the combinatorial structure of�∩h,
so we may assume that no vertex of� lies in h. Then the vertex set of� gets partitioned
by h into two sets S and T with |S| = n, |T | = m, n + m = d + 2. We have n,m > 1,
because P is not a simplex. Furthermore, all intersections of faces of� with h are faces
of P , which implies that the 1-skeleton of P contains an (n,m)-grid, with rows indexed
by S and columns indexed by T . Because this grid is already a d-regular graph, it must
coincide with the 1-skeleton. Thus, P shares its 1-skeleton with �n−1 × �m−1, and
because the combinatorial structure of a simple polytope is determined by its 1-skeleton
[5], [19], the lemma follows.

Now we fix some (d, d + 2)-polytope P and its grid G(P). A subgraph of the grid
induced by all vertices belonging to some subset of rows and some subset of columns
is called a subgrid. The proof of the previous lemma also yields the fact that subgrids
of G(P) correspond bijectively to the faces of P . In particular, the vertices of the grid
correspond to the vertices of P .

A generic linear function f induces an orientation of G(P): we have v → w if
f (v) > f (w). A grid orientation which is induced in this way has the following three
properties:

The orientation is acyclic, (1)

every nonempty subgrid has a unique sink, and (2)

no subgrid is isomorphic to the double-twist depicted in Fig. 1(b). (3)

Property (1) is obvious, and (2) follows from the fact that the minimum of a generic
linear function over a nonempty face is attained at a unique vertex of the face. Prop-
erty (3), finally, is a consequence of the Holt–Klee condition: a (2, 3)-subgrid of G(P)
corresponds to a three-dimensional face of P , so there must be three vertex-disjoint paths
from source to sink [18]. The double-twist has only two such paths.

Definition 2.1. A grid orientation with property (2) is called the unique sink orienta-
tion. If in addition, (1) and (3) hold, the orientation is called admissible.

We remark that properties (1) and (2) are just the axioms of orientations induced by
abstract objective functions [1], [27], [28], [17], [20], specialized to our grid setting. In
this specific setting, it also holds that (2) implies acyclicity [10].
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A natural question (we gave the answer away already) is whether every admissible
grid orientation is actually induced by a linear function on a (d, d + 2)-polytope. Since
this is an important property, we give it a name.

Definition 2.2. A grid orientation is called realizable if it is induced by a linear function
on a (d, d + 2)-polytope.

In realizable grid orientations, the Holt–Klee condition imposes a restriction on any
subgrid, while our notion of admissible grid orientations takes into account only the
restrictions coming from certain three-dimensional faces. In Section 4 we show that the
other restrictions are implied.

2.2. One Line and N Points, No Point and N (Pseudo)lines

Grid graphs can also be used to encode the setting of One line and N points [11].
Formally, let S = {s1, . . . , sN } be a set of N points in general position in the plane (i.e.,
no three on a common line), and let 
 be a vertical line which is disjoint from S. For such
a configuration we use the notation (S, 
). For ease of reference we think of the points
left of 
 as blue points while the points right of 
 are red. A two-colored pair of points
e ∈ (S

2

)
, i.e., a pair separated by line 
, is called an 
-edge.

For an 
-edge e, we let below(e) be the set of points in S which are below the line
spanned by the two points of e. Given an 
-edge e and a point s ∈ below(e), there is a
unique 
-edge {s, se} with se ∈ e. This edge is denoted by pivot(e, s), see Fig. 2.

A configuration (S, 
) naturally induces a digraph G whose nodes are the 
-edges.
From the node e ∈ E we have an outgoing edge to each e′ = pivot(e, s) for s ∈ below(e).
Since each node is determined by a point on the left and one on the right side of 
, the
underlying undirected graph is a grid graph, and it is not hard to see that G is an admissible
grid orientation.

e

s

se

pivot(e; s)

below(e)

blue red

Fig. 2. One line and N points.
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In fact, the setup of One line and N points has been conceived in order to study
realizable grid orientations according to Definition 2.2: an extended Gale transform
maps instances (S, 
) to instances (P, f ) (and vice versa), where P is a (d, d + 2)-
polytope and f is a generic linear function. The crucial property of this transform is
that the grid orientation induced by (S, 
) as described above coincides with the one
induced by its image (P, f ) as described in the previous subsection [11]. This yields the
following:

Corollary 2.1. A grid orientation is realizable if and only if it is induced by an instance
(S, 
) of one line and N points, with at least two points of S on either side of 
.

To motivate the introduction of our No point and N lines setup, fix an instance (S, 
)
of One line and N points and consider the problem of finding the 
-edge e∗ with the
lowest intersection point ye∗ with line 
. Equivalently, we want the highest line with all
points from S above.

Introducing coordinates and assuming that 
 is the y-axis, i.e., the vertical through the
origin, the problem of finding e∗ can be translated to a linear program in two variables
κ, δ:

maximize δ

subject to py ≥ κpx + δ for all (px , py) ∈ S.

The same linear program models the following dual (polar) problem: With a point
(px , py) in S associate the line y = (−px )x + py . Let the line associated with a point
inherit its color. Blue lines are the lines with positive slope, red lines have negative slope.
The quest is for the highest point below all lines. Equivalently, we seek the intersection
point of a red and a blue line with the least y-coordinate. The general setting of No point
and N lines consists of a set of N (nonvertical) lines partitioned into blue lines of positive
slope and red lines of negative slope, and the problem is to find the red–blue intersection
point ξ which is lowest.

The No point and N lines model has the advantage that the generalization from lines
to pseudolines is quite apparent. Let A be a simple arrangement of N pseudolines in
the Euclidean plane. To be simple means that there is no vertex of the arrangement
where three or more pseudolines cross (this assumption is dual to the general position
assumption in the (S, 
) model). To define the appropriate partition of the pseudolines
into red and blue pseudolines we make another assumption: there should be a vertical line

x crossed by all pseudolines, such that left of their crossing with 
x the pseudolines are
x-monotone.2 Let 
0 be a vertical line left of 
x which has no vertex of the arrangement
to its left. Label the pseudolines from top to bottom in the order of their intersection
with 
0. This labeling is an analog to the ordering of a set of lines by increasing slope.
Given n with 1 ≤ n < N , we color the first n pseudolines L1, . . . , Ln red (drawn as
solid curves throughout the paper), and the remaining N − n pseudolines Ln+1, . . . , L N

blue (dashed).

