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Abstract—Intracranial aneurysms may be treated by flow
diverters, alternatively to stents and coils combination.
Numerical simulation allows the assessment of the complex
nature of aneurismal flow. Endovascular devices present a
rather dense and fine strut network, increasing the complex-
ity of the meshing. We propose an alternative strategy, which
is based on the modeling of the device as a porous medium.
Two patient-specific aneurysm data sets were reconstructed
using conventional clinical setups. The aneurysms selection
was done so that intra-aneurismal flow was shear driven in
one and inertia driven in the other. Stents and their porous
medium analog were positioned at the aneurysm neck.
Physiological flow and standard boundary conditions were
applied. The comparison between both approaches was done
by analyzing the velocity, vorticity, and shear rate magni-
tudes inside the aneurysm as well as the wall shear stress
(WSS) at the aneurysm surface. Simulations without device
were also computed. The average flow reduction reaches 76
and 41% for the shear and inertia driven flow models,
respectively. When comparing the two approaches, results
show a remarkable similarity in the flow patterns and
magnitude. WSS, iso-velocity surfaces and velocity on a
trans-sectional plane are in fairly good agreement. The root
mean squared error on the investigated parameters reaches
20% for aneurysm velocity, 30.6% for aneurysm shear rate,
and 47.4% for aneurysm vorticity. It reaches 20.6% for WSS
computed on the aneurysm surface. The advantages of this
approach reside in its facility to implement and in the gain in
computational time. Results predicted by the porous medium
approach compare well with the real stent geometry model
and allow predicting the main effects of the device on intra-
aneurismal flow, facilitating thus the analysis.

Keywords—Cerebral aneurysm, Computational fluid dynam-

ics, Flow simulation, Intracranial stent, Porous medium.

INTRODUCTION

Intracranial aneurysms are pathological dilatations
of an artery that may rupture under certain circum-
stances. Aneurysm rupture is followed by subarach-
noid hemorrhage (SAH) which presents high
morbidity and mortality rates for the patients con-
cerned.32 A majority of aneurysms is found on bifur-
cations at or in the vicinity of the circle of Willis.11

A clinical study reports that about 2% of the popu-
lation is carrying such intracranial aneurysm, whereas
the rupture incidence has been estimated to reach
about 9 over 100,000 individuals (0.01%) each year in
western countries.28 Co-factors recognized to contrib-
ute to intracranial aneurysm growth and rupture have
been widely investigated.6,27,31

Endovascular treatment of unruptured intracranial
aneurysms results in better clinical outcomes when
compared to traditional surgery.22 Coils have been
widely used for the treatment of aneurysms. Coils are
long metallic preshaped wires that are delivered inside
the aneurysm allowing filling the cavity, and stabilizing
the disease. However, other studies reveal that using
bare platinum coils, only 55% of aneurysms can
completely be obliterated, 24% are partially treated
while in 18%, a treatment cannot be achieved.32 A
recent study emphasizes also that the recanalization
rate of an aneurysm following coil embolization is
found higher in ruptured and aneurysms having a
diameter of more than 8 mm, or in young patients.23

Contrary to the stents commonly used to treat ste-
noses, intracranial stents have been developed to sup-
port coils packed in the aneurismal cavity. Stents are
flexible, self-expanding porous tubular meshes made of
stainless steel or other alloys such as Nitinol. Stent-
in-stent techniques which do not require the use of coils
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anymore in dissecting or small wide-necked aneurysms
have been reported.3,4,15,33 Such stent-in-stent config-
uration results in an increased lateral hemodynamical
resistance thereby reducing intra-aneurysmal flow.

