Constructing irreducible representations of discrete groups

MARC BURGER and PIERRE DE LA HARPE*

Institut de Mathématiques, Université de Lausanne, Dorigny, CH-1015 Lausanne, Suisse e-mail:Marc.Burger@ima.unil.ch *Section de Mathématiques, Université de Genève, C.P. 240, CH-1211 Genève 24, Suisse

* Section de Mathematiques, Université de Geneve, C.P. 240, CH-1211 Geneve 24, Suisse e-mail:Pierre.delaHarpe@math.unige.ch

MS received 11 October 1996

Abstract. The decomposition of unitary representations of a discrete group obtained by induction from a subgroup involves commensurators. In particular Mackey has shown that quasi-regular representations are irreducible if and only if the corresponding subgroups are self-commensurizing. The purpose of this work is to describe general constructions of pairs of groups $\Gamma_0 < \Gamma$ with Γ_0 its own commensurator in Γ . These constructions are then applied to groups of isometries of hyperbolic spaces and to lattices in algebraic groups.

Keywords. Commensurator subgroups; unitary representations; quasi-regular representations; Gromov hyperbolic groups; arithmetic lattices.

1. Introduction

Let G be a separable locally compact group. The unitary dual \hat{G} of G is the set of equivalence classes of irreducible representations of G, together with its Mackey Borel structure. In this paper, "representation" means "continuous unitary representation in a separable Hilbert space".

Let us recall the definition of this structure [Dix, 18.5]. For each $n \in \{1, 2, ..., \infty\}$, let $\operatorname{Irr}_n(G)$ denote the space of all irreducible representations of G in a given Hilbert space of dimension n. The set $\operatorname{Irr}_n(G)$ is endowed with the topology of the weak simple convergence on G (making the functions $\pi \mapsto \langle \pi(g)\xi | \eta \rangle$ continuous for all $g \in G$ and ξ , η in the Hilbert space of dimension n), and with the corresponding Borel structure. The dual \hat{G} is the quotient of $\prod_{1 \le n \le \infty} \operatorname{Irr}_n(G)$ by unitary equivalence, and the Mackey Borel structure on \hat{G} is the quotient of the previously defined Borel structure.

In case of a countable group Γ , it follows from results of Glimm and Thoma that $\hat{\Gamma}$ is a standard Borel space if and only if Γ is virtually abelian (see [Dix], numbers 9.1, 9.5.6 and 13.11.12, or [Ped, 6.8.7]); in this case the representation theory of Γ is well understood. In all other cases there is no natural Borel coding of $\hat{\Gamma}$, i.e. $\hat{\Gamma}$ is not countably separated; for lack of a systematic procedure of constructing all irreducible representations of Γ , a natural problem is to construct large classes of irreducible representations.

Recall that two subgroups G_0 and G_1 of a group G are commensurable if $G_0 \cap G_1$ is of finite index in both G_0 and G_1 . The commensurator of G_0 in G is defined to be

 $\operatorname{Com}_G(G_0) = \{g \in G | G_0 \text{ and } g G_0 g^{-1} \text{ are commensurable} \}.$

Let $(\Gamma_i)_{i \in I}$ be a family of pairwise non conjugate subgroups of a countable group Γ such that $\operatorname{Com}_{\Gamma}(\Gamma_i) = \Gamma_i$ for all $i \in I$. It follows from work of Mackey (see e.g. [Mac], and § 2

below) that unitary induction provides a well defined and injective map

$$\prod_{i\in I}\widehat{\Gamma_i^{fd}} \subseteq \widehat{\Gamma}_i$$

where $\widehat{\Gamma_{i}^{d}}$ denotes the subset of $\widehat{\Gamma}_{i}$ consisting of finite dimensional representations.

Our aim in this paper is to construct actions with noncommensurable stabilizers and pairs of groups $\Gamma_0 < \Gamma$ such that $\operatorname{Com}_{\Gamma}(\Gamma_0) = \Gamma_0$. More generally, we construct also pairs $\Gamma_0 < \Gamma$ such that Γ_0 is a subgroup of finite index in $\operatorname{Com}_{\Gamma}(\Gamma_0)$; in this case, the quasiregular representation of Γ in $l^2(\Gamma/\Gamma_0)$ is a *finite* direct sum of irreducible representations.

In § 2, we recall some classical results on unitary representations. Section 3 provides elementary examples of pairs of groups $\Gamma_0 < \Gamma$ with Γ_0 its own commensurator in Γ . We consider groups of isometries of Gromov hyperbolic spaces in § 4. Then, for a lattice Γ in the group of real points of a linear algebraic group \mathbb{G} defined over \mathbb{R} , we consider actions of Γ on appropriate sets of maximal tori in § 5 and on other sets of subgroups of \mathbb{G} in § 6; in each case, we find classes of irreducible quasi-regular representations of Γ .

Note on terminology. Commensurators have been known under various names, such as quasinormalizers [Cor], commensurizers [KrR] and commensurability subgroups [Mar]. We follow the terminology of [Shi, Chapter 3] and [A'B].

2. Commensurators and induced representations

Let Γ be a discrete group, $\Gamma_0 < \Gamma$ a subgroup and $\lambda_{\Gamma/\Gamma_0}$ the left regular representation of Γ in $l^2(\Gamma/\Gamma_0)$.

A double class $\dot{x} \in \Gamma_0 \setminus \operatorname{Com}_{\Gamma}(\Gamma_0)/\Gamma_0$ represented by some $x \in \operatorname{Com}_{\Gamma}(\Gamma_0)$ corresponds to a finite Γ_0 -orbit $\Gamma_0 x \Gamma_0$ in Γ/Γ_0 , and the mapping $\Gamma_0 \to \Gamma/\Gamma_0$ applying z to $zx\Gamma_0$ induces a bijection of $\Gamma_0/(\Gamma_0 \cap x\Gamma_0 x^{-1})$ onto $\Gamma_0 x \Gamma_0$. Consequently, \dot{x} gives rise to a bounded intertwining operator $T_{\dot{x}}$ of $\lambda_{\Gamma/\Gamma_0}$, which is defined by

$$(T_{\dot{x}}f)(y\Gamma_0) = \sum_{\zeta \in \Gamma_0/(\Gamma_0 \cap x\Gamma_0 x^{-1})} f(y\zeta x\Gamma_0)$$

for all $f \in l^2(\Gamma/\Gamma_0)$ and for all $y\Gamma_0 \in \Gamma/\Gamma_0$.

It is then a fact (see [Bin], Theorem 2.2) that the linear space generated by

$$\{T_{\dot{x}}: l^2(\Gamma/\Gamma_0) \to l^2(\Gamma/\Gamma_0) | \dot{x} \in \Gamma_0 \setminus \operatorname{Com}_{\Gamma}(\Gamma_0)/\Gamma_0\}$$

is weakly dense in the space $\operatorname{Int}(\lambda_{\Gamma/\Gamma_0})$ of bounded intertwining operators of $\lambda_{\Gamma/\Gamma_0}$. Hence, if $\Gamma_0 \setminus \operatorname{Com}_{\Gamma}(\Gamma_0)$ is finite, we have

dim Int
$$(\lambda_{\Gamma/\Gamma_0}) = \operatorname{Card}(\Gamma_0 \setminus \operatorname{Com}_{\Gamma}(\Gamma_0) / \Gamma_0)$$

and $\lambda_{\Gamma/\Gamma_0}$ is a finite direct sum of irreducible representations. In particular $\lambda_{\Gamma/\Gamma_0}$ is irreducible if and only if $\operatorname{Com}_{\Gamma}(\Gamma_0) = \Gamma_0$.