2 It is common to assume that the pseudolines of an arrangement are x-monotone throughout the range; in
view of our proof of Theorem 3.1, we only ask for this weaker condition.
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r3

c1 c2

r1

Lr3

Lr2

Lr1

L
c2

r2

L
c1

(a) (b)

Fig. 3. A (sub)arrangement of three red and two blue pseudolines along with the corresponding (sub)grid
orientation.

Consider the bottom cell of the arrangement A (the cell containing the portion of

0 below all pseudolines). The lines appearing on the boundary of this cell (the lower
envelope) include L N and L1 and are ordered by decreasing labels from left to right.
Therefore, there is a unique red–blue intersection ξ at the border of this cell—this is the
“lowest” red–blue vertex of the arrangement, see Fig. 3(a).

A red line induces a total ordering (from left to right) of its intersections with blue lines.
Symmetrically, a blue line induces a total ordering (from right to left) of its intersections
with red lines. If there are n red lines and m blue lines, this yields an orientation of the
(n,m)-grid. Clearly, subarrangements lead to subgrid orientations. The construction is
illustrated in Fig. 3. When p, q are two red–blue intersection points of the arrangement,
we write p → q whenever there is a directed path from the grid vertex corresponding
to p to the one corresponding to q.

Lemma 2.2. The orientation of the (n,m)-grid induced by an arrangementA of N =
n + m pseudolines is admissible.

Proof. Acyclicity follows from the fact that there is a sweep of A from top to bottom,
starting with a pseudoline above all vertices of the arrangement, its intersection with the
pseudolines given by the order Ln, . . . , L1, Ln+m, . . . , Ln+1. While the sweepline moves
towards the bottom of the arrangement, meeting one vertex at a time, its intersection with
any red line advances to the right, while blue lines are swept from right to left. This means
that the ordering of the vertices as they are encountered during the sweep topologically
sorts the grid orientation [8].

The unique sink property of subgrids is a consequence of the following observation:
Let ξ be the unique red–blue intersection ofA incident to the lower envelope. If p is any
other red–blue intersection, then we have p→ ξ , or there is a red–blue intersection point
q with p→ q → ξ , see Fig. 4. In particular p cannot be a sink, hence, ξ is the unique
sink of the grid. This argument carries over to subarrangements and the corresponding
subgrids.

It remains to show that there is no induced double-twist. To yield a double-twist, there
have to be two red lines, say, which both cross three blue lines Li , L j , Lk in this order.
In addition, the order in which the red lines are crossed by Li , L j , Lk changes twice as
we go through them in this order. This is impossible, see Fig. 5.
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�

p

q

p

�

p

q

�

q

Fig. 4. Proof of Lemma 2.2: a path of length 3 from p to ξ .

In Section 3 we prove that the converse of Lemma 2.2 also holds: every admissible
grid orientation is induced by a red–blue arrangement of pseudolines.

We conclude this section with some remarks on pseudoconfigurations of points and
their relation to arrangements of pseudolines.

A uniform pseudoconfiguration of points of rank 3 is a pair (A, S)where S is a planar
point set of size N , andA is an arrangement of

(N
2

)
pseudolines λss ′ through all pairs of

points s, s ′ ∈ S. Uniform means that no three points in S lie on the same pseudoline. Let 

be a vertical line which is disjoint from S. We refer to such a planar pseudoconfiguration
as the configuration (A, S, 
), see Fig. 6 for an example.

Obviously, this is a generalization of One line and N points. The notions of 
-edge,
below(e) as well as pivot(e, s) extend in a canonical fashion, so every instance (A, S, 
)
induces a grid orientation as before. By known duality results for arrangements of pseudo-
lines, the concepts of red–blue arrangements of pseudolines and of pseudoconfigurations
of points are completely equivalent [13], [2]. In particular, we obtain admissible grid
orientations in both scenarios.

3. Pseudorealizability of Admissible Grid Orientations

Our findings so far can be summarized as follows. We have encountered six different
settings which give rise to grid orientations. Three of them are geometric and mutually
equivalent—they characterize the realizable case:



(d, d + 2)-polytopes (with a linear function)
configurations of points (with a vertical line)
arrangements of lines (two-colored by slope)




�
realizable grid orientations

Li

Lk

Lj

Fig. 5. Proof of Lemma 2.2: there is no induced double-twist.
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p2

p3

q1

q2

p1

p1

p2

p3

q1 q2`

Fig. 6. One line and a pseudoconfiguration of N points, along with its induced admissible grid orientation.

The remaining three are also equivalent to each other and induce admissible orientations:



(d, d + 2)-polytopes (with a Holt–Klee function)
pseudoconfigurations of points (with a vertical line)

arrangements of pseudolines (two-colored by line at infinity)




⇓
admissible grid orientations

The goal of this section is to prove that the latter implication can be replaced by
an equivalence. This means, arrangements of pseudolines are a universal model for
admissible grid orientations.

Theorem 3.1. Any admissible grid orientation is induced by a red–blue arrangement
of pseudolines.

To prove this theorem, we first describe a simple construction that encodes any unique
sink grid orientation (Definition 2.1) by a red–blue arrangement of curves. We then show
that any two curves of different color intersect exactly once, and that we can read the
grid orientation off the resulting intersection pattern in exactly the same way as we
have done earlier for the case of a pseudoline arrangement (see Fig. 3). This result is of
interest in itself and can be used to gain nontrivial insights about general unique sink
grid orientations (see Section 4).

While two curves of the same color might intersect several times in the general case,
admissible grid orientations are shown to lead to arrangements in which any pair of
curves induces at most one crossing—we get the desired arrangement of pseudolines.