Flow diverters differ from intracranial stents and are
characterized by very thin wires (30–50 lm), very small
windows or pores (~100 lm) and a single or a multi-
layer structure. Their design is consequently very dif-
ferent when compared with conventional stents. These
devices can be braided or laser-cut, and are optimized
to facilitate aneurysm occlusion in a stand-alone mode.
As flow diverters are exhibiting smaller cell design, their
placement and position in regard with the aneurismal
neck is no longer an issue. Studies reveal the porosity of
such devices to be the major parameter that drives their
ability to impede or modify the aneurismal flow.16,18

However, when considering a potential and inadvertent
blockage of perforating vessels, their porosity cannot
be too low (<65%). Tests including flow diverters have
been reported.2,14 Recently, Sadasivan et al. compared
the efficiency of various flow diverters in elastase-
induced aneurysms in rabbits and reported that the
pore density rather than porosity alone may be a critical
factor for device efficacy modulation.26

Blood flow simulation in intracranial aneurysms has
become the method of choice for assessing aneurismal
flow. Indeed, as flow is currently thought to be a key
factor in the understanding of aneurysm growth and
rupture, a correct assessment of flow patterns and
related quantities, such as wall shear stress (WSS) can
help clinicians in a personalized evaluation of a specific
aneurysm rupture risk. These hemodynamic quantities
and their derivates such as oscillatory shear index,
positive WSS gradient have been implicated in aneu-
rysm growth and rupture.5,8,19,20,30

The effect of intracranial stents on aneurysm
hemodynamics can be predicted by numerical tech-
niques, such as computational fluids dynamics (CFD).
Among others, Aenis et al. simulated the effect of
an idealized stent in an idealized model of sidewall
aneurysm,1 whereas Cebral and Lohner developed an
efficient method allowing for quantifying cerebral
aneurysms hemodynamics changes using an adaptive
embedding technique.7 The large difference of scale
between the size of the flow diverters’ struts and the
aneurysm (up to 30 mm) creates difficulties in the mesh
process and flow diverters are consequently more dif-
ficult to simulate using conventional methods, because
of the higher number of elements created and higher
need of computational power.

In this study, we propose to simulate the effects of
one flow diverter using CFD based on porous medium
approach in two patient-specific intracranial aneurysm
geometries. The advantage of simulating the flow
diverter as a porous medium consists in reducing the

number of elements and therefore the computational
power. Simulation results are then compared with the
real stent simulation.

METHODS

Anatomical models

The first patient (Case A) had no previous history of
SAH. He was diagnosed in 2003 with a SAH. A rup-
tured sidewall aneurysm was found in the left internal
cerebral artery. The second patient (Case B) was
diagnosed in 2004 with a SAH. A ruptured intracranial
aneurysm found on the bifurcation of the anterior
communicating artery was found. An illustration of
the aneurysm shape for both aneurysms is shown in
Fig. 1. Data sets of the two models were acquired with
a three-dimensional subtraction angiography (Philips
Health Care, Best, the Netherlands) and were further
reconstructed in a 5123 resolution matrix.

The choice of the geometries was done to have a
case of a shear driven flow (Case A) and an inertia
driven flow (Case B). Indeed, the interest resides in the
fact that these flows behave in a complete different
manner from a fluid mechanics point of view. In the
first geometry, the aneurysm flow is created by friction
from the parent artery flow. In this kind of configu-
ration, low exchange of blood between the parent
artery and the aneurysm cavity is observed. In the
second geometry, the parent artery flow points directly
into the aneurysm. The flow hits the aneurysm dome
directly creating intense fluidic exchange between the
parent artery and the aneurysm. Simulation without
endovascular device were also computed in order to
calculate the flow reduction factors.

The morphological parameters of the two selected
aneurysms are shown in Table 1. Values are given in
millimeters.

Stent

The intracranial stent model was based on the SILK
Stent (Balt International, Montmorency, France). This
endovascular device is a stent made of nitinol with a
dense strut network designed for the redirection of
flow. It is composed by 48 wires; 40 wires have a
diameter of 30 lm and 8 have a diameter of 50 lm. An
illustration of the device in its straight configuration is
shown in Fig. 2 (left). Rhinoceros 4.0 (Seattle, WA,
USA) was used to bend and fit the device in the
aneurysm neck. For sake of computational power,
only the stent struts placed in the aneurismal neck were
kept, whereas the struts lodged against the artery wall
were cropped and excluded from the simulation.
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Illustrations of the stented aneurysms models are
shown in Fig. 2 (middle and right).

