Constructing irreducible representations of discrete groups

MARC BURGER and PIERRE DE LA HARPE*

Institut de Mathématiques, Université de Lausanne, Dorigny, CH-1015 Lausanne, Suisse e-mail: Marc.Burger@ima.unil.ch * Section de Mathématiques, Université de Genève, C.P. 240, CH-1211 Genève 24, Suisse

CORE [Metadata, citation and similar papers at core.ac.uk](https://core.ac.uk/display/159149399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1)

e-mail: Pierre.delaHarpe@math.unige.ch

MS received 11 October 1996

Abstract. The decomposition of unitary representations of a discrete group obtained by induction from a subgroup involves commensurators. In particular Mackey has shown that quasi-regular representations are irreducible if and only if the corresponding subgroups are self-commensurizing. The purpose of this work is to describe general constructions of pairs of groups $\Gamma_0 < \Gamma$ with Γ_0 its own commensurator in Γ . These constructions are then applied to groups of isometries of hyperbolic spaces and to lattices in algebraic groups.

Keywords. Commensurator subgroups; unitary representations; quasi-regular representations; Gromov hyperbolic groups; arithmetic lattices.

1. Introduction

Let G be a separable locally compact group. The *unitary dual G* of G is the set of equivalence classes of irreducible representations of G, together with its Mackey Borel structure. In this paper, "representation" means "continuous unitary representation in a separable Hilbert space".

Let us recall the definition of this structure [Dix, 18.5]. For each $n \in \{1, 2, ..., \infty\}$, let Irr_n (G) denote the space of all irreducible representations of G in a given Hilbert space of dimension n. The set Irr_n (G) is endowed with the topology of the weak simple convergence on G (making the functions $\pi \mapsto \langle \pi(q)\xi | n \rangle$ continuous for all $q \in G$ and ξ , η in the Hilbert space of dimension n), and with the corresponding Borel structure. The dual \hat{G} is the quotient of $\prod_{1 \leq n \leq \infty}$ Irr_n (G) by unitary equivalence, and the Mackey Borel structure on \hat{G} is the quotient of the previously defined Borel structure.

In case of a countable group Γ , it follows from results of Glimm and Thoma that $\widehat{\Gamma}$ is a standard Borel space if and only if Γ is virtually abelian (see [Dix], numbers 9.1, 9.5.6 and 13.11.12, or $[Ped, 6.8.7]$; in this case the representation theory of Γ is well understood. In all other cases there is no natural Borel coding of $\hat{\Gamma}$, i.e. $\hat{\Gamma}$ is not countably separated; for lack of a systematic procedure of constructing all irreducible representations of F, a natural problem is to construct large classes of irreducible representations.

Recall that two subgroups G_0 and G_1 of a group G are *commensurable* if $G_0 \cap G_1$ is of finite index in both G_0 and G_1 . The *commensurator* of G_0 in G is defined to be

 $Com_G(G_0) = \{g \in G | G_0 \text{ and } gG_0g^{-1} \text{ are commensurable}\}.$

Let $(\Gamma_i)_{i \in I}$ be a family of pairwise non conjugate subgroups of a countable group Γ such that Com_r $(\Gamma_i) = \Gamma_i$ for all $i \in I$. It follows from work of Mackey (see e.g. [Mac], and § 2 below) that unitary induction provides a well defined and *injective* map

$$
\coprod_{i\in I}\widehat{\Gamma_i^d}\,\c \widehat{\Gamma},
$$

where $\widehat{\Gamma}^{\widehat{d}}$ denotes the subset of $\widehat{\Gamma}$, consisting of finite dimensional representations.

Our aim in this paper is to construct actions with noncommensurable stabilizers and pairs of groups $\Gamma_0 < \Gamma$ such that $Com_\Gamma(\Gamma_0) = \Gamma_0$. More generally, we construct also pairs $\Gamma_0 < \Gamma$ such that Γ_0 is a subgroup of finite index in Com_r(Γ_0); in this case, the quasiregular representation of Γ in $l^2(\Gamma/\Gamma_0)$ is a *finite* direct sum of irreducible representations.

In $\S 2$, we recall some classical results on unitary representations. Section 3 provides elementary examples of pairs of groups $\Gamma_0 < \Gamma$ with Γ_0 its own commensurator in Γ . We consider groups of isometries of Gromov hyperbolic spaces in $\S 4$. Then, for a lattice Γ in the group of real points of a linear algebraic group G defined over R, we consider actions of Γ on appropriate sets of maximal tori in § 5 and on other sets of subgroups of G in § 6; in each case, we find classes of irreducible quasi-regular representations of Γ .

Note on terminology. Commensurators have been known under various names, such as quasinormalizers [Cor], commensurizers [KrR] and commensurability subgroups [Mar]. We follow the terminology of [Shi, Chapter 3] and [A' B].

2. Commensurators and induced representations

Let Γ be a discrete group, $\Gamma_0 < \Gamma$ a subgroup and $\lambda_{\Gamma/\Gamma_0}$ the left regular representation of Γ in $l^2(\Gamma/\Gamma_0)$.