Here is the construction. Given an (n,m)-grid orientation G, we identify the rows of
G with the numbers R = {0, . . . , n− 1} and the columns with C = {0, . . . ,m− 1}. The
set R × C then corresponds to the set of vertices of G.

Definition 3.1. Let (r, c) ∈ R × C be a vertex and define

Out↓G(r, c) := {r ′ ∈ R | (r, c)→G (r
′, c)},

Out→G (r, c) := {c′ ∈ C | (r, c)→G (r, c′)}
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as the sets of rows and columns to which (r, c) has outgoing edges. The mapping

riG : R × C → R × C,

(r, c) �→ (|Out↓G(r, c)|, |Out→G (r, c)|)
is the refined index of G.

If G is a unique sink orientation, any row and any column is linearly ordered by G. It
follows that for any pair r ∈ R, γ ∈ C , there is a unique column c with riG(r, c) = (∗, γ ).
Similarly, for any pair c ∈ C, ρ ∈ R, we find r ∈ R with riG(r, c) = (ρ, ∗).

To obtain the arrangement of curves representing G, every row is mapped to a red
y-monotone polygonal path, traversing the construction from top to bottom. Columns
become blue x-monotone paths, passing from right to left. The path for row r is the
y-monotone path Lr interpolating the point set

{riG(r, c) ∈ IR2 | c ∈ C}
with straight line segments as connecting pieces. Beyond the interpolated points, Lr is
extended vertically. By the previous observation, the point set contains exactly one point
for every y-coordinate γ in C . Analogously, the path for column c is the x-monotone
path Lc interpolating

{riG(r, c) ∈ IR2 | r ∈ R}
with horizontal extensions.

Figure 7(a) depicts a unique sink grid orientation (transitive arrows omitted), along
with refined index values for row 0 and column 3. In Fig. 7(b) the resulting curves L0

and L3 are shown. Figure 7(c) shows the complete arrangement of four red and four blue
curves.

Our next goal is to prove that any red curve crosses any blue curve exactly once, if G
is a unique sink orientation. The following statement (which is known to hold in a more
general framework [10, Lemma 2.14]) is the key ingredient. We provide an independent
proof from which we also derive an important corollary.

Lemma 3.1. If G is a unique sink grid orientation, then the refined index riG is a
bijection.

(0; 0)
(0; 0)

(1; 2)

(1; 2) (3; 0)

(3; 0)

(1; 1)

(1; 1)

(2; 2)

(2; 2)

(3; 2)

(3; 2)

(0; 3)

(0; 3)
L0

L3

(a) (b) (c)

Fig. 7. Constructing curves from grid rows and columns.
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Proof. It suffices to show that any pair (ρ, γ ) ∈ R × C appears as a refined index
value. We first prove this for pairs of the form (ρ, 0), where the case ρ = 0 follows
from the existence of a global sink. For ρ > 0, we inductively assume that there are
vertices (ri , ci ) with riG(ri , ci ) = (i, 0), for all i with 0 ≤ i < ρ. We actually work with
the following stronger induction hypothesis: Out↓G(ri , ci ) = {r0, . . . , ri−1}. Now delete
rows r0, . . . , rρ−1 from G and consider the unique sink (rρ, cρ) of the remaining subgrid
G ′. We want to prove that ri ∈ Out↓G(rρ, cρ), for 0 ≤ i < ρ. If cρ = ci , this immediately
follows from the (stronger) induction hypothesis, otherwise it is implied by the unique
sink property of the (2, 2)-subgrid spanned by the two row sinks (rρ, cρ) and (ri , ci ).
Because (rρ, cρ) has no outgoing edges to rows in G ′, Out↓G(rρ, cρ) = {r0, . . . , rρ−1}
follows.

To prove the occurrence of refined index (ρ, γ ), we proceed in a similar fashion,
now using induction on γ . The case γ = 0 has just been established, and for γ > 0,
we inductively assume that there are vertices (rj , cj ) with riG(rj , cj ) = (ρ, j) and
Out→G (rj , cj ) = {c0, . . . , cj−1}, 0 ≤ j < γ . Delete columns c0, . . . , cγ−1 from G to
obtain G ′ and choose (rγ , cγ ) with riG ′(rγ , cγ ) = (ρ, 0). As before, we need to prove
cj ∈ Out→G (rγ , cγ ) for 0 ≤ j < γ to arrive at the desired conclusion Out→G (rγ , cγ ) =
{c0, . . . , cγ−1}.

If rj = rγ , this follows from the inductive hypothesis. Otherwise, suppose for
a contradiction that cj /∈ Out→G (rγ , cγ ). Assume that rj ∈ Out↓G(rγ , cγ ); the other
case is symmetric. Then the situation is as in Fig. 8 (solid edges). By the unique
sink property of (2, 2)-subgrids, we must have rγ /∈ Out↓G(rj , cj ) (edge 1 in Fig. 8).
Now, because |Out↓G(rγ , cγ )| = |Out↓G(rj , cj )| = ρ, there must be some index r ′ ∈
Out↓G(rj , cj )\Out↓G(rγ , cγ ), with r ′ �= rj , rγ (edges 2, 3). Acyclicity of columns cj , cγ
implies the orientations of edges 4, 5. The contradiction arises, because both orientations
of edge 6 lead to a (2, 2)-subgrid violating the unique sink property.

The induction hypothesis in the second part of the proof yields part (i) of the following
corollary, and the argument around Fig. 8 gives (ii).

Corollary 3.1.

(i) Fix ρ ∈ R and γ, γ ′ ∈ C with γ < γ ′. Let c, c′ be the columns containing
the vertices p, p′ with refined indices (ρ, γ ) and (ρ, γ ′), respectively (note that

r0

r


rj

cjc


1

2

3 4

5

6

(�; j)

(�; �)

Fig. 8. Proof of Lemma 3.1.
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(�; 
)(�; 
)

(�; 
0) (�0; 
0)

c cc0 c0

1

2

p p

p0p0

r

r0


 < 
0 1) 2

(a) (b)

Fig. 9. Illustration of Corollary 3.1.

c �= c′). Then

c ∈ Out→G (p
′), c′ �∈ Out→G (p), (4)

see Fig. 9(a).
(ii) Fix vertices p = (r, c), p′ = (r ′, c′) in columns c �= c′ with refined index values

(ρ, γ ) and (ρ ′, γ ′), respectively, and such that (4) holds. If

|(Out↓G(p) ∪ Out↓G(p
′)) ∩ {r, r ′}| ∈ {0, 2},

then
(a) Out→G (p) ∪ {c} ⊆ Out→G (p

′), in particular
(b) γ < γ ′,

see Fig. 9(b).