Porous Medium

The porous medium is modeled by the addition of
a momentum source term to the standard fluid flow
equations. It is composed of a viscous loss term and
an inertial loss term. This momentum sink contributes
to the pressure gradient across the porous cells, cre-
ating a pressure drop that is proportional to the fluid
velocity. In our case, we assumed a simple homoge-
neous porous medium, for which the momentum sink
becomes

Si ¼ �
l
a
ti þ C2

1

2
q tj jti

� �
; ð1Þ

where i is the ith (x, y, or z) coordinate, |t| is the
magnitude of the velocity, a is the permeability, C2 is
the inertial resistance factor, l is the viscosity, and q is
the density. Thus, the methodology presented here

FIGURE 1. Illustration of two geometries simulated: the shear driven flow model (left) and the inertia driven flow model (right).

TABLE 1. Morphological characterization of case A (shear
driven) and case B (inertia driven) aneurysms.

Case A

Shear driven

Case B

Inertia driven

Aneurysm

Height 5.93 5.07

Width 6.50 5.08

Depth 5.99 7.71

Artery

Height 5.76 3.17

Width 6.83 4.18

Neck

Length 5.32 5.74

Width 6.37 4.56

The aneurysm height corresponds to the maximum distance

between the neck center and the aneurysm dome. The aneurysm

width is the maximum distance measured on the aneurysm wall

perpendicularly to the flow direction. The aneurysm depth is the

maximum distance measured on the aneurysm’s wall in parallel to

the flow direction. The artery height is the diameter of the artery as

measured in its cross section in the direction of the aneurysm,

whereas the artery width is measured perpendicularly to the artery

height. The neck length is measured in the direction of the flow,

whereas the neck width is measured perpendicularly.

FIGURE 2. Illustration of the SILK stent in its straight configuration (left) and in the two simulated models (middle and right).

AUGSBURGER et al.852



requires the specification of the inverse permeability
a21 and the inertial resistance factor C2 for flow
through the porous medium. These coefficients can be
obtained either experimentally or via numerical simu-
lations. We chose to perform CFD simulations, where
we computed the relationship between pressure drop
and velocity through the porous component. These
simulations were done in a long pipe, having a cross
section of 1 mm2 (1.128 mm of diameter) and in a long
rectangular parallelepiped, presenting a cross section
of 0.18 mm2 (0.9 mm per 0.2 mm). A plate section of
the stent—similar as the screens defined in Kim
et al.17—was reproduced and introduced in the test
volumes. As the stent exhibits a non-homogenous
design and in order to model the perpendicular and the
tangential porous medium coefficients, the stent was
placed in the long pipe perpendicularly to the flow
direction (Fig. 3a) and in the long rectangular paral-
lelepiped in parallel to the flow direction (Fig. 3b),
respectively.

The pressure drop is expressed as a function of
blood velocity as a second order polynomial of the
form

Dp ¼ av2 þ bv ð2Þ

was fitted to the data, where Dp is the pressure drop
and v is the velocity. A simplified form of the
momentum equation, relating the pressure drop to the
source term, can be expressed as

Dp ¼ �SiDe; ð3Þ

where De is the porous medium thickness. Combining
Eqs. (1), (2), and (3), we obtain a ¼ C2

1
2 qDe and

b ¼ l
aDe: The coefficients of the inverse permeability

a21 and the drag factor C2 are consequently equal to

C2 ¼
2a

qDe
and a ¼ l

b
De

Two sets of coefficients are thus obtained for a stent
placed perpendicularly and parallel to the flow.

Effect of a Non-Planar Geometry

The volume representing the flow diverter is delim-
ited by non-planar surfaces, which are bended and
consequently not aligned with global coordinates. For
each point in the porous medium, we had to define the
normal and the tangential direction of the local porous
medium characteristics, as these are defined from the
numerical simulation when the stent was placed per-
pendicularly and parallel to the flow. The coefficients
are scalars and pertain to the local normal and tan-
gential directions of the porous medium surface. Once
these local directions are defined, the solver assigns the
porous medium coefficients to the adjacent tetrahedral
finite volume elements. Hence, if the stent surface is
curved, as is in the general case, the porous medium
coefficients vary locally.