A double class $\dot{x} \in \Gamma_0 \setminus \text{Com}_r(\Gamma_0)/\Gamma_0$ represented by some $x \in \text{Com}_r(\Gamma_0)$ corresponds to a *finite* Γ_0 -orbit $\Gamma_0 x \Gamma_0$ in Γ/Γ_0 , and the mapping $\Gamma_0 \to \Gamma/\Gamma_0$ applying z to $z x \Gamma_0$ induces a bijection of $\Gamma_0/(\Gamma_0 \cap x \Gamma_0 x^{-1})$ onto $\Gamma_0 x \Gamma_0$. Consequently, x gives rise to *a bounded* intertwining operator $T_{\rm x}$ of $\lambda_{\rm F/F}$, which is defined by

$$
(T_{\dot{x}}f)(y\Gamma_0) = \sum_{\zeta \in \Gamma_0/(\Gamma_0 \cap x\Gamma_0 x^{-1})} f(y\zeta x\Gamma_0)
$$

for all $f \in l^2(\Gamma/\Gamma_0)$ and for all $y \Gamma_0 \in \Gamma/\Gamma_0$.

It is then a fact (see [Bin], Theorem 2.2) that the linear space generated by

$$
\{T_{\mathbf{x}}: l^2(\Gamma/\Gamma_0) \to l^2(\Gamma/\Gamma_0) | \mathbf{x} \in \Gamma_0 \setminus \text{Com}_{\Gamma}(\Gamma_0)/\Gamma_0 \}
$$

is weakly dense in the space Int($\lambda_{\Gamma/\Gamma}$) of bounded intertwining operators of $\lambda_{\Gamma/\Gamma}$. Hence, if $\Gamma_0 \setminus \text{Com}_{\Gamma}(\Gamma_0)$ is finite, we have

dim Int
$$
(\lambda_{\Gamma/\Gamma_o})
$$
 = Card $(\Gamma_0 \setminus Com_\Gamma(\Gamma_0)/\Gamma_0)$

and $\lambda_{\text{F/E}}$ is a finite direct sum of irreducible representations. In particular $\lambda_{\text{F/E}}$ is irreducible if and only if $Com_r(\Gamma_0) = \Gamma_0$.

The above considerations then lead to the following theorem. Here and in the sequel we call two subgroups Γ_0 , Γ_1 of Γ *quasiconjugate* if there exists $\gamma \in \Gamma$ such that Γ_0 and $\gamma \Gamma_1 \gamma^{-1}$ are commensurable.

Theorem 2.1 [Mackey]. Let Γ be a discrete group and let Γ_0 , Γ_1 be subgroups of Γ . (1) The representation $\lambda_{\Gamma/\Gamma_c}$ is irreducible if and only if $\text{Com}_{\Gamma}(\Gamma_0) = \Gamma_0$, in which case Ind $_{\Gamma_{\alpha}}^{F}(\pi)$ is irreducible for any $\pi \in \Gamma_0^{\gamma_d}$, and unitary induction

$$
\operatorname{Ind}_{\Gamma_0}^{\Gamma}:\widehat{\Gamma_0^{\mathcal{U}}}\longrightarrow \widehat{\Gamma}
$$

is an injective map.

(2) If $\text{Com}_r(\Gamma_i) = \Gamma_i$, $i = 0, 1$, then $\lambda_{\Gamma/\Gamma_i}$ and $\lambda_{\Gamma/\Gamma_i}$ are unitarily equivalent if and only if Γ_0 *and* Γ *are quasiconjugate in* Γ *.*

In case Γ_0 *and* Γ_1 *are not quasiconjugate in* Γ *, if* π_0 *, respectively* π_1 *, are finite dimensional irreducible unitary representations of* Γ_0 , *respectively* Γ_1 , *then* $\text{Ind}_{\Gamma_1}^{\Gamma}(\pi_0)$ *and* $\text{Ind}_{\Gamma}^{\Gamma}(\pi_1)$ *are not equivalent.*

Remark. We do not know whether the condition $\pi \in \widehat{\Gamma}_0^d$ in (1) can be replaced by $\pi \in \widehat{\Gamma}_0$.

Let us restate the previous Theorem in a slightly different way. Let Γ be a discrete group acting on a set A , and denote by

 $\mathscr{Z}_{\Gamma}(a) \doteqdot \{ \gamma \in \Gamma | \, \gamma a = a \}$

the stabilizer of a point $a \in A$; if more precision is needed, we write $\mathscr{L}_{r,A}(a)$ for $\mathscr{L}_{r}(a)$.

DEFINITION

The action $\Gamma \times A \longrightarrow A$ has *noncommensurable stabilizers* (N.C.S.) if any two points a_1 , $a_2 \in A$ with commensurable stabilizers coincide.

The following lemma is an easy observation.

Lemma 2.2. (1) Let $\Gamma \times A \longrightarrow A$ be a N.C.S. action. For $a_1, a_2 \in A$ and $\gamma \in \Gamma$, we have $\gamma a_1 = a_2$ if and only if $\gamma \mathscr{Z}_r(a_1)\gamma^{-1} = \mathscr{Z}_r(a_2)$, if and only if $\gamma \mathscr{Z}_r(a_1)\gamma^{-1}$ and $\mathscr{Z}_r(a_2)$ are *commensurable.*

In particular $(\mathscr{Z}_{\Gamma}(a))_{a \in A}$ *is a set of self-commensurizing subgroups of* Γ *, two subgroups* $Z_r(a_1)$, $Z_r(a_2)$ of the set being quasiconjugate if and only if a_1 , a_2 are in the same Γ -orbit. (2) Let $\mathscr G$ be a set of self-commensurizing subgroups of Γ which is stable under *conjugation. Then the action of* Γ *on* $\mathscr G$ *by conjugation is N.C.S.*

It follows from Theorem 2.1 and Lemma 2.2. that, for a N.C.S. action $\Gamma \times A \longrightarrow A$, unitary induction

$$
\text{Ind:} \prod_{a \in \Gamma \setminus A} \overline{\mathscr{X}_{\Gamma}(a)^{fd}} \longrightarrow \widehat{\Gamma}
$$

is an injective map.

