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Abstract. The decomposition of unitary representations of a discrete group obtained
by induction from a subgroup involves commensurators. In particular Mackey has
shown that quasi-regular representations are irreducible if and only if the corresponding
subgroups are self-commensurizing. The purpose of this work is to describe general
constructions of pairs of groups I'y <I" with I, its own commensurator in I". These
constructions are then applied to groups of isometries of hyperbolic spaces and to lattices
in algebraic groups.
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1. Introduction

Let G be a separable locally compact group. The unitary dual G of G is the set of
equivalence classes of irreducible representations of G, together with its Mackey Borel
structure. In this paper, “representation” means “continuous unitary representation in
a separable Hilbert space”.

Let us recall the definition of this structure [Dix, 18.5]. For each n€e {1,2,..., «},
let Irr, (G) denote the space of all irreducible representations of G in a given Hilbert
space of dimension n. The set Irr, (G) is endowed with the topology of the weak
simple convergence on G (making the functions n+—<{n(g){|n) continuous for
all g € G and ¢, 5 in the Hilbert space of dimension n), and with the corresponding
Borel structure. The dual G is the quotient of u,snsw Irr, (G) by unitary equiva-
lence, and the Mackey Borel structure on G is the quotient of the previously defined
Borel structure.

In case of a countable group I, it follows from results of Glimm and Thoma that Iis
a standard Borel space if and only if T is virtually abelian (see [ Dix], numbers 9.1,9.5.6
and 13.11.12, or [Ped, 6.8.7]); in this case the representation theory of I' is well
understood. In all other cases there is no natural Borel coding of T, ie. I is not
countably separated; for lack of a systematic procedure of constructing all irreducible
representations of I', a natural problem is to construct large classes of irreducible
representations.

Recall that two subgroups G, and G, of a group G are commensurable if Gy,n G,
is of finite index in both G, and G,. The commensurator of G, in G is defined to be

Comg(Gy) = {ge GG, and gG,g~ ' are commensurable}.

Let(T")),; be a family of pairwise non conjugate subgroups of a countable group I' such
that Comr (I',) =T, for all 1. It follows from work of Mackey (see e.g. [Mac], and §2
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below) that unitary induction provides a well defined and injective map
LT st,
el
wheref{Tdenotes the subset of I', consisting of finite dimensional representations.

Our aim in this paper is to construct actions with noncommensurable stabilizers and
pairs of groups I'y < T such that Com.(T"y) = I',. More generally, we construct also
pairs I'y < T such that I, is a subgroup of finite index in Com(I',); in this case, the
quasiregular representation of I' in I*(I'/T,) is a finite direct sum of irreducible
representations.

In § 2, we recall some classical results on unitary representations. Section 3 provides
elementary examples of pairs of groups I'y < T with T',, its own commensurator in I'.
We consider groups of isometries of Gromov hyperbolic spaces in § 4. Then, for a lattice
I" in the group of real points of a linear algebraic group G defined over R, we consider
actions of I" on appropriate sets of maximal tori in § 5 and on other sets of subgroups
of G in§ 6;in each case, we find classes of irreducible quasi-regular representations of I'.

Note on terminology. Commensurators have been known under various names, such
as quasinormalizers [Cor], commensurizers [KrR] and commensurability subgroups
[Mar]. We follow the terminology of [Shi, Chapter 3] and [A’B].

2. Commensurators and induced representations

Let I' be a discrete group, I', < T a subgroup and A, the left regular representation of
[ in P(T/T,).