The above considerations then lead to the following theorem. Here and in the sequel we call two subgroups Γ_0 , Γ_1 of Γ quasiconjugate if there exists $\gamma \in \Gamma$ such that Γ_0 and $\gamma \Gamma_1 \gamma^{-1}$ are commensurable.

Theorem 2.1 [Mackey]. Let Γ be a discrete group and let Γ_0 , Γ_1 be subgroups of Γ . (1) The representation $\lambda_{\Gamma/\Gamma_0}$ is irreducible if and only if $\operatorname{Com}_{\Gamma}(\Gamma_0) = \Gamma_0$, in which case $\operatorname{Ind}_{\Gamma_0}^{\Gamma}(\pi)$ is irreducible for any $\pi \in \widehat{\Gamma_0^d}$, and unitary induction

$$\operatorname{Ind}_{\Gamma_0}^{\Gamma}:\widehat{\Gamma_0^{\prime d}}\longrightarrow \widehat{\Gamma}$$

is an injective map.

(2) If $\operatorname{Com}_{\Gamma}(\Gamma_i) = \Gamma_i$, i = 0, 1, then $\lambda_{\Gamma/\Gamma_0}$ and $\lambda_{\Gamma/\Gamma_1}$ are unitarily equivalent if and only if Γ_0 and Γ_1 are quasiconjugate in Γ .

In case Γ_0 and Γ_1 are not quasiconjugate in Γ , if π_0 , respectively π_1 , are finite dimensional irreducible unitary representations of Γ_0 , respectively Γ_1 , then $\operatorname{Ind}_{\Gamma_0}^{\Gamma}(\pi_0)$ and $\operatorname{Ind}_{\Gamma_1}^{\Gamma}(\pi_1)$ are not equivalent.

Remark. We do not know whether the condition $\pi \in \overline{\Gamma_0^{/d}}$ in (1) can be replaced by $\pi \in \widehat{\Gamma}_0$.

Let us restate the previous Theorem in a slightly different way. Let Γ be a discrete group acting on a set A, and denote by

 $\mathscr{Z}_{\Gamma}(a) \doteq \{ \gamma \in \Gamma \mid \gamma a = a \}$

the stabilizer of a point $a \in A$; if more precision is needed, we write $\mathscr{Z}_{\Gamma,A}(a)$ for $\mathscr{Z}_{\Gamma}(a)$.

DEFINITION

The action $\Gamma \times A \longrightarrow A$ has noncommensurable stabilizers (N.C.S.) if any two points a_1 , $a_2 \in A$ with commensurable stabilizers coincide.

The following lemma is an easy observation.

Lemma 2.2. (1) Let $\Gamma \times A \longrightarrow A$ be a N.C.S. action. For $a_1, a_2 \in A$ and $\gamma \in \Gamma$, we have $\gamma a_1 = a_2$ if and only if $\gamma \mathscr{Z}_{\Gamma}(a_1)\gamma^{-1} = \mathscr{Z}_{\Gamma}(a_2)$, if and only if $\gamma \mathscr{Z}_{\Gamma}(a_1)\gamma^{-1}$ and $\mathscr{Z}_{\Gamma}(a_2)$ are commensurable.

In particular $(\mathscr{Z}_{\Gamma}(a))_{a \in A}$ is a set of self-commensurizing subgroups of Γ , two subgroups $Z_{\Gamma}(a_1), Z_{\Gamma}(a_2)$ of the set being quasiconjugate if and only if a_1, a_2 are in the same Γ -orbit. (2) Let \mathscr{G} be a set of self-commensurizing subgroups of Γ which is stable under conjugation. Then the action of Γ on \mathscr{G} by conjugation is N.C.S.

It follows from Theorem 2.1 and Lemma 2.2. that, for a N.C.S. action $\Gamma \times A \longrightarrow A$, unitary induction

$$\operatorname{Ind}: \coprod_{a \in \Gamma \setminus A} \overset{\frown}{\mathscr{Z}}_{\Gamma}(a)^{fd} \longrightarrow \widehat{\Gamma}$$

is an injective map.

For later use we record the following general fact. Let π , ρ be unitary representations of a group Γ . We write $\pi \prec \rho$ to express that π is weakly contained in ρ [Dix, 18.1.3], and $\pi \sim \rho$ to express that π and ρ are weakly equivalent [namely that $\pi \prec \rho$ and $\rho \prec \pi$].

Lemma 2.3. Let Γ_0 be a subgroup of Γ . Then $\lambda_{\Gamma/\Gamma_0} \prec \lambda_{\Gamma}$ if and only if Γ_0 is amenable.

Proof. If Γ_0 is amenable, $1_{\Gamma_0} \prec \lambda_{\Gamma_0}$ and hence $\lambda_{\Gamma/\Gamma_0} = \operatorname{Ind}_{\Gamma_0}^{\Gamma}(1_{\Gamma_0}) \prec \operatorname{Ind}_{\Gamma_0}^{\Gamma}(\lambda_{\Gamma_0}) = \lambda_{\Gamma}$.

Conversely, since 1_{Γ_0} is contained in $\operatorname{Res}_{\Gamma_0}(\lambda_{\Gamma/\Gamma_0})$ and since $\operatorname{Res}_{\Gamma_0}(\lambda_{\Gamma})$ is a multiple of λ_{Γ_0} , the assumption $\lambda_{\Gamma/\Gamma_0} \prec \lambda_{\Gamma}$ implies

$$l_{\Gamma_a} < \operatorname{Res}_{\Gamma_a}(\lambda_{\Gamma/\Gamma_a}) \prec \operatorname{Res}_{\Gamma_a}(\lambda_{\Gamma}) \sim \lambda_{\Gamma_a}$$

and hence Γ_0 is amenable.

3. Elementary examples of N.C.S. actions

Define a group action $G \times A \to A$ to be *large* if, for all $a \in A$, all $\mathscr{Z}_G(a)$ -orbits in $A \setminus \{a\}$ are infinite. The next lemma is a convenient tool for constructing N.C.S. actions.

Lemma 3.1. (1) A large action is N.C.S.

(2) Let $G \times A \to A$ be a large transitive action and let $\Gamma < G$ be a subgroup such that $\operatorname{Com}_G \Gamma = G$. Assume that there exists a point $a_0 \in A$ such that all $\mathscr{Z}_{\Gamma,A}(a_0)$ -orbits in $A \setminus \{a_0\}$ are infinite. Then the restricted action $\Gamma \times A \to A$ is large.

Proof. (1) For a large action $G \times A \to A$ and for two points $a_1, a_2 \in A$ with $\mathscr{Z}_G(a_1)$ and $\mathscr{Z}_G(a_2)$ commensurable, the $\mathscr{Z}_G(a_1)$ -orbit of a_2 is finite and hence $a_1 = a_2$.