For later use we record the following general fact. Let π , ρ be unitary representations of a group Γ . We write $\pi \lt p$ to express that π is *weakly contained* in ρ [Dix, 18.1.3], and $\pi \sim \rho$ to express that π and ρ are *weakly equivalent* [namely that $\pi \prec \rho$ and $\rho \prec \pi$].

Lemma 2.3. Let Γ_0 *be a subgroup of* Γ . Then $\lambda_{\Gamma/\Gamma_0} \prec \lambda_{\Gamma}$ *if and only if* Γ_0 *is amenable.*

Proof. If Γ_0 is amenable, $1_{\Gamma_0} \ll \lambda_{\Gamma_0}$ and hence $\lambda_{\Gamma/\Gamma_0} = \text{Ind}_{\Gamma_0}^{\Gamma}(1_{\Gamma_0}) \ll \text{Ind}_{\Gamma_0}^{\Gamma}(\lambda_{\Gamma_0}) = \lambda_{\Gamma}$.

Conversely, since 1_{Γ_n} is contained in Res_{$\Gamma_n(\lambda_{\Gamma/\Gamma_n})$} and since $\text{Res}_{\Gamma_n}(\lambda_{\Gamma})$ is a multiple of $\lambda_{\Gamma_{\alpha}}$, the assumption $\lambda_{\Gamma/\Gamma_{\alpha}} < \lambda_{\Gamma}$ implies

$$
1_{\Gamma_{\alpha}} < \text{Res}_{\Gamma_{\alpha}}(\lambda_{\Gamma/\Gamma_{\alpha}}) \prec \text{Res}_{\Gamma_{\alpha}}(\lambda_{\Gamma}) \sim \lambda_{\Gamma_{\alpha}}
$$

and hence Γ_0 is amenable.

3. Elementary examples of N.C.S. actions

Define a group action $G \times A \rightarrow A$ to be *large* if, for all $a \in A$, all $\mathscr{L}_G(a)$ -orbits in $A \setminus \{a\}$ are infinite. The next lemma is a convenient tool for constructing N.C.S. actions.

Lemma 3.1. (1) *A large action is N.C.S.*

(2) Let $G \times A \rightarrow A$ be a large transitive action and let $\Gamma < G$ be a subgroup such that $Com_G \Gamma = G$. Assume that there exists a point $a_0 \in A$ such that all $\mathscr{Z}_{\Gamma,A}(a_0)$ -orbits in $A \setminus \{a_0\}$ are infinite. Then the restricted action $\Gamma \times A \rightarrow A$ is large.

Proof. (1) For a large action $G \times A \rightarrow A$ and for two points $a_1, a_2 \in A$ with $\mathscr{L}_G(a_1)$ and $\mathscr{Z}_G(a_2)$ commensurable, the $\mathscr{Z}_G(a_1)$ -òrbit of a_2 is finite and hence $a_1 = a_2$.

(2) For $a \in A$ and $g \in G$ such that $ga_0 = a$, the $\mathscr{L}_{\Gamma,A}(a)$ -orbits in $A \setminus \{a\}$ are infinite if and only if the $(g^{-1} \mathscr{Z}_{\Gamma,A}(a)g)$ -orbits in $A \setminus \{a_0\}$ are infinite. Since

 $g^{-1} \mathscr{Z}_{r,A}(a)g = g^{-1}\Gamma g \cap \mathscr{Z}_{G,A}(a_0)$

and $G = \text{Com}_G \Gamma$, the subgroup

$$
\Delta_0 = \mathscr{Z}_{\Gamma,A}(a_0) \cap g^{-1} \mathscr{Z}_{\Gamma,A}(a)g = Z_{\Gamma,A}(a_0) \cap g^{-1} \Gamma g
$$

is of finite index in $\mathscr{L}_{r,A}(a_0)$. In particular all Δ_0 -orbits in $A \setminus \{a_0\}$ are infinite and the same holds therefore for $g^{-1}Z_{\Gamma,A}(a)g$.

(Claim (1) of Lemma 3.1 is a straightforward generalization of Theorem 4 in [Oba], which delas with doubly transitive actions on infinite sets.)

Example 1. Let K be an infinite field and let $Gr_k(K^n)$ denote the Grassmannian of k-dimensional subspaces of \mathbb{K}^n , where *n*, *k* are integers with $n \geq 2$ and $1 \leq k \leq n-1$.

The natural action of $GL(n,\mathbb{K})$ on $Gr_k(\mathbb{K}^n)$ is N.C.S.

If K is a number field and if \mathcal{O}_K denotes its ring of integers, the action of $GL(n, \mathcal{O}_K)$ on $Gr_k(\mathbb{K}^n)$ is N.C.S.