A double class x e I'g\ Com(I",)/T", represented by some x € Com(I";) corresponds
to a finite I'y-orbit T'yxI', in I'/T"y, and the mapping I'y — I'/T", applying z to zxI"
induces a bijection of I'o/(TynxIyx ') onto [,xI",. Consequently, % gives rise to
a bounded intertwining operator T of A, which is defined by

(T.N)(YTo) = x f(¥{xTy)
(el (TonxTyx™1)
for all fel>(I'/T,) and for all yI',eI'/T,.
It is then a fact (see [Bin], Theorem 2.2) that the linear space generated by

{T:P(T/T o) = P(T/T )| % € To\Comp (') T'o}

is weakly dense in the space Int(A;r,,) of bounded intertwining operators of A - . Hence,
if I'\Com(I'y) is finite, we have

dim Int (Arr,) = Card (T )\Com(T'o)/T,)

and A is a finite direct sum of irreducible representations. In particular A is
irreducible if and only if Com(I'g) =T,

The above considerations then lead to the following theorem. Here and in the sequel
we call two subgroups I'y, I'; of I quasiconjugate if there exists y I such that Iy and
9T,y ! are commensurable.

Theorem 2.1 [Mackey]. Let T be a discrete group and let Iy, I", be subgroups of T.
(1) The representation A is irreducible if and only if Com(I'o) =T, in which case
Ind[. (n) is irreducible for any n e, and unitary induction
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Ind%f{?——» r

is an injective map.
(2) If Com(I') =T;,i =0, 1,then Ay and A areunitarily equivalent if and only if 'y
and I, are quasiconjugate in I,

In case Ty and T'; are not quasiconjugate in I, if my, respectively m,, are finite
dimensional irreducible unitary representations of I, respectively I, then IndF0 (o) and
Indf. (n,) are not equivalent.

Remark. We do not know whether the condition eﬁ,‘rin (1)canbereplacedbyne f“o.
Let us restate the previous Theorem in a slightly different way. Let I be a discrete
group acting on a set 4, and denote by

2(a)={yeTl|ya=a}

the stabilizer of a point a € 4; if more precision is needed, we write 27 ,(a) for 21.(a).
DEFINITION

The action " x A — A has noncommensurable stabilizers (N.C.S.}if any two points a,,
a, € A with commensurable stabilizers coincide. '

The following lemma is an easy observation.

Lemma22. (1) Let ' x A—> A be a N.C.S. action. For a,, a,€ A and yeT', we have
ya, = a, if and only if yZ(a,)y "' = Z{a,), if and only if yZ(a,)y~ ' and Z(a,) are
commensurable.

In particular (%(a)),. , is a set of self-commensurizing subgroups of I, two subgroups
Z (a,), Z(a,) of the set being quasiconjugateif and onlyif a,,a, areinthe same I'-orbit.
(2) Let % be a set of self-commensurizing subgroups of T" which is- stable under
conjugation. Then the action of T on 4 by conjugation is N.C.S.

It follows from Theorem 2.1 and Lemma 2.2. that, for a N.CS. actionT x A—> 4,
unitary induction

Ind: || 2:(@* —T

ael\ A

is an injective map.

For later use we record the following general fact. Let x, p be unitary representations
of a groupT'. We write 7 < p to express that 7 is weakly contained in p [ Dix, 18.1.3],and
7 ~ p to express that = and p are weakly equivalent [namely that 7 < p and p <=].

Lemma2.3. Let Ty be a subgroup of U. Then Apr <A if and only if Ty is amenable.

Proof. If T, is amenable, 1 <4 and hence 4., = Indf (1) <Indp (4) =4
Conversely, since 1. is contained in Resr (4 ) and since Resp. (4;) is 2 multiple of
/lro, the assumption A < A implies

ll‘c < Res]-q (}“I‘ /I‘.,) < Resr0 (Ar) ~ '11“0

and hence I, is amenable. a
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3. Elementary examples of N.C.S. actions

Define a group action G x 4 — A to be largeif, for all a € 4, all Z;(a)-orbitsin A\{a} are
infinite. The next lemma is a convenient tool for constructing N.C.S. actions.

Lemma 3.1. (1) A large action is N.C.S.

(2) Let G x A— A be a large transitive action and let I' < G be a subgroup such that
ComgI" = G. Assume that there exists a point age A such that all 2¢ ,(ay)-orbits in
A\{a,} are infinite. Then the restricted action T x A — A is large.