(2) For $a \in A$ and $g \in G$ such that $ga_0 = a$, the $\mathscr{Z}_{\Gamma,A}(a)$ -orbits in $A \setminus \{a\}$ are infinite if and only if the $(g^{-1}\mathscr{Z}_{\Gamma,A}(a)g)$ -orbits in $A \setminus \{a_0\}$ are infinite. Since

 $g^{-1}\mathscr{Z}_{\Gamma,\mathcal{A}}(a)g = g^{-1}\Gamma g \cap \mathscr{Z}_{G,\mathcal{A}}(a_0)$

and $G = \operatorname{Com}_G \Gamma$, the subgroup

$$\Delta_0 \doteq \mathscr{Z}_{\Gamma,A}(a_0) \cap g^{-1} \mathscr{Z}_{\Gamma,A}(a)g = Z_{\Gamma,A}(a_0) \cap g^{-1} \Gamma g$$

is of finite index in $\mathscr{Z}_{\Gamma,A}(a_0)$. In particular all Δ_0 -orbits in $A \setminus \{a_0\}$ are infinite and the same holds therefore for $g^{-1}Z_{\Gamma,A}(a)g$.

(Claim (1) of Lemma 3.1 is a straightforward generalization of Theorem 4 in [Oba], which delas with doubly transitive actions on infinite sets.)

Example 1. Let K be an infinite field and let $\operatorname{Gr}_k(\mathbb{K}^n)$ denote the Grassmannian of k-dimensional subspaces of \mathbb{K}^n , where n, k are integers with $n \ge 2$ and $1 \le k \le n-1$.

The natural action of $GL(n,\mathbb{K})$ on $\operatorname{Gr}_{k}(\mathbb{K}^{n})$ is N.C.S.

If \mathbb{K} is a number field and if $\mathcal{O}_{\mathbb{K}}$ denotes its ring of integers, the action of $GL(n, \mathcal{O}_{\mathbb{K}})$ on $\operatorname{Gr}_{k}(\mathbb{K}^{n})$ is N.C.S.

Proof. For two distinct points y_1 , y_2 in $Gr_k(\mathbb{K}^n)$, the maximal parabolic subgroup

$$P_{y_1} \doteq \{g \in GL(n, \mathbb{K}) | g y_1 = y_1\}$$

acts transitively on the infinite subset

$$\{y \in \operatorname{Gr}_{k}(\mathbb{K}^{n}) | \dim_{\mathbb{K}}(y \cap y_{1}) = \dim_{\mathbb{K}}(y_{2} \cap y_{1})\}$$

of the Grassmannian. Hence the transitive action of $GL(n, \mathbb{K})$ on $Gr_k(\mathbb{K}^n)$ is large; in particular P_v is its own commensurator in $GL(n, \mathbb{K})$ for all $y \in G_k(\mathbb{K}^n)$.

Let K be now a number field. If $y_0 \in \operatorname{Gr}_k(\mathbb{K}^n)$ denote the subspace spanned by the first k vectors of the canonical basis of Kⁿ and if $\Gamma = GL(n, \mathcal{O}_{K})$, one has

	(/*	•••	*	*		*\)
$\mathscr{Z}_{\Gamma}(y_0) = \langle$	$\gamma \in \Gamma \gamma$ of the form	:	:	: : *	: *	:	: : *
		0	•••	0	*		*
			÷	÷	:	:	: []
	l	0	•••	0	*		*/)

(with the block of zeros having n - k rows and k columns). Let $y_1 \in Gr_k(\mathbb{K}^n) \setminus \{y_0\}$; set $l = k - \dim_{\mathsf{K}}(y_0 \cap y_1)$. We identify \mathbb{K}^n/y_0 with the vector space \mathbb{K}^{n-k} . The actions of P_{y_0} on \mathbb{K}^n and on $\{g \in Gr_k(\mathbb{K}^n) | \dim(y \cap y_0) = \dim(y_1 \cap y_0)\}$ factor as actions of $GL(n-k, \mathbb{K})$ on \mathbb{K}^{n-k} and $Gr_l(\mathbb{K}^{n-k})$ respectively, so that the action of $\mathscr{Z}_{\Gamma}(y_0)$ on $Gr_k(\mathbb{K}^n) \setminus \{y_0\}$ factors as an action of $GL(n-k, \mathcal{O}_{\mathsf{K}})$ on $Gr_l(\mathbb{K}^{n-k})$. The latter action has clearly all its orbits infinite, since the Zariski closure of $GL(n-k, \mathcal{O}_{\mathsf{K}})$ contains that of $GL(n-k, \mathbb{Z})$ and thus contains $SL(n-k, \mathbb{C})$. It follows first that all orbits of $\mathscr{Z}_{\Gamma}(y_0)$ on $Gr_k(\mathbb{K}^n) \setminus \{y_0\}$ are infinite, and second that $\mathscr{Z}_{\Gamma}(y) = \Gamma \cap P_y$ is its own commensurator in $\Gamma = GL(n, \mathcal{O}_{\mathsf{K}})$ for all $y \in Gr_k(\mathbb{K}^n)$.

We observe the following consequence of Example 1.

PROPOSITION 3.2

The unitary representation π of $SL(n,\mathbb{Z})$ in $L^2(\mathbb{R}^n/\mathbb{Z}^n)$ is an orthogonal direct sum of irreducible representations.

Proof. By Fourier transform, π is equivalent to the permutation representation of $SL(n, \mathbb{Z})$ in $l^2(\mathbb{Z}^n)$; the latter is a direct sum of quasi-regular representations $\pi_k = \lambda_{SL(n,\mathbb{Z})/\Gamma_k}$, where Γ_k denotes the stabilizer of $(k, 0, \ldots, 0) \in \mathbb{Z}^n$ in $SL(n, \mathbb{Z})$, for all $k \ge 0$. The one-dimensional representation π_0 is irreducible. For $k \ge 1$, and Γ'_k the stabilizer of $(k:0:\cdots:0) \in \mathbb{P}^{n-1}$ (Q), Mackey's result and Example 1 imply that $\lambda_{SL(n,\mathbb{Z})/\Gamma'_k}$ is irreducible. As Γ_k is of index 2 in Γ'_k , the representation π_k is either irreducible or sum of 2 irreducibles.

For a group action $G \times A \rightarrow A$ and subsets $B \subset A$, $S \subset G$ we set

$$\mathscr{Z}_{G,A}(B) \doteq \bigcap_{b \in B} \mathscr{Z}_{G,A}(b)$$
$$\mathscr{N}_{G,A}(B) \doteq \{g \in G | g(B) = B\}$$

and $\mathcal{F}_{\mathcal{A}}(S)$ the set of common fixed points of elements in S. Observe that

$$\mathcal{N}_{G,A}(B) = \mathscr{Z}_{G,\mathscr{P}(A)}(B),$$

where $\mathcal{P}(A)$ denotes the power set of A.