Proof. For two distinct points y_1, y_2 in $Gr_k(\mathbb{K}^n)$, the maximal parabolic subgroup

$$
P_{v} \doteq \{ g \in GL(n, \mathbb{K}) | gy_1 = y_1 \}
$$

acts transitively on the infinite subset

$$
\{y \in \operatorname{Gr}_{k}(\mathbb{K}^{n}) | \dim_{k}(y \cap y_{1}) = \dim_{k}(y_{2} \cap y_{1})\}
$$

of the Grassmannian. Hence the transitive action of $GL(n, \mathbb{K})$ on $Gr_k(\mathbb{K}^n)$ is large; in particular P_v is its own commensurator in $GL(n, K)$ for all $y \in G_k(K^n)$.

Let K be now a number field. If $y_0 \in \text{Gr}_k(\mathbb{K}^n)$ denote the subspace spanned by the first k vectors of the canonical basis of \mathbb{K}^n and if $\Gamma = GL(n, \mathcal{O}_{\mathbb{K}})$, one has

(with the block of zeros having $n - k$ rows and k columns). Let $y_1 \in \text{Gr}_{k}(\mathbb{K}^n) \setminus \{y_0\}$; set $l = k - \dim_k(\gamma_0 \cap y_1)$. We identify K''/y_0 with the vector space K^{n-k} . The actions of P_{y_0} on \mathbb{K}^n and on $\{g \in \text{Gr}_k(\mathbb{K}^n) | \dim(y \cap y_0) = \dim(y_1 \cap y_0) \}$ factor as actions of *GL(n-k,* K) on \mathbb{K}^{n-k} and $\text{Gr}_{l}(\mathbb{K}^{n-k})$ respectively, so that the action of $\mathscr{Z}_{\Gamma}(y_0)$ on $Gr_k(\mathbb{K}^n)\setminus \{y_0\}$ factors as an action of $GL(n-k, \mathcal{O}_{\mathbf{K}})$ on $Gr_k(\mathbb{K}^{n-k})$. The latter action has clearly all its orbits infinite, since the Zariski closure of $GL(n - k, \mathcal{O}_{\kappa})$ contains that of $GL(n-k, \mathbb{Z})$ and thus contains $SL(n-k, \mathbb{C})$. It follows first that all orbits of $\mathscr{L}_r(y_0)$ on $Gr_k(\mathbb{K}^n)\setminus \{y_0\}$ are infinite, and second that $\mathscr{Z}_{\Gamma}(y) = \Gamma \cap P_y$ is its own commensurator in $\Gamma = GL(n, \mathcal{O}_{\kappa})$ for all $y \in Gr_{\kappa}(\mathbb{K}^{n})$. \Box

We observe the following consequence of Example 1.

PROPOSITION 3.2

The unitary representation π of $SL(n, \mathbb{Z})$ *in* $L^2(\mathbb{R}^n/\mathbb{Z}^n)$ *is an orthogonal direct sum of irreducible representations.*

Proof. By Fourier transform, π is equivalent to the permutation representation of $SL(n, \mathbb{Z})$ in $l^2(\mathbb{Z}^n)$; the latter is a direct sum of quasi-regular representations $\pi_k \doteq \lambda_{SL(n,\mathbb{Z})/\Gamma_k}$, where Γ_k denotes the stabilizer of $(k, 0, \ldots, 0) \in \mathbb{Z}^n$ in $SL(n,\mathbb{Z})$, for all $k \geq 0$. The one-dimensional representation π_0 is irreducible. For $k \ge 1$, and Γ'_k the stabilizer of $(k:0:\cdots:0) \in \mathbb{P}^{n-1}$ (Q), Mackey's result and Example 1 imply that $\lambda_{SL(n,2)/\Gamma'}$ is irreducible. As Γ_k is of index 2 in Γ'_k , the representation π_k is either irreducible or sum of 2 irreducibles. \square

For a group action $G \times A \rightarrow A$ and subsets $B \subset A$, $S \subset G$ we set

$$
\mathscr{Z}_{G,A}(B) \doteq \bigcap_{b \in B} \mathscr{Z}_{G,A}(b)
$$

$$
\mathscr{N}_{G,A}(B) \doteq \{g \in G \mid g(B) = B\}
$$

and $\mathscr{F}_4(S)$ the set of common fixed points of elements in S. Observe that

$$
\mathcal{N}_{G,A}(B)=\mathscr{Z}_{G,\mathscr{P}(A)}(B),
$$

where $\mathcal{P}(A)$ denotes the power set of A.

Lemma 3.3. *Let* $G \times A \rightarrow A$ *be an action and let* $S \subset G$ *be a union of conjugacy classes of G such that*

$$
\mathscr{F}_A(g)=\mathscr{F}_A(g^n) \quad \text{and} \quad |\mathscr{F}_A(g)|<\infty
$$

for all $g \in S$ *and for all* $n > 1$ *. Then the action of G on the set*

$$
\{F \in \mathcal{P}(A) | F = \mathcal{F}_A(g) \text{ for some } g \in S\}
$$

is N.C.S.

Proof. Let g, $h \in S$ be such that the subgroups $\mathcal{N}_{G,A}(\mathscr{F}_{A}(g))$ and $\mathcal{N}_{G,A}(\mathscr{F}_{A}(h))$ are commensurable in G. Since $\mathcal{F}_A(g)$ and $\mathcal{F}_A(h)$ are both finite subsets of A, the subgroup

$$
K \doteq \mathscr{Z}_{G,A}(\mathscr{F}_{A}(g)) \cap \mathscr{Z}_{G,A}(\mathscr{F}_{A}(h))
$$

is of finite index in $\mathscr{L}_{G,A}(\mathscr{F}_{A}(g))$ and $\mathscr{L}_{G,A}(\mathscr{F}_{A}(h))$.