Proof. (1) For a large action G x A — 4 and for two points a,, a, € 4 with Z;(a,) and
Z4(a,) commensurable, the Z;(a, )-orbit of a, is finite and hence a, = a,.
(2)Forae A and g € G such that ga, = a, the 2. ,(a)-orbitsin A\{a} are infinite if and
only if the (g~ 2. ,(a)g)-orbits in A\{a,} are infinite. Since
g 1%‘,,«1(‘1)9 =g lrng"G’A(ao)
and G = Comg T, the subgroup
Ao = gr‘,i(ao)mg_ ! a0‘1(;',,4(“)9 = Zr,A(ao)mg— lrg

is of finite index in 2. ,(a,). In particular all A-orbits in A\{a,} are infinite and the
same holds therefore for g "' Z. ,(a)g. ]

(Claim (1) of Lemma 3.1 is a straightforward generalization of Theorem 4 in [Oba],
which delas with doubly transitive actions on infinite sets.)

Example 1. Let I be an infinite field and let Gr,(K") denote the Grassmannian of
k-dimensional subspaces of K", where n,k are integers withn>2and 1 <k <n-—1.
The natural action of GL(n,K) on Gr, (") is N.C.S.
If K is a number field and if @, denotes its ring of integers, the action of GL(n, 0, ) on
Gr, (K")is N.C.S.

Proof. For two distinct points y,, y, in Gr, (K", the maximal parabolic subgroup
P, ={geGL(n,K)lgy, =y,}

acts transitively on the infinite subset
{yeGr(K")dimy(y ny,) = dimy(y, N y,)}

of the Grassmannian. Hence the transitive action of GL(n, K) on Gr,(K") is large; in
particular P, is its own commensurator in GL(n, K) for all ye G, (K").

Let I be now a number field. If y, € Gr, (IK") denote the subspace spanned by the first
k vectars of the canonical basis of K" and if I' = GL(n, 0;), one has

f x . % % . x

Z(yo)=1{ yelly of the form
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(with the block of zeros having n — k rows and k columns). Let y, € Gr, (KK"\{y,}; set
=k —dimy(y,ny,). We identify K"/y, with the vector space K" *. The actions of
P, on K" and on {ge Gr (K"|dim(yny,) =dim(y, ny,)} factor as actions of
GL(n —k, ) on KK"* and Gr,(K"™¥) respectively, so that the action of Z.(y,) on
Gr, (K")\{y,} factors as an action of GL(n— k, 0, ) on Gr,(iK"~*). The latter action has
clearly all its orbits infinite, since the Zariski closure of GL(n — k, 0, contains that of
GL(n —k, Z) and thus contains SL(n — k, C). It follows first that all orbits of 2;(y,) on
Gr, (K"\{y,} are infinite, and second that & .(y) = ' " P, is its own commensurator in
I'=GL(n, 0,) for all yeGr,(K"). 0l

We observe the following consequence of Example 1.
PROPOSITION 3.2

The unitary representation n of SL(n,Z) in L*(R"/Z") is an orthogonal direct sum of
irreducible representations.

Proof. By Fourier transform, = is equivalent to the permutation representation of
SL(n,Z) in [?>(Z"); the latter is a direct sum of quasi-regular representations
T = Atz o where I, denotes the stabilizer of (k, 0,...,0)€ Z" in SL(n, Z),forall k > 0.
The one-dimensional representation 7, is irreducible. For k > 1, and T, the stabilizer
of (k:0:---:0) € P"~! (Q), Mackey’s result and Example 1 imply that A, ;- is
irreducible. As T, is of index 2 in I'";, the representation r, is either irreducible or sum of
2 irreducibles. O

For a group action G x A — A4 and subsets B« A4, S < G we set
Z;4(B) = () Z6,4(0)

beB
N.4(B) = {9€Glg(B) = B}
and & ,(S) the set of common fixed points of elements in S. Observe that
G. A(B) G, ?(A)(B)a
where 2#(A4) denotes the power set of 4.
Lemma 3.3. Let G x A— A be an action and let S « G be a union of conjugacy classes of