Returning to the construction of the red curves Lr , r ∈ R, and the blue curves Lc,
c ∈ C (see Fig. 7), we are now prepared to prove:

Theorem 3.2. Any red curve Lr crosses any blue curve Lc exactly once.

This implies that G can be read off the arrangement in the desired way (see Fig. 3):
Lr crosses Lc at the point riG(r, c); hence, Lr crosses Lc before Lc′ (equivalently, at
a higher y-coordinate) if and only if (r, c) has more outgoing edges within row r than
(r, c′). This is the case if and only if (r, c) →G (r, c′). Symmetrically, Lc crosses Lr

before Lr ′ if and only if (r, c)→G (r ′, c).

Proof. If we can show that riG(r, c) is the only point of intersection of Lr and Lc, the
two curves must cross there, because Lr passes from top to bottom, while Lc passes from
right to left. The refined index bijection shows that any grid point is used by exactly one
red and exactly one blue curve. This already implies that Lr and Lc can have no grid
point other than riG(r, c) in common.

Now suppose there is a point not in R × C where Lr and Lc intersect. We choose
q to be such an intersection point with the smallest y-coordinate. Suppose q is on the
segment of Lr between the horizontal lines y = j + 1 and y = j , and on the segment
of Lc between the vertical lines x = i + 1 and x = i , see Fig. 10(a).

Let S be the square [i, i + 1] × [ j, j + 1] ⊆ IR2. Since the order of the red curves
along any line y = t ∈ IN corresponds to a permutation of R, it follows that if Lr is
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Fig. 10. Proof of Theorem 3.2: a red–blue intersection point which is not in R × C .

crossing S from left to right, then there has to be a curve Lr ′ crossing S from right to
left. Similarly, if Lc is passing through S from bottom to top, then there is another curve
Lc′ moving from top to bottom through S.

Therefore, we may assume that Lr and Lc behave as shown in the figure: Lr is right-
to-left and Lc is top-to-bottom with respect to S. Lr is moving down with each segment
and will leave the construction on the bottom, while Lc is moving left and leaves to the
left. Hence, the two curves have to intersect again at a point below y = j . Due to the
choice of q , this intersection is at a point of R × C .

Recall that there is a red curve Lr ′ crossing through the square S from left to right, see
Fig. 10(b). Then there are indices h, h′ ≤ i < k, k ′ such that row r contains vertices with
refined indices (k, j+1) and (h′, j), while the refined index values (h, j+1) and (k ′, j)
appear on r ′. With the roles of R and C interchanged, we now apply Corollary 3.1(i)
to the pair of vertices with refined indices (h′, j) (row r ) and (k ′, j) (row r ′) to deduce
that the situation at the vertex p with riG(p) = (h′, j) is as in Fig. 11(a). A similar
argument involving refined indices (h, j + 1) and (k, j + 1) yields the indicated edge
orientation at the vertex p′ with refined index riG(p′) = (h, j + 1). Now, part (b) of
Corollary 3.1(ii) implies that the orientations of the two other solid edges in Fig. 11(b)
have to be as depicted in the right part: assuming they both go from right to left (the only
alternative) yields j + 1 < j .

We already know that Lr meets Lc at a (unique) point in R×C below y = j , meaning
that riG(r, c) = (∗, g), g < j . This equivalently means c ∈ Out→G (p), and using part (a)
of Corollary 3.1(ii), we obtain c ∈ Out→G (p

′), see Fig. 11(b). It follows that Lr ′ intersects

(h0; j)(h0; j)

(h; j + 1)(h; j + 1)

c

1

2

p p

p0 p0

r r

r0 r0

(�; g)

1) 2

(a) (b)

Fig. 11. Application of Corollary 3.1.
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L
r
0
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q0

Fig. 12. Proof of Theorem 3.2: the crossing of Lr ′ and Lc′ yields a contradiction.

Lc at a point q ′ ∈ R × C below y = j + 1. By construction of Lr ′ and Lc, q ′ is even
below y = j , and by the choice of q, q ′ is the first intersection point of Lr ′ and Lc below
y = j .

The situation at q ′ is therefore as shown in Fig. 12: Lc is approaching Lr ′ from the
top, so Lc is top-to-bottom with respect to the square S′ attached to q ′, while Lr ′ is
right-to-left. As before, we can argue that there is another blue line Lc′ crossing S′ from
bottom to top. This line Lc′ has a crossing with Lr ′ inside S′. This crossing is not at a
point of R×C , and it has smaller y-coordinate than point q, a contradiction to the choice
of q .

To derive our main theorem, Theorem 3.1, the representation theorem for admissible
grid orientations, it remains to prove that the arrangement of the Lr , r ∈ R, and the
Lc, c ∈ C , is an arrangement of pseudolines whenever G is admissible. From this, it is
easy to obtain the desired simple arrangement in which every pair of pseudolines crosses
exactly once: we slightly perturb the grid points in R×C to remove crossings of higher
multiplicity, and we add the missing red–red and blue–blue crossings outside of the
frame determined by R × C . To obtain a drawing in the spirit of Fig. 3, we may finally
rotate the construction, see Fig. 13.

Fig. 13. A completed arrangement of pseudolines corresponding to the admissible grid orientation in Fig. 7.
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r

r0
(h; j)

(h0; j0)

(h00; j00)

Fig. 14. Proof of Lemma 3.2: a double crossing between Lr and Lr ′ yields a double-twist.

Lemma 3.2. G is admissible if and only if every pair Lr , Lr ′ of red curves has at most
one crossing and every pair Lc, Lc′ of blue curves has at most one crossing.