Hence there exists an integer $N \ge 1$ such that q^N and h^N are in K. One has

$$
\mathscr{F}_A(g) = \mathscr{F}_A(g^N) \supset \mathscr{F}_A(K) \supset \mathscr{F}_A(\mathscr{L}_{G,A}(\mathscr{F}_A(h))) = \mathscr{F}_A(h)
$$

and similarly $\mathcal{F}_A(h) \supset \mathcal{F}_A(g)$, so that $\mathcal{F}_A(h) = \mathcal{F}_A(g)$.

Example 2. Consider a subgroup Γ of $SL(n, \mathbb{C})$ and an element $\gamma \in \Gamma$ which is diagonalizable with eigenvalues $\lambda_1, \ldots, \lambda_n$ and which is regular in the following sense: one has $\lambda_i^N \neq \lambda_i^N$ for each integer $N \geq 1$ whenever j, k are distinct in $\{1, \ldots, n\}$; in other words, the fixed point set $\mathcal{F}(\gamma)$ of γ in $\mathbb{P}^{n-1}(\mathbb{C})$ has cardinality n and $\mathcal{F}(\gamma^N) = \mathcal{F}(\gamma)$ for all integers $N \in \mathbb{Z}$, $N \neq 0$. Then the subgroup

 \mathcal{N}_{Γ} p_{n-1} _(c)($\mathcal{F}(\gamma)$) = { $\gamma' \in \Gamma | \gamma'$ permutes the eigen-directions of γ }

of Γ is its own commensurator in Γ by Lemma 3.3. (This subgroup of Γ is distinct from Γ itself as soon as Γ is not virtually abelian.)

Observe that the group

$$
\mathbb{T} \doteq \mathscr{Z}_{SL(n,\mathbb{C}),\mathbf{P}^{n-1}(\mathbb{C})}(\mathscr{F}(\gamma))
$$

is a maximal torus in $SL(n, \mathbb{C})$ and that $\mathcal{N}_{\Gamma, \mathbf{P}^{s-1}(\mathbb{C})}(\mathcal{F}(\gamma))$ is the intersection with Γ of the normalizer of $\mathbb T$ in *SL(n, C)*. More on this in § 5 below.

Example 3. Consider an integer $n \ge 2$, the group $\Gamma = SL(n, \mathbb{Z})$ and the subgroup Γ_0 of upper triangular matrices in Γ (with diagonal entries \pm 1).

Then Γ_0 is its own commensurator in Γ .

Proof. Let Flag(\mathbb{C}^n) be the set of complete flags in \mathbb{C}^n . Let S be the subset of Γ consisting of matrices which have precisely one Jordan block. Then, for the action of Γ on Flag(Cⁿ), one has $\mathscr{F}(\gamma) = \mathscr{F}(\gamma^n)$ and $|\mathscr{F}(\gamma)| = 1$ for all $\gamma \in S$. This ends the proof because Γ_0 is the stabilizer of the flag $\mathbb{C} \subset \mathbb{C}^2 \subset \cdots \subset \mathbb{C}^{n-1}$ associated to the canonical basis of \mathbb{C}^n .

Consider the group $\Gamma = SL(3, \mathbb{Z})$. For a subgroup $\Gamma_0 = \Gamma \cap P_r$ as in Example 1, it follows from Lemma 2.3 that the irreducible representation $\lambda_{\Gamma/\Gamma_0}$ is not weakly contained in λ_{Γ} . But for a subgroup $\Gamma_0 = \mathcal{N}_{\Gamma, \mathbf{P}^{n-1}(\mathbb{C})}(\mathcal{F}(\gamma))$ as in Example 2 or for the triangular subgroup Γ_0 of Example 3, one has $\lambda_{\Gamma/\Gamma} \ll \lambda_r$ by Lemma 2.3, and consequently $\lambda_{\Gamma/\Gamma_0} \sim \lambda_\Gamma$ by [BCH].

There are examples of self-commensurizing subgroups of braid groups and of related groups in [FRZ] and in [Par].

4. Groups of isometries of hyperbolic spaces

4.1. Let X be a Gromov hyperbolic space; let $X(\infty)$ be its Gromov boundary and Is(X) its group of isometries. Then Is(X) acts on $X(\infty)$ and on $S^2 X(\infty)$, the set of unordered pairs of points in $X(\infty)$.

Let Γ be a subgroup of Is(X). Denote by $X(\infty)_p \subset X(\infty)$ the set of fixed points of parabolic elements in Γ and by $S^2 X(\infty)_h \subset S^2 X(\infty)$ the set of fixed point sets of hyperbolic elements in F.

PROPOSITION 4.1

The action of F on

 $X(\infty)$ _n $\left| S^2 X(\infty) \right|$

has noncommensurable stabilizers.