Mesh

The meshing was performed using ICEM CFD 11.0
(Ansys Inc., Canonsburg, PA, USA). For the models
with a flow diverter, an adaptive mesh approach was
preferred. Mesh smoothing was applied using Ansys
inherent smoothing routines. The number of elements,
as well as mean and minimal mesh factor quality

FIGURE 3. (a, b) Perpendicular (left) and parallel (right) placement of the stent in the test sections.

TABLE 2. Number of elements, mean and minimal mesh
quality factor for the two aneurysms, the two approaches and

for the unstented cases.

Approach Number of cells

Mean mesh

quality

Min. mesh

quality

Case A: shear driven flow model

Stent 7,426,366 0.73 0.34

Porous medium 777,051 0.73 0.17

Unstented 957,304 0.73 0.36

Case B: inertia driven flow model

Stent 8,850,897 0.71 0.30

Porous medium 586,412 0.74 0.16

Unstented 1,202,620 0.73 0.41
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reached is shown in Table 2. The mesh quality is given
by the computation of the deformation of the elements
in the mesh by first calculating the Jacobian of each
hexahedron and then normalizing the determinant of
the matrix. A value of 1 represents a perfect hexahedral
cube, while a value of 21 is a totally inverted cube
with a negative volume. Mesh dependency tests were
performed in order to ensure the stability of the
simulations.

Flow

Blood flow measurements were not available for the
two patient’s cases. Therefore, in order to set boundary
conditions as physiological as possible, flow rate
waveforms were computed using a generic one-
dimensional (1-D) model described in Reymond et al.25

The 1-D form of the fluid equations was applied over
each arterial segment. A non-linear viscoelastic con-
stitutive law for the arterial wall was considered. The
arterial tree dimensions and properties were taken
from the literature and completed with real patient
scans and coupled to a model of the left ventricle based
on the varying elastance.

This generic 1-D model has been validated qualita-
tively with averaged in vivo measurements performed
on different persons. Pressure was measured with
applanation tonometry and cerebral blood flow
velocities with transcranial ultrasound and phase
contrast MRI. The main systemic arteries were mod-
eled, including as well, a detailed description of the
cerebral circulation. Pressure and flow waveforms were
then available at each location of the arterial tree. We
represented in Fig. 4, the generic flow rate curves
simulated for Cases A and B.

Points A, B, C, and D indicate the four comparison
points between the real flow diverter simulated and the
results given by a porous medium approach.

The main flow parameters are summarized in
Table 3. Qmean represents the mean flow rate given
in milliliters per second (mL s21); Vmean is the mean

velocity in centimeters per second (cm s21). The
Womersley number, a, is a dimensionless number
which expresses the ratio of inertia effects due to pul-
sating flow to viscous effects and it is defined by
a = r(xql21)0.5, where r is the parent artery internal
radius, x is the angular frequency, and l is the
dynamic viscosity. Finally, the pulsatility index is given
by Vmax � Vminð Þ=Vmean; where Vmax and Vmin are the
maximal and minimal flow velocity during the cardiac
cycle, respectively.

Simulation

Blood flow was simulated using Fluent 6.0 (Ansys,
Canonsburg, PA, 15317). Blood was modeled as an
incompressible Newtonian fluid with a density of
1.06 g cm23 and a viscosity of 4 mPa s. Vessel walls
were assumed to be rigid with a no slip boundary
condition at the walls. The outlet flow was set in order
to set a physiological WSS at the outlets. We imposed
the same mean shear stress in the outlets, which with
the local geometry allowed us to obtain the mean flow
rates in the outlets. Hence, we have the distribution of
flow in the exit branches, which is what the solver
requires.

The unsteady flow was computed with a time step of
0.01 s for a cardiac cycle period of T = 0.8 s. In each
simulation, three cardiac cycles were computed and the
third cardiac cycle only was taken for the analysis. The
flow rate as shown in Fig. 3 was approximated by its

FIGURE 4. Illustration of the flow rate curves applied at the inlet of Case A and Case B.

TABLE 3. Main flow parameters for the applied flow rate
curves in Cases A and B.