G such that
Fag)=F4g") and |F,(9)| <

Jor all ge S and for all n> 1. Then the action of G on the set
{Fe P(A)|F = F(g) for some geS}
is N.CS.
Proof. Let g,heS be such that the subgroups A ,(F4(g)) and A (F,(h) are
commensurable in G. Since #,(g) and #,,(h) are both finite subsets of 4, the subgroup
K=2Z,(F,)nZ . (F4(h)
is of finite index in 2 ,(%,(g)) and Z; ,(Z,(h)).
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Hence there exists an integer N > 1 such that g¥ and A" are in K. One has
ZU9) =Zg") 2 F(K) > F (% (F (1)) =Z,(h)

and similarly &, (h) > #,(g), so that #,(h) = Z,(9). O

Example 2. Consider a subgroup I of SL(n, C) and an element y e I" which is diagonal-
izable with eigenvalues A,,..., 4, and which is regular in the following sense: one has
AY # Ay for each integer N > 1 whenever j, k are distinctin {1,..., n}; in other words, the
fixed point set Z (y) of y in P"~!(C) has cardinality n and & (y¥) = & (y) for all integers
NeZ, N #0. Then the subgroup

Nrp1o(F () = {y' € T'|y’ permutes the eigen-directions of y}

of I is its own commensurator in I' by Lemma 3.3. (This subgroup of T is distinct
from I itself as soon as I is not virtually abelian.)
Observe that the group

T=Z SL(n,C).P"‘(c)(‘a;(y))

is a maximal torus in SL(n, C) and that A7 ;... (£ (7)) is the intersection with T of the
normalizer of T in SL(n, C). More on this in § 5 below.

Example 3. Consider an integer n > 2, the group I' = SL(n, Z) and the subgroup T',, of
upper triangular matrices in I" (with diagonal entries + 1).
Then I’y is its own commensurator in T,

Proof. Let Flag(C") be the set of complete flags in C". Let S be the subset of T consisting
of matrices which have precisely one Jordan block. Then, for the action of I on
Flag(C"), one has & (y) = # (y") and | (y)| = 1 for all y € S. This ends the proof because
I, is the stabilizer of the flag C =« C* < --- < C"~ ! associated to the canonical basis of
c. |

Consider the group I' = SL(3, Z). For a subgroup I'y=I'n P, as in Example 1, it
follows from Lemma 2.3 that the irreducible representation A . is not weakly con-
tained in . But for a subgroup 'y = A} p.-1o)(# (7)) as in Example 2 or for the
triangular subgroup I'y of Example 3, one has A <4, by Lemma 2.3, and conse-
quently A ~ 4 by [BCH].

There are examples of self-commensurizing subgroups of braid groups and of related
groups in [FRZ] and in [Par].

4. Groups of isometries of hyperbolic spaces

4.1. Let X bea Gromov hyperbolic space; let X (c0) beits Gromov boundary and Is(X)
its group of isometries. Then Is(X) acts on X (c0) and on S2 X (c0), the set of unordered
pairs of points in X (c0).

Let T be a subgroup of Is(X). Denote by X (o), = X (o) the set of fixed points of
parabolic elements in T and by S2X(00), = S?X(c0) the set of fixed point sets of
hyperbolic elements in I
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PROPOSITION 4.1

The action of T on
X(0),] | S X (c0),

has noncommensurable stabilizers.

Proof. Let T, denote the set of non elliptic elements in I". For the I'-action on X (o)
and for each yeI',, one has

'gb—X(oo)(y) = yx(w)('y") fOI' all n Z 1

and # . \(y)is of cardinality 1 or 2 depending on whether y is parabolic or hyperbolic.
Thus Proposition 4.1 follows from Lemma 3.3. O

Remark. For each hyperbolic element y €T, recall that the cyclic group y* is of finite
index in the group %= 2 s2x000) (Fx(o)(7)); s€€ €.8. [GhH, chap. 8, n® 33]; in particular,
the group Zis amenable. By Lemma 2.3, the quasi-regular representation A, is weakly
contained in the regular representation Ar.