Lemma 3.3. Let $G \times A \rightarrow A$ be an action and let $S \subset G$ be a union of conjugacy classes of G such that

$$\mathcal{F}_A(g) = \mathcal{F}_A(g^n)$$
 and $|\mathcal{F}_A(g)| < \infty$

for all $g \in S$ and for all n > 1. Then the action of G on the set

$$\{F \in \mathscr{P}(A) | F = \mathscr{F}_{A}(g) \text{ for some } g \in S\}$$

is N.C.S.

Proof. Let $g, h \in S$ be such that the subgroups $\mathcal{N}_{G,A}(\mathcal{F}_A(g))$ and $\mathcal{N}_{G,A}(\mathcal{F}_A(h))$ are commensurable in G. Since $\mathcal{F}_A(g)$ and $\mathcal{F}_A(h)$ are both finite subsets of A, the subgroup

$$K \doteq \mathscr{X}_{G,A}(\mathscr{F}_A(g)) \cap \mathscr{X}_{G,A}(\mathscr{F}_A(h))$$

is of finite index in $\mathscr{Z}_{G,A}(\mathscr{F}_{A}(g))$ and $\mathscr{Z}_{G,A}(\mathscr{F}_{A}(h))$.

Hence there exists an integer $N \ge 1$ such that g^N and h^N are in K. One has

$$\mathscr{F}_{A}(g) = \mathscr{F}_{A}(g^{N}) \supset \mathscr{F}_{A}(K) \supset \mathscr{F}_{A}(\mathscr{L}_{G,A}(\mathscr{F}_{A}(h))) = \mathscr{F}_{A}(h)$$

and similarly $\mathscr{F}_{A}(h) \supset \mathscr{F}_{A}(g)$, so that $\mathscr{F}_{A}(h) = \mathscr{F}_{A}(g)$.

Example 2. Consider a subgroup Γ of $SL(n, \mathbb{C})$ and an element $\gamma \in \Gamma$ which is diagonalizable with eigenvalues $\lambda_1, \ldots, \lambda_n$ and which is regular in the following sense: one has $\lambda_j^N \neq \lambda_k^N$ for each integer $N \ge 1$ whenever j, k are distinct in $\{1, \ldots, n\}$; in other words, the fixed point set $\mathscr{F}(\gamma)$ of γ in $\mathbb{P}^{n-1}(\mathbb{C})$ has cardinality n and $\mathscr{F}(\gamma^N) = \mathscr{F}(\gamma)$ for all integers $N \in \mathbb{Z}, N \neq 0$. Then the subgroup

 $\mathcal{N}_{\Gamma,\mathbb{P}^{n-1}(\mathbb{C})}(\mathcal{F}(\gamma)) = \{\gamma' \in \Gamma | \gamma' \text{ permutes the eigen-directions of } \gamma\}$

of Γ is its own commensurator in Γ by Lemma 3.3. (This subgroup of Γ is distinct from Γ itself as soon as Γ is not virtually abelian.)

Observe that the group

$$\mathbb{T} \doteq \mathscr{Z}_{SL(n,\mathbb{C}),\mathbb{P}^{n-1}(\mathbb{C})}(\mathscr{F}(\gamma))$$

is a maximal torus in $SL(n, \mathbb{C})$ and that $\mathcal{N}_{\Gamma, \mathbf{P}^{r-1}(\mathbb{C})}(\mathscr{F}(\gamma))$ is the intersection with Γ of the normalizer of \mathbb{T} in $SL(n, \mathbb{C})$. More on this in § 5 below.

Example 3. Consider an integer $n \ge 2$, the group $\Gamma = SL(n, \mathbb{Z})$ and the subgroup Γ_0 of upper triangular matrices in Γ (with diagonal entries ± 1).

Then Γ_0 is its own commensurator in Γ .

Proof. Let $\operatorname{Flag}(\mathbb{C}^n)$ be the set of complete flags in \mathbb{C}^n . Let S be the subset of Γ consisting of matrices which have precisely one Jordan block. Then, for the action of Γ on $\operatorname{Flag}(\mathbb{C}^n)$, one has $\mathscr{F}(\gamma) = \mathscr{F}(\gamma^n)$ and $|\mathscr{F}(\gamma)| = 1$ for all $\gamma \in S$. This ends the proof because Γ_0 is the stabilizer of the flag $\mathbb{C} \subset \mathbb{C}^2 \subset \cdots \subset \mathbb{C}^{n-1}$ associated to the canonical basis of \mathbb{C}^n .

Consider the group $\Gamma = SL(3, \mathbb{Z})$. For a subgroup $\Gamma_0 = \Gamma \cap P_y$ as in Example 1, it follows from Lemma 2.3 that the irreducible representation $\lambda_{\Gamma/\Gamma_0}$ is not weakly contained in λ_{Γ} . But for a subgroup $\Gamma_0 = \mathcal{N}_{\Gamma,\mathbb{P}^{n-1}(\mathbb{C})}(\mathscr{F}(\gamma))$ as in Example 2 or for the triangular subgroup Γ_0 of Example 3, one has $\lambda_{\Gamma/\Gamma_0} \prec \lambda_{\Gamma}$ by Lemma 2.3, and consequently $\lambda_{\Gamma/\Gamma_0} \sim \lambda_{\Gamma}$ by [BCH].

There are examples of self-commensurizing subgroups of braid groups and of related groups in [FRZ] and in [Par].

4. Groups of isometries of hyperbolic spaces

4.1. Let X be a Gromov hyperbolic space; let $X(\infty)$ be its Gromov boundary and Is(X) its group of isometries. Then Is(X) acts on $X(\infty)$ and on $S^2X(\infty)$, the set of unordered pairs of points in $X(\infty)$.

Let Γ be a subgroup of Is(X). Denote by $X(\infty)_p \subset X(\infty)$ the set of fixed points of parabolic elements in Γ and by $S^2 X(\infty)_h \subset S^2 X(\infty)$ the set of fixed point sets of hyperbolic elements in Γ .

PROPOSITION 4.1

The action of Γ on

 $X(\infty)_p \coprod S^2 X(\infty)_h$

has noncommensurable stabilizers.

Proof. Let Γ_{ne} denote the set of non elliptic elements in Γ . For the Γ -action on $X(\infty)$ and for each $\gamma \in \Gamma_{ne}$, one has

$$\mathscr{F}_{X(\infty)}(\gamma) = \mathscr{F}_{X(\infty)}(\gamma^n)$$
 for all $n \ge 1$

and $\mathscr{F}_{X(\infty)}(\gamma)$ is of cardinality 1 or 2 depending on whether γ is parabolic or hyperbolic. Thus Proposition 4.1 follows from Lemma 3.3.

Remark. For each hyperbolic element $\gamma \in \Gamma$, recall that the cyclic group $\gamma^{\mathbb{Z}}$ is of finite index in the group $\mathscr{Z} = \mathscr{Z}_{\Gamma,S^2X(\infty)}(\mathscr{F}_{X(\infty)}(\gamma))$; see e.g. [GhH, chap. 8, n⁰ 33]; in particular, the group \mathscr{Z} is amenable. By Lemma 2.3, the quasi-regular representation $\lambda_{\Gamma/\mathscr{Z}}$ is weakly contained in the regular representation λ_{Γ} .