Parameter Units Case A Case B

REmin/REmax/REmean – 54/273/102 141/226/170

Qmin/Qmax/Qmean mL/s 2.11/10.72/4.00 3.03/4.86/3.64

Vmin/Vmax/Vmean cm/s 6.13/31.15/11.64 29.43/47.25/35.42

a – 4.78 2.61

Pulsatility index – 2.15 0.50
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Fourier transformation using the first ten harmonics.
A fully developed flow, as obtained by the Womersley
solution for the input flow was imposed as boundary
condition at the inflow plane.

Postprocessing

Postprocessing was performed using Paraview 3.4
(opensource, www.paraview.org). For the quantifica-
tion of differences between the two approaches, cal-
culations were performed using custom made routines
on Matlab 7.7.0.471 (The Mathworks, Natick, MA,
USA).

RESULTS

Comparison of the Flow Reduction in the Presence
of a Flow Diverter

Table 4 shows the comparison of flow velocity,
vorticity, and shear rate without device, with porous
medium, and with the real stent. The mean velocity
reduction reaches 71.3% in the shear driven flow
model and 52.4% in the inertia driven flow model. The
vorticity reduction reaches 78.8 and 41.3% in the shear
and inertia driven flow models, respectively. The shear
rate reduction reaches 77.8 and 28.5% in the shear and
inertia driven flow models, respectively.

Characterization of Porous Medium

The pressure drop versus a range of imposed
velocities is shown in Figs. 5a and 5b for the stent
placed perpendicularly and in parallel to the flow
direction, respectively. The drop of pressure is
approximated to

Dp¼ 367:08 �V2þ 281:35 �V with R2 ¼ 0:9992 and

Dp¼ 1452 �V2þ 4188 �V with R2 ¼ 1

for the stent placed perpendicularly and in parallel to
flow direction, respectively.

The viscous resistance and inertial resistance coef-
ficients derived from the above numerical simulations
are shown in Table 5.

Qualitative Comparison of Intra-Aneurismal Flow
Characteristics

In Figs. 6 and 7, we illustrate blood flow in the
stented aneurysm models, the flow diverter being
modeled as a real flow diverter (top) and as a porous

TABLE 4. Comparison of flow velocity, vorticity, and shear
rate without device, with porous medium and with the real

stent; the reduction factors are given in parenthesis.

Without device Porous medium Stent

Shear driven flow

Velocity (mm/s) (%)

Mean 24.55 5.05 (79.4) 6.245 (74.5)

Max 191.52 63.90 (66.6) 67.55 (64.7)

Vorticity (mPa) (%)

Mean 169.59 36.71 (78.3) 35.85 (79.8)

Max 962.34 222.27 (76.9) 194.77 (80.3)

Shear rate (s21) (%)

Mean 0.31 0.06 (79.8) 0.06 (80.3)

Max 4.05 1.26 (68.8) 0.72 (82.3)

Inertia driven flow

Velocity (mm/s) (%)

Mean 85.58 29.31 (65.8) 25.6 (70.01)

Max 498.62 332.02 (33.4) 298.20 (40.2)

Vorticity (mPa) (%)

Mean 1048.59 237.00 (77.4) 400.66 (61.79)

Max 6270.61 3347.89 (46.6) 7552.75 (220.44)

Shear rate (s21) (%)

Mean 1.95 0.54 (72.1) 0.66 (66.0)

Max 23.29 23.90 (22.6) 28.27 (221.38)

FIGURE 5. Relation between pressure drop and imposed velocity for a sample of the SILK stent placed (a) perpendicularly to the
flow direction in a 1 mm2 cylindrical cross section, and (b) parallel to the flow direction in a rectangular parallelepiped having a
cross section of 0.9 3 0.2 mm.
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medium (bottom). The first part illustrates the flow in
the shear driven flow model (Case A), whereas the
second illustrates the flow in the inertia driven flow
model (Case B). Points A, B, C, and D correspond to
the four points in the cardiac cycle shown in Fig. 4.
Figures 6a, 6b, 6c, and 6d, illustrate the results of the
simulation for the shear driven flow (Case A). Iso-
velocity surfaces, velocity magnitude on a plane, and
WSS are compared, respectively. Figure 7a, 7b, 7c, 7d,
and 7e illustrate the results of the simulation for the
inertia driven flow (Case B). Iso-velocity surfaces,
velocity magnitude on a plane, and WSS are com-
pared.