Assume moreover that X is a discrete space which has at most exponential growth
and that I" < Is(X) is a discrete subgroup. For each parabolic element y e I', the group
Z=2Z x()F x()(7)) 1s amenable (see Proposition 1.6 in [BuM]), so that one has also
Arjy=<Ar. Indeed, the set

{gr,xm)(wnwe X(Oo)pu SZX(OO)h}

coincides with the set of all maximal amenable infinite subgroups of I" [Ada].

In case I is a Gromov hyperbolic group, the set X (o), is empty because there is no
parabolic. If T is moreover torsion free, then & () is infinite cyclic for all w € S 2 X{(00),.

It is known that the reduced C*-algebra of a torsion free Gromov hyperbolic group
I' is simple [Har]. From this and Lemma 2.3, it follows that the quasi-regular
representation Ap, ., IS quasi-equivalent to the regular representation 4 for each
weS?X(00), '

For a nonabelian free group, this is Proposition 1 of [Boz], itself a paper strongly
motivated by [Yos].

4.2. Let now X be a proper CAT(-1)-space and let
%X = {c:R — X]|c is isometric}

be the space of parametrized geodesics in X with the topology of uniform convergence
on compactas. The action of R on 4X via reparametrizations

gc§)=c(s+1t), ce¥9X, steR

commutes with that of Is(X) and defines for any discrete subgroup I' < Is(X) a flow on
IN\#%X, called the geodesic flow. We recall that, for a discrete divergence group
I' < Is(X), there is a canonical Patterson—Sullivan measure mpg on I'\%X which is
invariant and ergodic for the geodesic flow. The notion of a divergence group is
borrowed from Patterson—Sullivan theory of Kleinian groups ([Pat], [Sul]; see also
[Bou], [Coo], [CoP] which is generalized to CAT(-1)-spaces in [BuM]).



230 Marc Burger and Pierre de la Harpe
PROPOSITION 4.2

Let A < Is(X) be a discrete subgroup. Let
F(A)={T < AT is a divergence group with mys(I'\%X) < o0}

be endowed with the ordering given by inclusion and let € — (A} be a commensurability
class.

Then € has a unique maximal element T',, and this subgroup T, satisfies
Com, I',=T'y,. Moreover, if ~ denotes the relation of commensurability on S (A), the
action of A on £ (A)/ ~ by conjugation is N.C.S.

In particular, for each T’ < & (A), the quasi-regular representation A, . is a finite sum of
irreducible representations, if I, =Com,(I), then I is of finite index in T, and 4, is
irreducible.

Remarks. (i) LetI” < Is(X)beanon-elementary discrete subgroup, % < X (co)its limit
setand Q. = Co(Z;) c X the convex hull of thelatter. If "\ Q - is compact (that is, if ' is
convex-cocompact) then I' is a divergence group with m(I'\%9X) < oo; see [Bou].
(ii) Let X be a symmetric space of rank 1 and I" <Is(X) a geometrically finite
subgroup (see [Bow]). Then I' is a divergence group with m((I'\9X) < 0.

Example. Let A < PSL(2,R) be a discrete subgroup. Then $(A) contains all finitely
generated non virtually cyclic subgroups of A. Indeed, such subgroups are non-
elementary and geometrically finite.

Thus, for a finitely generated infinite subgroup I' of A, the quasi-regular representa-
tion 4, - is a finite sum of irreducible representations: this follows from Proposition 4.1
if I' is virtually cyclic, in which case 4, <4, and from Proposition 4.2 in other cases,
for which 4, K 4,.

Proof of Proposition4.2. It suffices to show that, given a discrete divergence group
Io<Is(X) with m,(T'\9X)<c and a discrete subgroup T <Is(X) with
[y < T < Comyy,(Ty), the subgroup Iy is of finite index in I'.

Indeed, assuming this is true, consider the commensurability class € of a subgroup I',
of A which is in &£ (A). Setting I', = Com, (I" ) one has I, of finite index in I'; one has
therefore 'y € #(A) and Com, I', = T',. As any group commensurable with "y isin 'y,
the latter group is clearly the unique maximal element of €. The last claim of the
proposition is now obvious.