Proof. Let Γ_{ne} denote the set of non elliptic elements in Γ . For the Γ -action on $X(\infty)$ and for each $\gamma \in \Gamma_{\text{net}}$ one has

$$
\mathscr{F}_{X(\infty)}(\gamma) = \mathscr{F}_{X(\infty)}(\gamma^n) \text{ for all } n \ge 1
$$

and $\mathscr{F}_{X(\infty)}(\gamma)$ is of cardinality 1 or 2 depending on whether γ is parabolic or hyperbolic. Thus Proposition 4.1 follows from Lemma 3.3. \square

Remark. For each hyperbolic element $\gamma \in \Gamma$, recall that the cyclic group γ^z is of finite index in the group $\mathscr{Z}=\mathscr{Z}_{\Gamma,S^2X(\infty)}(\mathscr{F}_{X(\infty)}(\gamma))$; see e.g. [GhH, chap. 8, n^o 33]; in particular, the group \mathscr{Z} is amenable. By Lemma 2.3, the quasi-regular representation $\lambda_{\Gamma/\mathscr{F}}$ is weakly contained in the regular representation λ_r .

Assume moreover that X is a discrete space which has at most exponential growth and that $\Gamma \subset Is(X)$ is a discrete subgroup. For each parabolic element $\gamma \in \Gamma$, the group $\mathscr{Z}=\mathscr{Z}_{T,X(\infty)}(\mathscr{F}_{X(\infty)}(\gamma))$ is amenable (see Proposition 1.6 in [BuM]), so that one has also $\lambda_{\Gamma/\mathscr{D}} \ll \lambda_{\Gamma}$. Indeed, the set

$$
\{\mathscr{Z}_{\Gamma,X(\infty)}(\omega)|\omega \in X(\infty)_p \mid S^2 X(\infty)_h\}
$$

coincides with the set of all maximal amenable infinite subgroups of Γ [Ada].

In case Γ is a Gromov hyperbolic group, the set $X(\infty)$, is empty because there is no parabolic. If Γ is moreover torsion free, then $\mathscr{L}_{\Gamma}(\omega)$ is infinite cyclic for all $\omega \in S^2 X(\infty)$.

It is known that the reduced C^* -algebra of a torsion free Gromov hyperbolic group Γ is simple [Har]. From this and Lemma 2.3, it follows that the quasi-regular representation $\lambda_{\Gamma/\mathscr{F}_{r}(\omega)}$ is quasi-equivalent to the regular representation λ_{Γ} for each $\omega \in S^2 X(\infty)_h$.

For a nonabelian free group, this is Proposition 1 of [Boz], itself a paper strongly motivated by [Yos].

4.2. Let now X be a proper CAT (-1) -space and let

 $\mathscr{G}X = \{c : \mathbb{R} \longrightarrow X | c \text{ is isometric}\}\$

be the space of parametrized geodesics in X with the topology of uniform convergence on compactas. The action of R on $\mathscr{G}X$ via reparametrizations

$$
g_t c(s) = c(s+t), \quad c \in \mathcal{G} X, \quad s, t \in \mathbb{R}
$$

commutes with that of Is(X) and defines for any discrete subgroup $\Gamma < Is(X)$ a flow on $\Gamma \backslash \mathcal{G}X$, called the *geodesic flow.* We recall that, for a discrete divergence group Γ < Is(X), there is a canonical *Patterson–Sullivan measure* m_{pg} on $\Gamma \backslash \mathscr{G}X$ which is invariant and ergodic for the geodesic flow. The notion of a divergence group is borrowed from Patterson-Sullivan theory of Kleinian groups ([Pat], [Sul]; see also [Bou], [Coo], [CoP] which is generalized to CAT(-1)-spaces in [BuM]).

PROPOSITION 4.2

Let Λ < Is(X) *be a discrete subgroup. Let*

 $\mathscr{S}(\Lambda) = {\Gamma < \Lambda | \Gamma}$ is a divergence group with $m_{\text{ps}}(\Gamma \backslash \mathscr{G}X) < \infty$

be endowed with the ordering given by inclusion and let $\mathscr{C} \subset \mathscr{S}(\Lambda)$ *be a commensurability class.*

Then $\mathscr G$ *has a unique maximal element* $\Gamma_{\mathscr G}$, and this subgroup $\Gamma_{\mathscr G}$ satisfies $Com_\Lambda \Gamma_g = \Gamma_g$. *Moreover, if ~ denotes the relation of commensurability on* $\mathcal{S}(\Lambda)$ *, the action of* Λ *on* $\mathcal{S}(\Lambda)/\sim$ *by conjugation is N.C.S.*

In particular, for each $\Gamma < \mathcal{S}(\Lambda)$, the quasi-regular representation $\lambda_{\Lambda/\Gamma}$ is a finite sum of *irreducible representations; if* $\Gamma_+ = \text{Com}_\Lambda(\Gamma)$ *, then* Γ *is of finite index in* Γ_+ *and* $\lambda_{\Lambda/\Gamma_+}$ *is irreducible.*

Remarks. (i) Let $\Gamma < Is(X)$ be a non-elementary discrete subgroup, $\mathscr{L}_{\Gamma} \subset X(\infty)$ its limit set and $Q_r = Co(\mathcal{L}_r) \subset X$ the convex hull of the latter. If $\Gamma \backslash Q_r$ is compact (that is, if Γ is convex-cocompact) then Γ is a divergence group with $m_{PS}(\Gamma \backslash \mathcal{G}X) < \infty$; see [Bou].