The general qualitative observation is that the two
approaches are presenting very comparable results.
The iso-velocity surfaces are found to be extremely
similar. Surface size, shapes, orientations, and
directions are corresponding well for all four points
of the cardiac cycle, for both the shear driven and
inertia driven flow models. The velocity magnitude
depicted on the selected plane is coherent within the
two approaches. Inflow, outflow, and recirculation
zones are similar. In Fig. 7b, the flow diverter
approach illustrates perfectly the geometry of the
flow diverter, where blood flow is observed to pass
through the flow diverters’ pores, creating locally
higher velocity magnitudes. Naturally, such flow
features, placed closed to the flow diverter are not
completely reproduced by the porous medium
approach. Elsewhere, however, the velocity magni-
tude in the aneurysm as well as in the parent arteries
is found to be similar.

Furthermore, WSS patterns are similar in shape and
magnitude. Small differences can be reported, espe-
cially at the neck of the aneurysm, where the WSS
patterns are found somehow smoother in the porous
medium approach as compared to those simulated
with the real flow diverter. However, regions of low or
high WSS are matching perfectly, in location and size.
WSS patterns at the aneurysm dome are also matching
very well.

Quantitative Comparison

In order to allow for a quantitative comparison
between the real stent and the porous medium
approach, we plotted, for the shear driven flow model,
the mean and maximum values of the velocity, the
vorticity, and the shear rate within the aneurysm as a
function of time for one cardiac cycle time (Fig. 9a).
Figure 9b compares the averaged value of mean and
maximum WSS value at the entire aneurysm surface
(first column), the aneurysm dome (second column),
and the aneurysm neck (third column). Figure 8 put in
evidence the aneurysm dome and neck regions for the
shear (left) and for the inertia (right) driven flow
models. The same comparison is proposed in Figs. 9c,
and 9d for the inertia driven flow model.

The graphs are presenting similar patterns. Espe-
cially for the shear driven flow, all quantities match
very well except for the maximum shear rate, which is
somewhat overestimated. In the case of inertia driven
flow, the patterns are still overall good, but the porous
medium approach tends to underestimate velocity and
vorticity, especially during systole.

Table 6 summarizes the root mean square values (in
parenthesis the error in %) of the mean and maximum
values of velocity, shear rate, and vorticity computed
in the aneurysm, as well as the mean and maximum
WSS computed on the entire aneurysm surface, aneu-
rysm dome and neck surfaces, averaged over one car-
diac cycle.

The mean error for velocity reached 26.8% for the
shear driven flow and 13.15% for the inertia driven
flow model. The mean error for shear rate computed
inside the aneurysm reached 42.4% for the shear dri-
ven flow model and 18.89% for the inertia driven flow
model. The mean error for vorticity reached 45% for
the shear driven flow model and 49.86% in the inertia
driven flow model. The mean error for WSS reaches
18.6% on the aneurysm surface, 89.3% on the aneu-
rysm dome, and 19.5% on the aneurysm neck in the
shear driven flow model. The mean error for WSS
reaches 22.52% on the aneurysm surface, 44.06% on
the aneurysm dome, and 15.9% on the aneurysm neck
in the inertia driven flow model.

The parameter presenting the largest error is the
maximum WSS computed at the dome of the aneu-
rysm, in the shear driven flow model (97.4%). Without
considering this value, the error on WSS would reach
31.5% only. The second value presenting the largest
difference when compared to the real stent approach is
the mean WSS computed on the aneurysm dome
(81.2%), in the shear driven model. The parameters
presenting the smallest difference are the maximum
velocity computed in the inertia driven flow model

TABLE 5. Flow diverters’ viscous inertial resistance and
inertial resistance factors adapted for the two geometries.