For the convenience of the reader we recall the construction of m,g (see § 1.3 in
[BuMT). Let J be the critical exponent of 'y, let p: X — M ™ (X(o0)) be the d-dimensional
Patterson—Sullivan density for I'y and let (£]y), denote the Gromov scalar product of £,
ne X (o0). Using the I'-invariant measure

du,(§) x du,(S)
o — 25,

on X (o) x X(00)\{diagonal}, one obtains a I'-invariant and geodesic-flow invariant
measure m, on %X, the Patterson—Sullivan measure m, is then the corresponding
geodesic-flow invariant measure on I'\9X.
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We recall furthermore that y u, =p  for all yeI'y, xe X, and that there exists
a homomorphism y: Comy,,(I'g) > R% such thaty u, = x(y)u, for all y € Comy,, ('),
x€ X. From this follows y i1, = x(7)? m, for all y e Comy,,([,) (see [BuM], Corollary
6.5.3).

Since I acts properly discontinuously on 4X, there exists a compact set K < 4X of
positive i, -measure such that yK n K = O forallyeI withy # e.(WeargueasifI" was
acting effectively on #X; when it is not the case, we leave the minor appropriate changes
to the reader.) For a set 7 < I of representatives of I',\T’, the set | | .- 7K injects into
I')\%X and therefore

<Zyx(r)2)r7:“(K) =rh“( LL rK) < mp(To\¥X) < .

Hence, since x|I", = 1, we obtain.
Y () < 0.

1el\T
For every yeT’, we have thus
< > x(f)2>x(v)2 = ) xo)
el \I , gelC\I"

which shows first that y(y)> =1 for all ye I and second that [[',\I'| < co. |

5, Maximal tori and actions of lattices with noncommensurable stabilizers

Let G be a linear algebraic group defined over R, let I' < G(R) be a discrete subgroup
and set

I (I ={T = G|T is a maximal R-split torus such that T(R)/(T(R)nI") is compact}.
PROPOSITION 5.1

The T-action by conjugation on 7 (I') is N.C.S.

Here and in the sequel, we will use the following simple lemma.

Lemma 5.2. Let G be a linear gl_gebraic group and let A,, A, be two commensurable
subgroups of G. Then (A4,)° = (4,)°.

Proof of Proposition 5.1. We have to show that, given T,T' €7 (I') such that
A (T)NTI" and A5(T')NT are quasiconjugate in I, then T and T’ are I'-conjugate.

First we observe that, for T e 7 (I), the group (AL (THR)I)/(T(R)N T} is finite.
Indeed, since T(R)AT(R)T') is compact, the canonical map

He(MRUTR)NAT) — A (T)R)/T(R)
is proper and therefore (A5 (T)HR) )T (R)~T)is a discrete subgroup of the compact
group A (M(R)/T(R).
If now AG(T)NT and A,(T')NT are quasiconjugate in I', there exist A < T(R)n T
of finite index and yeI such thit yAy~ ' is of finite index in I~ T'(R). Passing to

Zariski closure, we obtain T' = yAy ' =7Ty . O
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Examples. (1) Let G be a semisimple R-group and I' < G(R) a lattice. Then 7 (T') # §;
this follows from the existence of R-hyper-regular elementsin I' [PrR]. Indeed, for such
a yeT, the centralizer & 4(y) contains an R-split torus T which is maximal in G and
such that T(R)/(I" » T(R)) is compact.

(2) Let 2 be the set of primitive indefinite integral binary forms

O(X,Y)=aX?+bXY +cY?

with a > 0. Then the map which to every Q e 2 associates SO(Q)° gives a bijection
between 2 and the set of R-split tori T = SL(2) for which SL(2, Z)n T (R) is a lattice in
T(R):

P =T (SL2,2)).

(3)Itis a general fact due to Ono [Ono] that, for a Q-torus T with X o (T) = 1, the group
T(R)/T(Z)is compact. Hence, given a semisimple Q-group G, the set 7 (G(Z)) contains
all Q-torii T which are maximal R-split and such that X,(T) = 1. As examples of such
torii in SL(n), let K/Q be a totally real number field or degree n, let
H =Resy,( GL, =« GL, and T =HNSL(n). The group %, of units of K is abelian of
rank n — 1 and isomorphic to H(Z). As T(Z) is of index at most two in H(Z), the torus
T(Z) is of rank n — 1 and hence T(R)/T(Z) is compact.