Assume moreover that X is a discrete space which has at most exponential growth and that $\Gamma \subset Is(X)$ is a discrete subgroup. For each parabolic element $\gamma \in \Gamma$, the group $\mathscr{Z} = \mathscr{Z}_{\Gamma,X(\infty)}(\mathscr{F}_{X(\infty)}(\gamma))$ is amenable (see Proposition 1.6 in [BuM]), so that one has also $\lambda_{\Gamma/\mathscr{Z}} \prec \lambda_{\Gamma}$. Indeed, the set

$$\{\mathscr{Z}_{\Gamma,X(\infty)}(\omega)|\omega\in X(\infty)_{p}\mid]S^{2}X(\infty)_{h}\}$$

coincides with the set of all maximal amenable infinite subgroups of Γ [Ada].

In case Γ is a Gromov hyperbolic group, the set $X(\infty)_p$ is empty because there is no parabolic. If Γ is moreover torsion free, then $\mathscr{Z}_{\Gamma}(\omega)$ is infinite cyclic for all $\omega \in S^2 X(\infty)_h$.

It is known that the reduced C*-algebra of a torsion free Gromov hyperbolic group Γ is simple [Har]. From this and Lemma 2.3, it follows that the quasi-regular representation $\lambda_{\Gamma/\mathscr{Z}_{\Gamma}(\omega)}$ is quasi-equivalent to the regular representation λ_{Γ} for each $\omega \in S^2 X(\infty)_h$.

For a nonabelian free group, this is Proposition 1 of [Boz], itself a paper strongly motivated by [Yos].

4.2. Let now X be a proper CAT(-1)-space and let

 $\mathscr{G}X = \{c: \mathbb{R} \longrightarrow X | c \text{ is isometric}\}$

be the space of parametrized geodesics in X with the topology of uniform convergence on compactas. The action of \mathbb{R} on $\mathscr{G}X$ via reparametrizations

$$g_t c(s) = c(s+t), \quad c \in \mathscr{G} X, \quad s, t \in \mathbb{R}$$

commutes with that of Is(X) and defines for any discrete subgroup $\Gamma < Is(X)$ a flow on $\Gamma \setminus \mathscr{G}X$, called the *geodesic flow*. We recall that, for a discrete divergence group $\Gamma < Is(X)$, there is a canonical *Patterson-Sullivan measure* m_{PS} on $\Gamma \setminus \mathscr{G}X$ which is invariant and ergodic for the geodesic flow. The notion of a divergence group is borrowed from Patterson-Sullivan theory of Kleinian groups ([Pat], [Sul]; see also [Bou], [Coo], [CoP] which is generalized to CAT(-1)-spaces in [BuM]).

PROPOSITION 4.2

Let $\Lambda < Is(X)$ be a discrete subgroup. Let

 $\mathscr{S}(\Lambda) = \{ \Gamma < \Lambda | \Gamma \text{ is a divergence group with } m_{PS}(\Gamma \setminus \mathscr{G}X) < \infty \}$

be endowed with the ordering given by inclusion and let $\mathscr{C} \subset \mathscr{S}(\Lambda)$ be a commensurability class.

Then \mathscr{C} has a unique maximal element $\Gamma_{\mathscr{C}}$, and this subgroup $\Gamma_{\mathscr{C}}$ satisfies $\operatorname{Com}_{\Lambda}\Gamma_{\mathscr{C}} = \Gamma_{\mathscr{C}}$. Moreover, if ~ denotes the relation of commensurability on $\mathscr{S}(\Lambda)$, the action of Λ on $\mathscr{S}(\Lambda)/\sim$ by conjugation is N.C.S.

In particular, for each $\Gamma < \mathscr{S}(\Lambda)$, the quasi-regular representation $\lambda_{\Lambda/\Gamma}$ is a finite sum of irreducible representations; if $\Gamma_+ = \operatorname{Com}_{\Lambda}(\Gamma)$, then Γ is of finite index in Γ_+ and $\lambda_{\Lambda/\Gamma_+}$ is irreducible.

Remarks. (i) Let $\Gamma < Is(X)$ be a non-elementary discrete subgroup, $\mathscr{L}_{\Gamma} \subset X(\infty)$ its limit set and $Q_{\Gamma} = Co(\mathscr{L}_{\Gamma}) \subset X$ the convex hull of the latter. If $\Gamma \setminus Q_{\Gamma}$ is compact (that is, if Γ is convex-cocompact) then Γ is a divergence group with $m_{PS}(\Gamma \setminus \mathscr{G}X) < \infty$; see [Bou].

(ii) Let X be a symmetric space of rank 1 and $\Gamma < Is(X)$ a geometrically finite subgroup (see [Bow]). Then Γ is a divergence group with $m_{PS}(\Gamma \setminus \mathscr{G}X) < \infty$.

Example. Let $\Lambda < PSL(2, \mathbb{R})$ be a discrete subgroup. Then $\mathscr{S}(\Lambda)$ contains all finitely generated non virtually cyclic subgroups of Λ . Indeed, such subgroups are non-elementary and geometrically finite.

Thus, for a finitely generated infinite subgroup Γ of Λ , the quasi-regular representation $\lambda_{\Lambda/\Gamma}$ is a *finite* sum of irreducible representations: this follows from Proposition 4.1 if Γ is virtually cyclic, in which case $\lambda_{\Lambda/\Gamma} \prec \lambda_{\Lambda}$, and from Proposition 4.2 in other cases, for which $\lambda_{\Lambda/\Gamma} \prec \lambda_{\Lambda}$.

Proof of Proposition 4.2. It suffices to show that, given a discrete divergence group $\Gamma_0 < Is(X)$ with $m_{PS}(\Gamma_0 \setminus \mathscr{G}X) < \infty$ and a discrete subgroup $\Gamma < Is(X)$ with $\Gamma_0 < \Gamma < Com_{Is(X)}(\Gamma_0)$, the subgroup Γ_0 is of finite index in Γ .

Indeed, assuming this is true, consider the commensurability class \mathscr{C} of a subgroup Γ_0 of Λ which is in $\mathscr{S}(\Lambda)$. Setting $\Gamma_{\mathscr{C}} = \operatorname{Com}_{\Lambda}(\Gamma_0)$ one has Γ_0 of finite index in $\Gamma_{\mathscr{C}}$; one has therefore $\Gamma_{\mathscr{C}} \in \mathscr{S}(\Lambda)$ and $\operatorname{Com}_{\Lambda} \Gamma_{\mathscr{C}} = \Gamma_{\mathscr{C}}$. As any group commensurable with Γ_0 is in $\Gamma_{\mathscr{C}}$, the latter group is clearly the *unique* maximal element of \mathscr{C} . The last claim of the proposition is now obvious.