Proof. If we get a drawing without multiple crossings between curves, we can extend
it to a simple arrangement of pseudolines as described above. By Lemma 2.2, G is
admissible. Now assume we have a pair of curves, Lr , Lr ′ , say, with more than one
crossing. Then there are y-coordinates j > j ′ > j ′′ such that Lr is without loss of
generality right of Lr ′ at heights j, j ′′ and left of Lr ′ at height j ′. Let h, h′, h′′ denote the
smaller x-coordinates of the two curves at the respective heights. Like in the proof of
Theorem 3.2, we can use Corollary 3.1 (i) to deduce the configuration of Fig. 14. This
configuration is a double-twist and, therefore, G is not admissible.

This lemma completes the proof of Theorem 3.1. We conclude this section with an
example that illustrates the nonadmissible case. Figure 15(a) depicts the snake, a unique
sink grid orientation with many induced double-twists. In the resulting arrangement
(Fig. 15(b)), any pair of blue curves has the maximum possible number of intersections.

4. Grid Orientations Scrutinized

Let us reconsider what we have achieved so far: we have introduced admissible grid ori-
entations (Definition 2.1) as combinatorial models for the graphs of (d, d+2)-polytopes,
oriented by generic linear functions. We have seen that such polytope digraphs can equiv-
alently be obtained from the two-dimensional scenarios of One line and N points, or,

(a) (b)

Fig. 15. The nonadmissible case: the resulting arrangement will have multiple crossings between curves of
the same color.
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dually, from No point and N lines, see Section 2.2. As our main result, we have proved
that admissible grid orientations are exactly the orientations arising from the generalized
scenario of No point and N pseudolines, see Theorem 3.1. For this, we have shown
something stronger: every unique sink grid orientation (Definition 2.1) can geometri-
cally be realized by an arrangement of curves with favorable intersection properties
(Theorem 3.2).

The goal of this section is to derive further structural and algorithmic results about
admissible and general unique sink grid orientations, using the previous material. Some
of them are already known, in which case the emphasis is on the ease with which they
are obtained in the admissible case from our representation Theorem 3.1. We start with
two simple properties we have already proved.

Proposition 4.1. Let G be a unique sink grid orientation with no induced double-twist.
Then

(i) G is acyclic, and
(ii) every subgrid of G has a unique source.

Proof. (i) Going through the proof of Theorem 3.1 again reveals that acyclicity is never
used. Therefore, we can associate to G an arrangement A of red and blue pseudolines
inducing the orientation G. By Lemma 2.2, this orientation is acyclic.

(ii) Consider arrangement A from (i). Arguing as in the proof of Lemma 2.2, we see
that the unique source of G corresponds to the unique red–blue crossing on the boundary
of the upper envelope ofA. Subarrangements ofA correspond to subgrids of G, meaning
that all subgrids have the unique source property as well.

The representation of unique sink grid orientation provided by Theorem 3.2 can be
used to derive the (known) result that the proposition holds even under the presence of
double-twists. This proof, however, would require some work, and the result is more
easily established through other techniques [10].

The fact that unique sinks imply unique sources in all subgrids can be used to es-
tablish yet another characterization of admissible grid orientations that we have already
anticipated in Section 2: admissible grid orientations are exactly the ones that satisfy the
Holt–Klee condition [18].

Lemma 4.1. Let G be a unique sink grid orientation. Then the following statements
are equivalent:

(i) G is admissible.
(ii) Every (a, b)-subgrid has a + b − 2 vertex-disjoint paths from its unique source

to its unique sink.

Proof. The implication (ii) ⇒ (i) is obvious, because (ii) excludes induced double-
twists already for (a, b) ∈ {(2, 3), (3, 2)}. For the other direction, fix a subgrid G ′ of
size a × b and let s be the unique source and t the unique sink of G ′.
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Fig. 16. Proof of Lemma 4.1: illustration of implication (i)⇒ (ii).

Suppose first that s and t belong to the same column, see Fig. 16(a). There are a − 1
paths from s to t in the column itself, one of the form s → t , and a − 2 of the form
s → p → t , for p �= s, t . By the unique sink property of (2, 2)-subgrids, there is an
additional path of the form s → p′ → q ′ → t along each of the b − 1 remaining
columns. Together this gives a + b − 2 vertex-disjoint paths from s to t . The same is
true if s and t share their row.

Now suppose that s and t do not share a row or column, see Fig. 16(b). There are
two paths of the form s → p → t , with p being one of the common neighbors u, v of
s and t . For any other neighbor p of s, let q be the unique common neighbor of t and
p not adjacent to s. We claim that s → p → q → t , which gives us the remaining
(a − 2) + (b − 2) paths. Again, all a + b − 2 paths are vertex-disjoint. To justify the
claim, assume that q → p would hold. Then the unique sink property of (2, 2)-subgrids
implies that s, t, u, v, p, q induce a double-twist which is excluded by (i).

Here is another interesting property of admissible grid orientations that can easily be
deduced from our main result.

Proposition 4.2. Let G be an admissible grid orientation, and let u, v be vertices such
that there is a directed path between u and v in G. Then there is also a directed path
between u and v that has no more than three edges.

Proof. As before, we associate to G an arrangement of pseudolines, but now consider
its dual pseudoconfiguration (A, S) of points, see Section 2.2 and Fig. 6. In this dual
view, u and v are represented by two pseudolines 
u, 
v , each of which passes through
a blue point to the left of the vertical line 
 and a red point to the right. Without loss of
generality, assume that 
u and 
v intersect to the right of 
. Because there is a directed
path from u to v, 
 intersects 
u above 
v . If 
u and 
v actually intersect in a point of S, u
and v are neighbors in G. Otherwise, we will show that there can only be a directed path
from u to v if there is some red point below 
u in the “triangle” spanned by 
, 
u, 
v .
This red point can be used to construct a directed path of length 2 or 3, see Fig. 17. To
complete the argument, assume the indicated triangle contains no red point. In particular,
u �→ v. Consider a vertex u′ such that u → u′ in G. The replacement of 
u by 
u′ leads to
a situation in which the triangle either disappears (
u′ intersects 
 below 
v), or becomes
strictly smaller. Again, u′ �→ v holds, and, inductively, it follows that there can be no
directed path from u to v in G.
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Fig. 17. A path u → w→ v of length 2 (a), and a path u → w→ w′ → v of length 3 (b) in the orientation
G represented by (A, S).