6. Algebraic subgroups and actions of arithmetic lattices with noncommensurable
stabilizers
In this section G denotes a connected linear algebraic Q-group; let

& = {H|H is a connected Q-subgroup of G, of finite index in A (H(Z)°)}.

We will show below that if H is a connected Q-subgroup of G, one always has the
inclusion

H < 4, (H(@)°).
PROPOSITION 6.1

The action by conjugation of G(Z) on ¥ is N.CS. and & contains all parabolic
Q-subgroups of G.

Lemma 6.2. Let H be a Q-subgroup of G.

(1) A(H) (@) < Comg(H(Z))

) HoH)° < N (HD))

Proof of Lemma 6.2. Let us first show the implication (1) == (2). As A (H) is defined
over O, one has

N (H)° < A (HNQ)

by a theorem of Rosenlicht [Bor, 18.3]. On the other hand Lemma 5.2 implies
Comg(H(2)) < A5(H(2))

and hence (1) implies (2).
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In order to prove (1) we may assume that H is connected. Let Xo(H) be the set of
Q-characters of H and set
Ho= () Kery.

r€X Q(H)

Clearly, H,(Z) is a subgroup of finite index in H(Z) and it follows from [BHC] that
Ho(2) is a lattice in Hy(R). Observe also that A (H)(Q) acts on X4(H) and hence
normalizes H,.

Let G < GL(n, C) for some n, fix ge A (H)(Q) and choose an integer m = 1 such that
mg and mg ™! are in M,(Z). For the subgroup

[ ={yeHy(2)|y =id mod m?},

we have gT'g™" = M,(Z) and det(gT'g~!) = {1,— 1}; hence gT'g ! < Hy(Z). Further-
more, I is of finite index in H,(Z) and since H,(Z) is a lattice in H,(R), the conjugate
glg ™" is of finite index in Hy(Z) as well. Hence

g€ Comg(H,(2)) = Comg(H(Z)). m;

Proof of Proposition6.1. For the first assertion, take H,,H,e% such that
N (H)(Z) and HG(H,)(Z) are commensurable, hence A (H,)%(Z) and A;(H,)°(2Z)
are also commensurable. Since H; is connected, we have H; < #(H,)° and since
H;€ ¥, Lemma 6.2.2 implies that Hi; is of finite index in A (H,)°, in particular H,(2)
and H,(Z) are commensurable. This implies H 1(Z)0 = HZ(Z)O, and hence

H, = Ho(1,2)") = H5((H,@°) = H,.

For the second assertion, let P be a parabolic Q-subgroup of G. Since P < A (P (Z)O),
the subgroup P’ = /VG([F”(Z)O) is Q-parabolic and hence £#,(P') < %,(P). Since [P’(Z)0 is
normal in P’ we have

R,(P2)°) < R,(P).

On the other hand, #,(P){(Z) = #,(P) and hence #,(P) is a (normal) subgroup of P (Z)o,
which implies .%,,(IP(Z)O) > &,(P). This finally shows that %,(P) = £,("’) and hence
P=P. O

Examples. Assume G to be a semi-simple, defined over @ and Q-simple. Let H be
a connected semi-simple Q-subgroup of G which is maximal as a Q-subgroup. Then
H = A4(H), and hence H =Comg(H) by Lemma 5.2. Observe that G(Z) is a lattice in
G(R) and that H(Z) is a lattice in H(R), by [BHC].

Maximal subgroups of the classical groups have been classified by Dynkin [Dyn]. In
case G is SL(n, C) with its standard Q-structure, examples of subgroups H as above
include (to quote but a few):

(i) orthogonal groups SO(q) = SL(n, C)for a non degenerate quadratic form q over Q.
(ii) the symplectic group Sp(n, C) < SL(n, C) (neven),
(iii) the images of the fundamental representations SL(m, C) - SL((7), C).
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