For the convenience of the reader we recall the construction of m_{PS} (see § 1.3 in [BuM]). Let δ be the critical exponent of Γ_0 , let $\mu: X \to M^+(X(\infty))$ be the δ -dimensional Patterson–Sullivan density for Γ_0 and let $(\xi|\eta)_x$ denote the Gromov scalar product of ξ , $\eta \in X(\infty)$. Using the Γ -invariant measure

$$\frac{\mathrm{d}\mu_x(\xi)\times\mathrm{d}\mu_y(\xi)}{\mathrm{e}^{-2\delta(\xi|\eta)_x}}$$

on $X(\infty) \times X(\infty) \setminus \{\text{diagonal}\}\)$, one obtains a Γ -invariant and geodesic-flow invariant measure \tilde{m}_{μ} on $\mathscr{G}X$; the Patterson-Sullivan measure m_{PS} is then the corresponding geodesic-flow invariant measure on $\Gamma \setminus \mathscr{G}X$.

We recall furthermore that $\gamma_* \mu_x = \mu_{\gamma x}$ for all $\gamma \in \Gamma_0$, $x \in X$, and that there exists a homomorphism χ : $\operatorname{Com}_{\mathrm{Is}(X)}(\Gamma_0) \to \mathbb{R}^*_+$ such that $\gamma_* \mu_x = \chi(\gamma)\mu_x$ for all $\gamma \in \operatorname{Com}_{\mathrm{Is}(X)}(\Gamma_0)$, $x \in X$. From this follows $\gamma_* \tilde{m}_{\mu} = \chi(\gamma)^2 \tilde{m}_{\mu}$ for all $\gamma \in \operatorname{Com}_{\mathrm{Is}(X)}(\Gamma_0)$ (see [BuM], Corollary 6.5.3).

Since Γ acts properly discontinuously on $\mathscr{G}X$, there exists a compact set $K \subset \mathscr{G}X$ of positive \tilde{m}_{μ} -measure such that $\gamma K \cap K = \emptyset$ for all $\gamma \in \Gamma$ with $\gamma \neq e$. (We argue as if Γ was acting effectively on $\mathscr{G}X$; when it is not the case, we leave the minor appropriate changes to the reader.) For a set $\mathscr{T} \subset \Gamma$ of representatives of $\Gamma_0 \setminus \Gamma$, the set $\coprod_{\tau \in \mathscr{F}} \tau K$ injects into $\Gamma_0 \setminus \mathscr{G}X$ and therefore

$$\left(\sum_{\tau\in\mathscr{T}}\chi(\tau)^2\right)\tilde{m}_{\mu}(K)=\tilde{m}_{\mu}\left(\prod_{\tau\in\mathscr{T}}\tau K\right)\leqslant m_{\mathrm{PS}}(\Gamma_0\setminus\mathscr{G}X)<\infty.$$

Hence, since $\chi | \Gamma_0 = 1$, we obtain.

$$\sum_{\tau\in\Gamma_0\setminus\Gamma}\chi(\tau)^2<\infty.$$

For every $\gamma \in \Gamma$, we have thus

$$\left(\sum_{\tau\in\Gamma_0\backslash\Gamma}\chi(\tau)^2\right)\chi(\gamma)^2=\sum_{\sigma\in\Gamma_0\backslash\Gamma}\chi(\sigma)^2$$

which shows first that $\chi(\gamma)^2 = 1$ for all $\gamma \in \Gamma$ and second that $|\Gamma_0 \setminus \Gamma| < \infty$.

5. Maximal tori and actions of lattices with noncommensurable stabilizers

Let G be a linear algebraic group defined over \mathbb{R} , let $\Gamma < \mathbb{G}(\mathbb{R})$ be a discrete subgroup and set

 $\mathscr{T}(\Gamma) = \{ \mathbb{T} \subset \mathbb{G} | \mathbb{T} \text{ is a maximal } \mathbb{R} \text{-split torus such that } \mathbb{T}(\mathbb{R})/(\mathbb{T}(\mathbb{R}) \cap \Gamma) \text{ is compact} \}.$

PROPOSITION 5.1

The Γ -action by conjugation on $\mathcal{T}(\Gamma)$ is N.C.S.

Here and in the sequel, we will use the following simple lemma.

Lemma 5.2. Let G be a linear algebraic group and let A_0 , A_1 be two commensurable subgroups of G. Then $(\overline{A_0})^0 = (\overline{A_1})^0$.

Proof of Proposition 5.1. We have to show that, given $\mathbb{T}, \mathbb{T}' \in \mathscr{F}(\Gamma)$ such that $\mathcal{N}_{\mathsf{G}}(\mathbb{T}) \cap \Gamma$ and $\mathcal{N}_{\mathsf{G}}(\mathbb{T}') \cap \Gamma$ are quasiconjugate in Γ , then \mathbb{T} and \mathbb{T}' are Γ -conjugate.

First we observe that, for $\mathbb{T} \in \mathscr{T}(\Gamma)$, the group $(\mathscr{N}_{G}(\mathbb{T})(\mathbb{R}) \cap \Gamma)/(\mathbb{T}(\mathbb{R}) \cap \Gamma)$ is finite. Indeed, since $\mathbb{T}(\mathbb{R})/(\mathbb{T}(\mathbb{R}) \cap \Gamma)$ is compact, the canonical map

$$\mathcal{N}_{G}(\mathbb{T})(\mathbb{R})/(\mathbb{T}(\mathbb{R})\cap\Gamma)\longrightarrow \mathcal{N}_{G}(\mathbb{T})(\mathbb{R})/\mathbb{T}(\mathbb{R})$$

is proper and therefore $(\mathcal{N}_{G}(\mathbb{T})(\mathbb{R}) \cap \Gamma)/(\mathbb{T}(\mathbb{R}) \cap \Gamma)$ is a discrete subgroup of the compact group $\mathcal{N}_{G}(\mathbb{T})(\mathbb{R})/\mathbb{T}(\mathbb{R})$.

If now $\mathcal{N}_{G}(\mathbb{T}) \cap \Gamma$ and $\mathcal{N}_{G}(\mathbb{T}') \cap \Gamma$ are quasiconjugate in Γ , there exist $\Delta < \mathbb{T}(\mathbb{R}) \cap \Gamma$ of finite index and $\gamma \in \Gamma$ such that $\gamma \Delta \gamma^{-1}$ is of finite index in $\Gamma \cap \mathbb{T}'(\mathbb{R})$. Passing to Zariski closure, we obtain $\mathbb{T}' = \gamma \overline{\Delta} \gamma^{-1} = \gamma \mathbb{T} \gamma^{-1}$. *Examples.* (1) Let G be a semisimple \mathbb{R} -group and $\Gamma < \mathbb{G}(\mathbb{R})$ a lattice. Then $\mathscr{T}(\Gamma) \neq \emptyset$; this follows from the existence of \mathbb{R} -hyper-regular elements in Γ [PrR]. Indeed, for such a $\gamma \in \Gamma$, the centralizer $\mathscr{Z}_{G}(\gamma)$ contains an \mathbb{R} -split torus \mathbb{T} which is maximal in G and such that $\mathbb{T}(\mathbb{R})/(\Gamma \cap \mathbb{T}(\mathbb{R}))$ is compact.