Proposition 4.2 requires the absence of induced double-twists: there is a unique sink
orientation of the (n,m)-grid where the shortest directed path between two specific
vertices has 2 min(n,m)− 1 edges, and this is indeed the maximum possible length of
a shortest directed path [26].

The interpretation of admissible grid orientations in terms of pseudoconfigurations
can also be used to establish the following result, a generalization of a theorem that was
originally shown for One line and N points [11]. The arguments in the proof—based
on above/below relations involving points and 
-edges—smoothly extend to the case of
pseudoconfigurations.

Proposition 4.3. Let G be an admissible orientation of the (n,m)-grid, and let v be
any vertex. Consider the random walk that starts in v and at a generic vertex u proceeds
along an outgoing edge chosen uniformly at random from all outgoing edges leaving u.
Then for all v, the expected number of steps until the walk reaches the global sink of G
is bounded by

O(log(n + 1) log(m + 1)).

In the special case of One line and N points, or (d, d + 2)-polytopes with linear
functions, this result establishes a tight upper bound for the expected performance of the
simplex method with the Random Edge pivot rule [11]. Despite being the simplest and
most natural randomized pivot rule, Random Edge has turned out to be very difficult to
analyze. On general polytopes, only a small improvement over the trivial upper bound
(number of vertices) is known [9], and no superpolynomial lower bounds exist. Only
recently, it was shown that an abstract objective function of the n-cube graph exists on
which Random Edge may require an expected superpolynomial number of steps to find
the sink [22].

It is open whether the bound of Proposition 4.3 holds for general unique sink grid
orientations. We already know that such orientations are acyclic, so the random walk
will be simple. However, nontrivial upper bounds on its expected length are not known.

We continue with another statement whose validity for admissible grid orientations is
easy to see from our representation theorem. Let G and G ′ be grid orientations. We say
that G and G ′ are related by an edge-flip if the two orientations differ in the orientation
of exactly one edge, see Fig. 18.
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Fig. 18. A sequence of edge-flips.

Proposition 4.4. Any two admissible orientations G and G ′ of the (n,m)-grid can be
transformed into each other by a sequence of edge-flips, with all intermediate orientations
being admissible as well.

Proof. Let T be a triangular face of an arrangementA. The local transformation replac-
ing T by a triangle with the opposite orientation (see Fig. 19), is called a triangular-flip
at triangle T .

LetA andA′ be the arrangements of m+ n pseudolines associated with G and G ′. It
is known (see, e.g., [8]) that A can be transformed into A′ by a sequence of triangular-
flips. In our context we carry the red–blue partition of the pseudolines through. Consider
two adjacent arrangements and their associated grid orientations. If the triangular-flip
involves only pseudolines of one color, then the two grids are the same. If the flip involves
two red and one blue pseudolines Lr , Lr ′ , and Lc, then the grids are related by an edge-
flip at the edge connecting vertices (r, c) and (r ′, c). If the triangular flip involves two
blue and one red pseudolines (as in Fig. 19), the situation is symmetric.

The most interesting (and maybe surprising) new result of this section is that Propo-
sition 4.4 generalizes to unique sink orientations. This is a nontrivial application of our
general arrangement construction in Section 3.

Theorem 4.1. Any two unique sink orientations G and G ′ of the (n,m)-grid can be
transformed into each other by a sequence of edge-flips, with all intermediate orientations
being unique sink orientations as well.

In the proof of Proposition 4.4, we have noted that edge-flips in the grid correspond
to triangular flips involving pseudolines of both colors in the arrangement. This fact
remains true in the more general case of a unique sink orientation G and the associated
arrangementA of multicrossing curves. In our proof of Theorem 4.1 we take advantage
of this: we will show that the arrangements A and A′ associated with G and G ′ can
be transformed into each other by a sequence of triangular-flips. Caution! The previous

Fig. 19. A triangular-flip at the gray triangle ofA.
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sentence cannnot be completely true. A triangular-flip keeps the total number of line
crossings invariant but there are pairs A, A′ of arrangements associated with unique
sink orientations of (n,m)-grids which have different numbers of crossings. Let a pair-
flip be the addition or removal of a crossing between curves of the same color such
that the crossing belongs to a triangle involving the line at infinity. The corrected ver-
sion of the above statement is: arrangements A and A′ associated with G and G ′ can
be transformed into each other by a sequence of triangular-flips and pair-flips. Since
pair-flips keep the associated grid orientation unaffected we confine our attention to
triangular-flips.

LetA be the arrangement associated with G through the construction from Section 3.
The crossings of blue and red curves occur at integer points (i, j) with 0 ≤ i < n and
0 ≤ j < m. We say the arrangement is combed if the rectangle with corners (0, 0) and
(n − 1,m − 1) only contains the n · m two-colored crossings, i.e., if all red and blue
curves pass the grid as straight lines.

For 0 ≤ i < n and 0 ≤ j < m let S(i, j) be the open unit square (i, i + 1)× ( j, j + 1).
In the proof of Theorem 3.2 we have noted that a square which is intersected by a red and
a blue curve would have to contain a red–blue crossing which is impossible. Therefore,
each square S(i, j) of A is either empty, or it is a red square, i.e., a square intersected by
a red curve, or a blue square, i.e., a square intersected by a blue curve.

We join sets of consecutive blue squares in the same column to blue blocks and sets
of consecutive red squares in the same row to red blocks. Figure 20 shows an example.

The idea is to transform the arrangementA into a combed one by evacuating the blocks
one by one. A blue block is movable if it can be shifted all the way to the left, without
bumping into another block, and without ever touching another blue block. Two blocks
touch if they are incident to a common square edge. Similarly, a red block is movable if
it can be shifted all the way down without bumping into another block, and without ever
touching another red block. In the example from Fig. 20, only the bottommost red block
is movable. One of the main ingredients to the proof is the following lemma.