Porous medium

parameters

Viscous

resistancelinear

1/a (1/m2)

Inertial

resistance

Quadratic C2 (1/m)

Tangential Normal Tangential Normal

Shear and inertia

driven flow

models

1.7E9 8.9E8 4¢697 8¢703
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FIGURE 6. Shear driven flow model. (a) Flow represented as an iso-velocity surface for the flow diverter (top) and the porous
medium (bottom) at the four cardiac cycle points. (b) Velocity magnitude in a plane at the four cardiac cycle points. (c) Wall shear
stress at the four cardiac cycle points. (d) Wall shear stress at the four cardiac cycle points.
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FIGURE 7. Inertia driven flow model. (a) Flow represented as an iso-velocity surface for the flow diverter (top) and the porous
medium (bottom) at the four cardiac cycle points. (b) Velocity magnitude in a plane at the four cardiac cycle points. (c) Wall shear
stress at the four cardiac cycle points. (d) Wall shear stress at the four cardiac cycle points. (e) Wall shear stress at the four cardiac
cycle points.
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(6.77%), and the WSS computed at the neck of the
aneurysm (11.09%), in the inertia driven model.

DISCUSSION

We sought an alternative strategy for computing,
using CFD, the complex interactions between flow
diverters and local blood flow in intracranial aneu-
rysms. As flow diverters have dense networks of very
thin struts, the mesh required for precise and stable
CFD simulations of the real stent contains typically
one order of magnitude more nodes that a typical mesh
in the absence of stent. This renders the computation
difficult and lengthy. Our approach was to replace the
stent with a porous medium, with the appropriate
resistances in the tangential and normal to stent
directions. These endovascular devices are usually not
considered for ruptured aneurysms, however, we
aimed at testing this approximate modeling approach
in two patient-specific aneurysm geometries, repre-
senting a shear driven and an inertia driven flow. The
results are quite encouraging, in the sense that the
qualitative features of intra-aneurismal flow are well
captured and the errors in absolute values are rea-
sonable.

Previously, a porous medium approach was used
to assess hemodynamic changes in coiled aneu-
rysms.9,12,13,21 Such models were developed to
understand the probability of aneurysm recanalization.
Kim et al. calculated hydraulic resistances of two com-
mercial stents,17 whereas Walliez and Coussement
quantified changes in blood flow due to the insertion of
a multi-layer stent in abdominal aortic aneurysms.29

The only report that presents a fully two-dimensional
theoretical model using a porous medium based
approach was done by Fernandez et al.10 and it was

applied to the Lylyk� stent in idealized and patient-
specific aneurysm models. Unfortunately, the authors
did not compare the results of the porous medium
approach with the real stent geometry.

The simulation shows similarities in the iso-velocity
surfaces, WSS patterns and velocity on a trans-
sectional plane between the porous medium and the
flow diverter in both shear and inertia driven aneu-
rysms at four different timesteps of the cardiac cycle.
Such similarities could also be observed at the accel-
eration phase (i.e., at t = 0.15 s). When comparing the
graphs of the aneurysm velocity, vorticity, and shear
rate, a clear correspondence is observed in the shear
driven case, the wave shapes are almost identical and
the absolute values compare with acceptable levels of
error for the complexity of the system. The analysis of
the WSS computed on the aneurysm, dome, and neck
surfaces is also showing resemblance between both
approaches. The porous medium approach seems,
however, in some cases to underestimate the investi-
gated values, especially at systole and in the inertia
driven flow aneurysm.

The principal interest of this method consists in the
reduced number of elements, which in our case is a
factor 12 in reduction. This makes meshing process
easier and faster, without the need of excessive com-
putational power. Also, the reduced time of calculation
is estimated to reach a factor 20 and allows to predict
the efficiency of a given flow diverter in a given patient-
specific aneurysm with a satisfying precision within a
reasonable clinical time, typically within 4–6 h. The
range of errors found between the porous medium and
the real stent simulations where in the same order of
magnitude as between different simulations of a
stented aneurysm performed by different numerical
techniques during the First Virtual Intracranial Stent-
ing Challenge.24