(2) Let \mathcal{P} be the set of primitive indefinite integral binary forms

$$Q(X,Y) = aX^2 + bXY + cY^2$$

with a > 0. Then the map which to every $Q \in \mathscr{P}$ associates $SO(Q)^0$ gives a bijection between \mathscr{P} and the set of \mathbb{R} -split tori $\mathbb{T} \subset SL(2)$ for which $SL(2, \mathbb{Z}) \cap \mathbb{T}(\mathbb{R})$ is a lattice in $\mathbb{T}(\mathbb{R})$:

$$\mathscr{P}\cong\mathscr{T}(SL(2,\mathbb{Z})).$$

(3) It is a general fact due to Ono [Ono] that, for a Q-torus T with $X_Q(T) = 1$, the group $T(\mathbb{R})/T(\mathbb{Z})$ is compact. Hence, given a semisimple Q-group G, the set $\mathscr{T}(G(\mathbb{Z}))$ contains all Q-torii T which are maximal R-split and such that $X_Q(T) = 1$. As examples of such torii in SL(n), let \mathbb{K}/\mathbb{Q} be a totally real number field or degree n, let $\mathbb{H} \doteq \operatorname{Res}_{\mathbb{K}/\mathbb{Q}} \operatorname{GL}_1 \subset \operatorname{GL}_n$ and $\mathbb{T} \doteq \mathbb{H} \cap \operatorname{SL}(n)$. The group $\mathscr{U}_{\mathbb{K}}$ of units of \mathbb{K} is abelian of rank n-1 and isomorphic to $\mathbb{H}(\mathbb{Z})$. As $\mathbb{T}(\mathbb{Z})$ is of index at most two in $\mathbb{H}(\mathbb{Z})$, the torus $\mathbb{T}(\mathbb{Z})$ is of rank n-1 and hence $\mathbb{T}(\mathbb{R})/\mathbb{T}(\mathbb{Z})$ is compact.

6. Algebraic subgroups and actions of arithmetic lattices with noncommensurable stabilizers

In this section G denotes a connected linear algebraic Q-group; let

 $\mathscr{S}_{G} = \{\mathbb{H} | \mathbb{H} \text{ is a connected } \mathbb{Q} \text{-subgroup of } \mathbb{G}, \text{ of finite index in } \mathscr{N}_{G}(\mathbb{H}(\mathbb{Z})^{0})\}.$

We will show below that if $\mathbb H$ is a connected Q-subgroup of G, one always has the inclusion

 $\mathbb{H} < \mathscr{N}_{\mathbf{G}}(\overline{\mathbb{H}(\mathbb{Z})}^{0}).$

PROPOSITION 6.1

The action by conjugation of $\mathbb{G}(\mathbb{Z})$ on \mathscr{S}_{G} is N.C.S. and \mathscr{S}_{G} contains all parabolic \mathbb{Q} -subgroups of \mathbb{G} .

Lemma 6.2. Let \mathbb{H} be a Q-subgroup of \mathbb{G} .

(1)
$$\mathcal{N}_{\mathbf{G}}(\mathbb{H})(\mathbb{Q}) < \operatorname{Com}_{\mathbf{G}}(\mathbb{H}(\mathbb{Z}))$$

(2) $\mathcal{N}_{\mathsf{G}}(\mathbb{H})^{\mathsf{0}} < \mathcal{N}_{\mathsf{G}}(\mathbb{H}(\mathbb{Z})^{\mathsf{0}}).$

Proof of Lemma 6.2. Let us first show the implication (1) \implies (2). As $\mathcal{N}_{G}(\mathbb{H})$ is defined over \mathbb{Q} , one has

$$\mathcal{N}_{\mathsf{G}}(\mathbb{H})^{\mathsf{0}} < \overline{\mathcal{N}_{\mathsf{G}}(\mathbb{H})(\mathbb{Q})}$$

by a theorem of Rosenlicht [Bor, 18.3]. On the other hand Lemma 5.2 implies

$$\overline{\mathrm{Com}_{\mathsf{G}}(\mathbb{H}(\mathbb{Z}))} < \mathcal{N}_{\mathsf{G}}(\overline{\mathbb{H}(\mathbb{Z})}^{0})$$

and hence (1) implies (2).

In order to prove (1) we may assume that \mathbb{H} is connected. Let $X_{\mathbb{Q}}(\mathbb{H})$ be the set of \mathbb{Q} -characters of \mathbb{H} and set

$$\mathbb{H}_{0} \doteq \bigcap_{\chi \in X_{Q}(\mathbf{H})} \operatorname{Ker} \chi.$$

Clearly, $\mathbb{H}_0(\mathbb{Z})$ is a subgroup of finite index in $\mathbb{H}(\mathbb{Z})$ and it follows from [BHC] that $\mathbb{H}_0(\mathbb{Z})$ is a lattice in $\mathbb{H}_0(\mathbb{R})$. Observe also that $\mathcal{N}_G(\mathbb{H})(\mathbb{Q})$ acts on $X_Q(\mathbb{H})$ and hence normalizes \mathbb{H}_0 .

Let $\mathbb{G} < GL(n, \mathbb{C})$ for some n, fix $g \in \mathcal{N}_{G}(\mathbb{H})(\mathbb{Q})$ and choose an integer $m \ge 1$ such that mg and mg^{-1} are in $M_n(\mathbb{Z})$. For the subgroup

$$\Gamma \doteq \{ \gamma \in \mathbb{H}_0(\mathbb{Z}) | \gamma \equiv \text{id mod } m^2 \},\$$

we have $g\Gamma g^{-1} \subset M_n(\mathbb{Z})$ and $\det(g\Gamma g^{-1}) \subset \{1, -1\}$; hence $g\Gamma g^{-1} < \mathbb{H}_0(\mathbb{Z})$. Furthermore, Γ is of finite index in $\mathbb{H}_0(\mathbb{Z})$ and since $\mathbb{H}_0(\mathbb{Z})$ is a lattice in $\mathbb{H}_0(\mathbb{R})$, the conjugate $g\Gamma g^{-1}$ is of finite index in $\mathbb{H}_0(\mathbb{Z})$ as well. Hence

$$g \in \operatorname{Com}_{G}(\mathbb{H}_{0}(\mathbb{Z})) = \operatorname{Com}_{G}(\mathbb{H}(\mathbb{Z})).$$

Proof of Proposition 6.1. For the first assertion, take $\mathbb{H}_1, \mathbb{H}_2 \in \mathscr{S}_G$ such that $\mathcal{N}_G(\mathbb{H}_1)(\mathbb{Z})$ and $\mathcal{N}_G(\mathbb{H}_2)(\mathbb{Z})$ are commensurable, hence $\mathcal{N}_G(\mathbb{H}_1)^0(\mathbb{Z})$ and $\mathcal{N}_G(\mathbb{H}_2)^0(\mathbb{Z})$ are also commensurable. Since \mathbb{H}_i is connected, we have $\mathbb{H}_i < \mathcal{N}_G(\mathbb{H}_i)^0$ and since $\mathbb{H}_i \in \mathscr{S}_G$, Lemma 6.2.2 implies that \mathbb{H}_i is of finite index in $\mathcal{N}_G(\mathbb{H}_i)^0$, in particular $\mathbb{H}_1(\mathbb{Z})$ and $\mathbb{H}_2(\mathbb{Z})$ are commensurable. This implies $\overline{\mathbb{H}_1(\mathbb{Z})}^0 = \overline{\mathbb{H}_2(\mathbb{Z})}^0$, and hence

$$\mathbb{H}_1 = \mathcal{N}_{\mathsf{G}}((\overline{\mathbb{H}_1(\mathbb{Z})}^{\mathsf{0}})^{\mathsf{0}} = \mathcal{N}_{\mathsf{G}}((\overline{\mathbb{H}_2(\mathbb{Z})}^{\mathsf{0}})^{\mathsf{0}} = \mathbb{H}_2.$$