Lemma 4.2. LetA be a two-colored arrangement of multicrossing curves correspond-
ing to a unique sink grid orientation G. IfA is not combed, then there is a movable block
in A.

Fig. 20. An arrangementA with three (vertical) blue and four (horizontal) red blocks.
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Fig. 21. The permutation induced by a movable block before (top) and after application of the sorting
transpositions (4, 3)→ (3, 4) and (6, 3)→ (3, 6).

Before proving the lemma, we complete the proof of Theorem 4.1. Knowing that
there is a movable block, we shift it out of the picture. Consider a movable red block
first. The red line segments in this block induce a permutation between the points on the
upper side of the block and the points on the lower side. The movable block from the
example induces the permutation (6, 4, 3, 7, 5), see Fig. 21. The permutation π induced
by a block can be sorted by a sequence of adjacent transpositions. These transpositions
can be realized through triangular-flips onA. The flip corresponding to the transposition
(π(i), π(i + 1)) → (π(i + 1), π(i)) involves the red curves through points (π(i), j)
and (π(i + 1), j) and the blue curve connecting the two points. Note that the two points
are really contained in the same blue curve, otherwise, a blue block would have to be
incident to the edge connecting (π(i), j) and (π(i + 1), j); because the red block is
movable, the latter cannot happen. It may also be necessary to perform some triangular-
flips involving only red curves before the described two-colored triangular-flip becomes
admissible; this is the case for the transposition (4, 3)→ (3, 4) in Fig. 21.

The sequence of transpositions described so far will push the movable red block one
unit further down. Iterating this step, the block will eventually disappear from the picture,
i.e., pushed across the x-axis out of the rectangle with corners (0, 0) and (n− 1,m− 1).

Since the situation with movable blue blocks is symmetric, we can summarize: as
long asA is not combed, there is a movable block (Lemma 4.2) which can be evacuated
from the picture. Since no new blocks are created during this procedure, we reach a
state where A is combed. The remaining red–red and blue–blue crossings outside of
the rectangle can be removed through pair-flips, resulting in an arrangement where all
curves are proper lines.

Such an arrangement A is completely described by two permutations encoding the
order of labels of the red and the blue curves on the x- and the y-axis. The order of
adjacent red curves can be changed by pushing a crossing of them (a red block of size
1×1) through the picture. A sequence of such transpositions will bring the red curves into
any desired order. By symmetry, the same is true for the order of blue curves. Hence,
starting from arbitrary arrangements A and A′, we can transform both into the same
combed one by triangular flips and pair-flips. This completes the proof of Theorem 4.1.

It remains to supplement the proof of Lemma 4.2. To begin, we extend the concept
of movability to points. A point p = (px , py) ∈ IR2 is movable if its lower left quadrant
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L(p) = {q: qx ≤ px and qy ≤ py} has empty intersection with the union of all blocks. If
p is movable and q ∈ L(p), then q is also movable. The jump-line ofA is the boundary
of the set of all movable points. IfA is not combed, the jump-line consists of a sequence
of vertical and horizontal line segments.

Think of the jump-line as being oriented from northwest to southeast. Then the first
segment is vertical, with its x-coordinate determined by the leftmost block. The last
segment is horizontal, and its y-coordinate is determined by the bottommost block.

Corners of the jump-line where a vertical segment is followed by a horizontal segment
are called concave corners; it follows that there is at least one concave corner. It is easy
to see that every concave corner of the jump-line is a corner of a block, and we let the
concave corner inherit the color of this block.

If the first corner of the jump-line (which must be concave) is blue, then the blue block
corresponding to this corner is movable: indeed, it is a leftmost block, so by shifting it to
the left, it can neither bump into nor touch any other block. Similarly, if the last (concave)
corner is red, the corresponding red block is movable. Now suppose the first corner is
red and the last corner is blue. Then there is a pair of consecutive concave corners v and
v′ such that v is red and v′ is blue. Let b and b′ be the blocks corresponding to v and
v′. Starting from v, the jump-line has a horizontal segment e along the lower border of
b. If b does not extend beyond e, then the red block b is movable: by definition of the
jump-line, it will not bump into another block when shifted down, and the only block it
can possibly touch is the blue block b′.

If, on the other hand, b does extend beyond e, then the left border of b′ cannot extend
beyond the vertical segment e′ ending in c′. In this case the blue block b′ is movable.
This shows how to find a movable block in every arrangement A which has blocks and
hence a jump-line.

5. Realizability of Admissible Grids Orientations

In this final part we show that not all admissible grid orientations are “properly” realiz-
able, and we provide a minimal such orientation. We will further see that the structure
of (2,m)-grids is simple enough to guarantee realizability, for all positive integers m.

The fact that there are nonrealizable admissible grid orientations already follows from
our main result via counting arguments, as follows. It is known that the number T (N )
of simple arrangements of N = n + m pseudolines satisfies the inequalities

2cN 2
< T (N ) < 2C N 2

,

for suitable constants c,C > 0 with C/c < 2 [12]. Here, an arrangement is identified
by a (+/−)-string of length

(N
3

)
that assigns an orientation to each triple of pseudolines.

Because there are only N ways of specifying the red–blue partition, we may assume
that T (N ) actually counts the red–blue arrangements. Different arrangements induce the
same grid orientation G if the orientations of all two-colored triples of pseudolines agree.
Therefore, any red–blue arrangement that induces G is determined by the orientations
of the monochromatic triples, equivalently by its blue and its red subarrangement. If
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Fig. 22. Ringel’s nonstretchable arrangement augmented by a designated line-at-infinity.

n = m = N/2, it follows that G is induced by at most

22Cn2 = 2(C/2)N
2 = 2(c−δ)N

2

arrangements, for some constant δ > 0, meaning that at least 2δN 2
different admissible

grid orientations can be obtained. On the other hand, there are only

2O(N log N )

red–blue arrangements of N lines [14], and via No point and N lines, only this many
realizable grid orientations can be induced.