(ii) Let X be a symmetric space of rank 1 and $\Gamma <$ Is(X) a geometrically finite subgroup (see [Bow]). Then Γ is a divergence group with $m_{ps}(\Gamma \backslash \mathscr{G}X) < \infty$.

Example. Let $\Lambda < PSL(2, \mathbb{R})$ be a discrete subgroup. Then $\mathcal{S}(\Lambda)$ contains all finitely generated non virtually cyclic subgroups of Λ . Indeed, such subgroups are nonelementary and geometrically finite.

Thus, for a finitely generated infinite subgroup Γ of Λ , the quasi-regular representation $\lambda_{\Delta/\Gamma}$ is a *finite* sum of irreducible representations: this follows from Proposition 4.1 if Γ is virtually cyclic, in which case $\lambda_{\Lambda/\Gamma} \ll \lambda_{\Lambda}$, and from Proposition 4.2 in other cases, for which $\lambda_{\Lambda/\Gamma} \prec \lambda_{\Lambda}$.

Proof of Proposition 4.2. It suffices to show that, given a discrete divergence group $\Gamma_0 < I_s(X)$ with $m_{PS}(\Gamma_0 \backslash \mathscr{G}X) < \infty$ and a discrete subgroup $\Gamma < I_s(X)$ with $\Gamma_0 < \Gamma < \text{Com}_{\text{Is}(X)}(\Gamma_0)$, the subgroup Γ_0 is of finite index in Γ .

Indeed, assuming this is true, consider the commensurability class $\mathscr C$ of a subgroup Γ_0 of Λ which is in $\mathcal{S}(\Lambda)$. Setting $\Gamma_{\mathscr{C}} = \text{Com}_{\Lambda}(\Gamma_0)$ one has Γ_0 of finite index in $\Gamma_{\mathscr{C}}$; one has therefore $\Gamma_{\alpha} \in \mathcal{S}(\Lambda)$ and $\text{Com}_{\Lambda} \Gamma_{\alpha} = \Gamma_{\alpha}$. As any group commensurable with Γ_{0} is in Γ_{α} , the latter group is clearly the *unique* maximal element of $\mathscr C$. The last claim of the proposition is now obvious.

For the convenience of the reader we recall the construction of m_{PS} (see § 1.3 in [BuM]). Let δ be the critical exponent of Γ_0 , let $\mu: X \to M^+ (X(\infty))$ be the δ -dimensional Patterson-Sullivan density for Γ_0 and let $(\xi|\eta)_x$ denote the Gromov scalar product of ξ , $\eta \in X(\infty)$. Using the F-invariant measure

$$
\frac{\mathrm{d}\mu_x(\xi)\times\mathrm{d}\mu_y(\xi)}{\mathrm{e}^{-2\delta(\xi|\eta)_x}}
$$

on $X(\infty) \times X(\infty) \setminus \{\text{diagonal}\}\)$, one obtains a F-invariant and geodesic-flow invariant measure \tilde{m}_{μ} on $\mathscr{G}X$; the Patterson-Sullivan measure m_{PS} is then the corresponding geodesic-flow invariant measure on $\Gamma \backslash \mathscr{G}X$.

We recall furthermore that $\gamma_* \mu_x = \mu_{yx}$ for all $\gamma \in \Gamma_0$, $x \in X$, and that there exists a homomorphism $\chi: Com_{I(s(X)}(\Gamma_0) \to \mathbb{R}_+^*$ such that $\gamma_* \mu_x = \chi(\gamma) \mu_x$ for all $\gamma \in Com_{I(s(X)}(\Gamma_0)$. $x \in X$. From this follows $\gamma_{\star} \tilde{m}_{\mu} = \chi(\gamma)^2 \tilde{m}_{\mu}$ for all $\gamma \in \text{Com}_{I_{S}(X)}(\Gamma_0)$ (see [BuM], Corollary 6.5.3).

Since Γ acts properly discontinuously on $\mathscr{G}X$, there exists a compact set $K \subset \mathscr{G}X$ of positive \tilde{m}_n -measure such that $\gamma K \cap K = \emptyset$ for all $\gamma \in \Gamma$ with $\gamma \neq e$. (We argue as if Γ was acting effectively on $\mathcal{G}X$; when it is not the case, we leave the minor appropriate changes to the reader.) For a set $\mathcal{T} \subset \Gamma$ of representatives of $\Gamma_0 \backslash \Gamma$, the set $\prod_{x \in \mathcal{T}} \tau K$ injects into $\Gamma_0 \backslash \mathscr{G}X$ and therefore

$$
\left(\sum_{\tau \in \mathscr{F}} \chi(\tau)^2\right) \widetilde{m}_{\mu}(K) = \widetilde{m}_{\mu}\left(\prod_{\tau \in \mathscr{F}} \tau K\right) \leqslant m_{\rm PS}(\Gamma_0 \setminus \mathscr{G} X) < \infty.
$$

Hence, since $\chi|\Gamma_0 = 1$, we obtain.

$$
\sum_{\tau\in\Gamma_0\backslash\Gamma}\chi(\tau)^2<\infty.
$$

For every $\gamma \in \Gamma$, we have thus

$$
\left(\sum_{\tau\in\Gamma_0\setminus\Gamma}\chi(\tau)^2\right)\chi(\gamma)^2=\sum_{\sigma\in\Gamma_0\setminus\Gamma}\chi(\sigma)^2
$$

which shows first that $\chi(y)^2 = 1$ for all $\gamma \in \Gamma$ and second that $|\Gamma_0 \setminus \Gamma| < \infty$.