For the second assertion, let \mathbb{P} be a parabolic Q-subgroup of G. Since $\mathbb{P} \subset \mathcal{N}_{G}(\overline{\mathbb{P}(\mathbb{Z})}^{0})$, the subgroup $\mathbb{P}' \doteq \mathcal{N}_{G}(\overline{\mathbb{P}(\mathbb{Z})}^{0})$ is Q-parabolic and hence $\mathcal{R}_{u}(\mathbb{P}') \subset \mathcal{R}_{u}(\mathbb{P})$. Since $\overline{\mathbb{P}(\mathbb{Z})}^{0}$ is normal in \mathbb{P}' we have

$$\mathscr{R}_{u}(\overline{\mathbb{P}(\mathbb{Z})}^{0}) \subset \mathscr{R}_{u}(\mathbb{P}').$$

On the other hand, $\overline{\mathscr{R}_{u}(\mathbb{P})(\mathbb{Z})} = \mathscr{R}_{u}(\mathbb{P})$ and hence $\mathscr{R}_{u}(\mathbb{P})$ is a (normal) subgroup of $\overline{\mathbb{P}(\mathbb{Z})}^{0}$, which implies $\mathscr{R}_{u}(\overline{\mathbb{P}(\mathbb{Z})}^{0}) \supset \mathscr{R}_{u}(\mathbb{P})$. This finally shows that $\mathscr{R}_{u}(\mathbb{P}) = \mathscr{R}_{u}(\mathbb{P}')$ and hence $\mathbb{P} = \mathbb{P}'$.

Examples. Assume G to be a semi-simple, defined over Q and Q-simple. Let H be a connected semi-simple Q-subgroup of G which is maximal as a Q-subgroup. Then $\mathbb{H} = \mathcal{N}_{G}(\mathbb{H})$, and hence $\mathbb{H} = \operatorname{Com}_{G}(\mathbb{H})$ by Lemma 5.2. Observe that $G(\mathbb{Z})$ is a lattice in $G(\mathbb{R})$ and that $\mathbb{H}(\mathbb{Z})$ is a lattice in $\mathbb{H}(\mathbb{R})$, by [BHC].

Maximal subgroups of the classical groups have been classified by Dynkin [Dyn]. In case G is $SL(n, \mathbb{C})$ with its standard Q-structure, examples of subgroups H as above include (to quote but a few):

- (i) orthogonal groups $SO(q) \subset SL(n, \mathbb{C})$ for a non degenerate quadratic form q over \mathbb{Q} .
- (ii) the symplectic group $Sp(n, \mathbb{C}) \subset SL(n, \mathbb{C})$ (*n* even),
- (iii) the images of the fundamental representations $SL(m, \mathbb{C}) \rightarrow SL(\binom{m}{p}, \mathbb{C})$.

References

- [A'B] A'Campo N and Burger M, Réseaux arithmétiques et commensurateurs d'après G A Margulis, Invent. Math. 116 (1994) 1-25
- [Ada] Adams S, Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups, *Topology* 33 (1994) 765-783
- [BCH] Bekka M, Cowling M and de la Harpe P, Some groups whose reduced C* -algebra is simple, Publ. Math. IHES 80 (1994) 117-134
- [Bin] Binder M W, On induced representations of discrete groups, Proc. Am. Math. Soc. 118 (1993) 301-309
- [Bor] Borel A, Linear algebraic groups, second enlarged edition, Springer, 1991
- [BHC] Borel A and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. Math. 75 (1962) 485-535
- [Bou] Bourdon M, Structure conforme au bord et flot géodésique d'un CAT (-1)-espace, l'Enseignement math. 41 (1995) 63-102
- [Bow] Bowditch B H, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993) 245-317
- [Boz] Bozejko M, Some aspects of harmonic analysis on free groups. Colloquium Math. 41 (1979) 265-271
- [BuM] Burger M and Mozes S, CAT (-1)-spaces, divergence groups and their commensurators. J. Am. Math. Soc. 9 (1996) 57–93
- [Coo] Coornaert M, Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993) 241-270
- [CoP] Coornaert M and Papadopoulos A, Une dichotomie de Hopf pour les flots géodésiques associés aux groupes discrets d'isométrie des arbres, *Trans. Am. Math. Soc.* 343 (1994) 883–898
- [Cor] Corwin L, Induced representation of discrete groups, Proc. Am. Math. Soc. 47 (1975) 279-287
- [Dix] Dixmier J, Les C*-algèbres et leurs représentations, Gauthier-Villars, 1969
- [Dyn] Dynkin E B, The maximal subgroups of the classical groups (1952), Transl. Am. Math. Soc. Serie 2, 6 (1957) 254-378
- [FRZ] Fenn R, Rolfsen D and Zhu J. Centralisers in the braid group and singular braid monoid, *Enseignement Math.* (to appear)
- [Gli] Glimm J, Type I C*-algebras, Ann. Math. 73 (1961) 572-612
- [GhH] Ghys E and de la Harpe P, Sur les groupes hyperboliques d'après M Gromov, Birkhäuser, 1990
- [Har] de la Harpe P, Groupes hyperboliques, algèbres d'opérateurs et un théorème de Jolissaint, C. R. Acad. Sci. Paris, Série I 307 (1988) 771-774
- [KrR] Kropholler P H and Roller M A, Relative ends and duality groups, J. Pure Appl. Algebra 61 (1989) 197-210
- [Mac] Mackey G W, The theory of unitary group representations, The University of Chicago Press, 1976
- [Mar] Margulis G A, Discrete subgroups of semisimple Lie groups, Springer, 1991
- [Oba] Obata N, Some remarks on induced representations of infinite discrete groups, Math. Ann. 284 (1989) 91-102
- [Ono] Ono T, Sur une propriété arithmétique des groupes commutatifs, Bull. Soc. Math. France 85 (1957) 307–323
- [Par] Paris L, Parabolic subgroups of Artin groups, preprint, Dijon (1995)
- [Pat] Patterson S J, The limit set of a Fuchsian group, Acta Math. 136 (1976) 241-273
- [Ped] Pedersen G K, C*-algebras and their automorphism groups, Academic Press, 1979
- [PrR] Prasad G and Raghunathan M S, Cartan subgroups and lattices in semi-simple groups, Ann. Math. 96 (1972) 296–317
- [Shi] Shimura G. Introduction to the arithmetic theory of automorphic functions (1971) (Iwanami Shoten and Princeton Univ. Press)
- [Sul] Sullivan D, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984) 259-277

[Yos] Yoshizawa H, Some remarks on unitary representations of the free group, Osaka Math. J. 3 (1951) 55-63