A Minimal Nonrealizable Admissible Grid Orientation. It is a well-known fact that
every arrangement of fewer than nine pseudolines is stretchable, meaning that it is com-
binatorially equivalent to an arrangement of lines [4]. Based on the Pappus-configuration,
Ringel [25] gave an example of a nonstretchable simple arrangement of nine pseudolines.
Up to isomorphism in the sense of oriented matroids this is the only nonstretchable sim-
ple arrangement of nine pseudolines. Figure 22 shows a sketch of Ringel’s arrangement.
We have added a dotted pseudoline; taking this dotted line as the line at infinity and the
point p∗ on this line as the north pole, i.e., as the point corresponding to the vertical
direction, the arrangement can be deformed as shown in Fig. 23(a). Figure 23(b) shows
the corresponding admissible grid orientation.

Proposition 5.1. The admissible orientation of the (3, 6) grid shown in Fig. 23(b) is
not realizable.

Proof. The data provided by the grid only defines a partial arrangement. We have to
verify that all completions of this partial arrangement correspond to the isomorphism
class of Ringel’s example.

The freedom left by the partial arrangement consists in the addition of those blue–blue
and red–red crossings which are not determined by the grid. In the given case these are
the crossings (c1, c4), (c2, c4), (c3, c4), (c3, c5), (c3, c6) and (r1, r2), (r1, r3), (r2, r3).
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Fig. 23. Ringel’s example redrawn and the corresponding grid orientation.

Consider the blue lines. The crossings on each of these lines come in two consecutive
blocks: the block of crossings determined by the grid and the second block of “free”
blue–blue crossings. The blue–blue crossings have to be arranged such that they permute
the blue lines from c1, c2, c3, c4, c5, c6 to c4, c1, c2, c5, c6, c3. The first of these orders is
given by the crossing order of blue lines on the line-at-infinity, the second is the crossing
order on r3. The grid together with these requirements completely determine the order
of crossings on each of the blue lines.

With the red–red crossings there is slightly more choice. Assume that the line-at-
infinity is such that on each red line the two leftmost crossings are with the other red
lines, as in Fig. 23. There are two configurations for the red–red crossings which are
related by the triangular-flip at the red triangle. In general such a flip will change the
isomorphism class of the arrangement. In the given case, however, the two arrangements
are mapped onto each other by an isomorphism: The vertical reflection in Fig. 23,
followed by a change of the line-at-infinity.

Realizability of Admissible (2,m)-Grids. With the previous proposition we gave an
example of a nonrealizable admissible grid orientation with three rows. This example is
row-minimal as we show next.

Theorem 5.1. Let G be an admissible orientation of the (2,m)-grid, where m is any
positive integer. Then G is realizable.

Proof. By picture. We know from Theorem 3.1 that G can be represented by an ar-
rangement of pseudolines, using a grid with m rows and two columns, see Fig. 24(a).
Relevant to the fact that the arrangement represents G is the order in which crossings
occur on the red lines, including the crossing of the red lines. This order of crossings
can be preserved in a stretched arrangement, see Fig. 24(b).
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(a) (b)

Fig. 24. Stretching an arrangement of two red and m blue pseudolines.

6. Discussion

We have shown in this paper that the known combinatorial properties of linear functions
on simple (d, d + 2)-polytopes are captured by admissible grid orientations. For simple
(d, d+3)-polytopes, the situation is completely unclear. Only some of these polytopes—
the products of simplices—have graphs that are three-dimensional grids coming from the
Cartesian product of three sets. Even in this restricted case, it is unknown how well Holt–
Klee functions “simulate” linear functions. One positive result is that three-dimensional
grid orientations induced by Holt–Klee functions can be characterized in terms of finitely
many (actually, only three) forbidden subgrid orientations [10].

Note that on (d, d + 3)-polytopes, the Holt–Klee condition does not rule out cyclic
orientations, see Fig. 25 for the smallest such example with d = 3.

Fig. 25. The smallest example for a cyclic unique sink orientation of a (d, d + 3)-polytope.
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Completability

This article has its origins in an older manuscript by the second and the third authors.
The title was “Partial chirotopes and the digraph of (d, d + 2)-polytopes”. We give a
brief description of the completability problem hidden in the notion of partial chirotopes,
and of results and an open problem related to it.

A uniform rank 3 chirotope on a set X of n elements is a mapping from all triples
of X to {+1,−1} obeying certain properties (axioms). The completability problem is
to decide whether a set of specified values on some triples can be completed to a full
system of values that satisfies the axioms. Chirotopes are one of the many cryptomorphic
axiomatizations for oriented matroids.

Simple arrangements of pseudolines are a universal model for uniform rank 3 chiro-
topes, i.e., for uniform oriented rank 3 matroids. Admissible grids, as discussed in this
article, can be interpreted as partial chirotopes and our main representation result (Theo-
rem 3.1) translates to a completability statement: partial chirotopes given by admissible
grids are completable. The thesis of Tschirschnitz [26] contains a proof that in general
the completability problem for partial uniform rank 3 chirotopes in NP-complete. Baier
[3] shows that this result is already implied by NP-completeness proofs provided by
Knuth in Section 6 of his monograph Axioms and Hulls [21].3

There still remain interesting completability problems in this area whose complexity
has not been settled. We mention two of them:

Signotopes are a combinatorial encoding for simple Euclidean arrangements of pseu-
dolines (see [7]). A 3-signotope on [n] = {1, . . . , n} is a mapping from all 3-element
subsets of [n] to {+1,−1} obeying certain properties (generalized transitivity). The
completability problem for partial 3-signotopes is open.

Hyperline sequences, or local sequences, are an alternative model for uniform rank
3 oriented matroids, equivalent to simple projective arrangements of pseudolines. The
hyperline associated to line i is a circular sequence containing j or j̄ for each j ∈ X\i ,
where X is the set of all lines; this sequence records order and orientation of crossings
along line i . A partial hyperline for i is a circular sequence containing j or j̄ for each
j ∈ Yi , where Yi is some subset of X\i .

The completability problem for partial hyperline sequences is open.
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