FIGURE 8. Regions of interest (ROI) where quantitative comparison is done, for the shear (left) and for the inertia (right) driven
flow models. ROI represents the volume of the aneurysms where velocity, vorticity, and shear rate are compared. The dots
represent the locations on the aneurysms dome and neck surfaces, where wall shear stresses are compared.
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The successful modelization of a flow diverter as a
porous medium does not seem to be dependant on the
aneurysms configuration or any kind of flow. In our
case, the results were better for the shear driven flow
model. This may derive from the fact that in the shear
driven flow, the bulk of flow entry into to the aneur-
ismal space comes from a direction parallel to the stent
surface. The apparent porosity is larger and likely the
assessment of the porous medium properties more
precise in this case. In inertia driven flows, there
is a very strong interaction of the flow running

perpendicularly to the stent plane with the stent struts
and this may lead to high sensitivity of the effective
porosity on the particular spatial disposition of the
stent with respect to the adjacent flow. There is no
general rule on how to choose the porosity coefficients
for any general stent. These coefficients should be
adapted for each specific stent that is been studied since
the porous medium coefficients needs to be adapted for
each particular stent geometry. Ideally, one could study
parametrically different stent geometries, represented
by some key geometrical characteristics (i.e., strut size,

FIGURE 9. (a) Mean and maximum values of velocity, vorticity, and shear rate computed in the aneurysm, in the shear driven flow
model (blue line 5 real stent; magenta line 5 porous medium). (b) Mean and maximum values of wall shear stress, computed on
the aneurysm surface, dome and neck, in the shear driven flow model (blue line 5 real stent; magenta line 5 porous medium).
(c) Mean and maximum values of velocity, vorticity, and shear rate computed in the aneurysm, in the inertia driven flow model (blue
line 5 real stent; magenta line 5 porous medium). (d) Mean and maximum values of wall shear stress, computed on the aneurysm
surface, dome and neck, in the inertia driven flow model (blue line 5 real stent; magenta line 5 porous medium).
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cell size, porosity, etc.) and different flow angles of at-
tack and try to derive empirical relations linking porous
media coefficients to stent design and local flow char-
acteristics. Such a comprehensive study should be
envisioned in some future work. Also, the reason to
change the test geometry (circular and rectangular box)
is due to the fact that if placed parallel to the flow
within the circular cylinder, we obtained very small
pressure drops. Hence, we preferred to confine the stent
within a narrow parallelepiped to obtain more signifi-
cant pressure drops, which make the parameter iden-
tification a bit easier.

In these simulations, the velocity is found to be low
at the aneurysm neck after stenting. However, the

quadratic term inEq. (2) remains of importance since this
approach is intended to be used in any patient-specific
aneurysm geometry, especially in terminal aneurysms as
found in the basilar artery where the velocity at the
aneurysm neck may remain significant after stenting.

Also, the exact positioning of the stent would require
a much more comprehensive approach which would
include the interaction of the self-expanding stent and
the elastic wall.We think, however, that even if the exact
positioning of the stent is not captured by our approach
using Rhinoceros, the fluidic effects of the stent are well
represented, and especially the comparison with the
porous medium model, which follows the exact same
geometry and positioning of the stent, is still valid.

FIGURE 9. Continued.
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Numerical simulation of blood flow in intracranial
aneurysms is based on various assumptions. We
assumed rigid walls, blood is modeled as a Newtonian
fluid and the boundary conditions are taken from 1D
models. As raised by Fernandez et al., in 200810 it
could be questionable to claim that one solves the flow
through an endovascular device having a strut size of
30 lm while neglecting the red blood cells size having a
size of about 8 lm which occupy about 50% of the
blood volume. Consequently, numerical simulations,
even those of the CFD on the real stent geometry, are
rather a rough representation of reality. In that respect
and considering the logical levels of the differences
resulting from both approaches, the porous medium
maybe a preferred approach, because it yields faithful
reproductions of most qualitative and to some extend
quantitative features of intra-aneurismal flow. We
conclude that the porous medium approach is of
interest for the prediction of flow diverter efficiency.
The need to identify better the viscous and inertial
resistance values for a proper modeling of a flow
diverter is to be considered in future experiments.
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