5. Maximal tori and actions of lattices with noneommensurable stabilizers

Let G be a linear algebraic group defined over \mathbb{R} , let $\Gamma < \mathbb{G}(\mathbb{R})$ be a discrete subgroup and set

 $\mathcal{T}(\Gamma) = {\{T \subset G | T \text{ is a maximal } R\text{-split torus such that } T(R)/\langle T(R) \cap \Gamma \rangle \text{ is compact}}.$

PROPOSITION 5.1

The Γ -action by conjugation on $\mathcal{T}(\Gamma)$ is N.C.S.

Here and in the sequel, we will use the following simple lemma.

Lemma 5.2. Let G *be a linear algebraic group and let* A_0 , A_1 *be two commensurable subgroups of G. Then* $(A_0)^0 = (A_1)^0$.

Proof of Proposition 5.1. We have to show that, given $\mathbb{T}, \mathbb{T}' \in \mathcal{T}(\Gamma)$ such that $\mathcal{N}_G(\mathbb{T}) \cap \Gamma$ and $\mathcal{N}_G(\mathbb{T}') \cap \Gamma$ are quasiconjugate in Γ , then $\mathbb T$ and $\mathbb T'$ are Γ -conjugate.

First we observe that, for $\mathbb{T} \in \mathcal{T}(\Gamma)$, the group $(\mathcal{N}_G(\mathbb{T})(\mathbb{R}) \cap \Gamma)/(\mathbb{T}(\mathbb{R}) \cap \Gamma)$ is finite. Indeed, since $\mathbb{T}(\mathbb{R})/(\mathbb{T}(\mathbb{R}) \cap \Gamma)$ is compact, the canonical map

$$
\mathcal{N}_{\mathbf{G}}(\mathbb{T})(\mathbb{R})/(\mathbb{T}(\mathbb{R})\cap\Gamma)\longrightarrow\mathcal{N}_{\mathbf{G}}(\mathbb{T})(\mathbb{R})/\mathbb{T}(\mathbb{R})
$$

is proper and therefore $(\mathcal{N}_G(T)(\mathbb{R}) \cap \Gamma)/(\mathbb{T}(\mathbb{R}) \cap \Gamma)$ is a discrete subgroup of the compact group $\mathcal{N}_{\mathfrak{m}}(\mathbb{T})(\mathbb{R})/\mathbb{T}(\mathbb{R})$.

If now $\mathcal{N}_G(\mathbb{T})\cap \Gamma$ and $\mathcal{N}_G(\mathbb{T}')\cap \Gamma$ are quasiconjugate in Γ , there exist $\Delta < \mathbb{T}(\mathbb{R})\cap \Gamma$ of finite index and $\gamma \in \Gamma$ such that $\gamma \Delta \gamma^{-1}$ is of finite index in $\Gamma \cap \mathbb{T}'(\mathbb{R})$. Passing to Zariski closure, we obtain $\mathbb{T}' = \gamma \Lambda \gamma^{-1} = \gamma \mathbb{T} \gamma^{-1}$. *Examples.* (1) Let G be a semisimple R-group and $\Gamma < \mathbb{G}(\mathbb{R})$ a lattice. Then $\mathcal{F}(\Gamma) \neq \emptyset$; this follows from the existence of \mathbb{R} -hyper-regular elements in Γ [PrR]. Indeed, for such a $\gamma \in \Gamma$, the centralizer $\mathscr{Z}_{\Gamma(G)}$ contains an R-split torus T which is maximal in G and such that $\mathbb{T}(\mathbb{R})/(\Gamma \cap \mathbb{T}(\mathbb{R}))$ is compact.

(2) Let $\mathscr P$ be the set of primitive indefinite integral binary forms

$$
Q(X,Y) = aX^2 + bXY + cY^2
$$

with $a > 0$. Then the map which to every $Q \in \mathcal{P}$ associates $SO(Q)^0$ gives a bijection between $\mathscr P$ and the set of R-split tori $\mathbb T \subset SL(2)$ for which $SL(2,\mathbb Z) \cap \mathbb T(\mathbb R)$ is a lattice in $\mathbb{T}(\mathbb{R})$:

$$
\mathscr{P}\cong \mathscr{F}(SL(2,\mathbb{Z})).
$$

(3) It is a general fact due to Ono [Ono] that, for a Q-torus $\mathbb T$ with $X_{\alpha}(\mathbb T) = 1$, the group $T(\mathbb{R})/T(\mathbb{Z})$ is compact. Hence, given a semisimple Q-group G, the set $\mathscr{F}(\mathbb{G}(\mathbb{Z}))$ contains all Q-torii T which are maximal R-split and such that $X_{\alpha}(T) = 1$. As examples of such torii in $SL(n)$, let K/\mathbb{Q} be a totally real number field or degree n, let $H = \text{Res}_{K/0} GL_1 \subset GL_n$ and $\mathbb{T} = \mathbb{H} \cap SL(n)$. The group \mathscr{U}_K of units of \mathbb{K} is abelian of rank $n-1$ and isomorphic to $H(\mathbb{Z})$. As $T(\mathbb{Z})$ is of index at most two in $H(\mathbb{Z})$, the torus $\mathbb{T}(\mathbb{Z})$ is of rank $n-1$ and hence $\mathbb{T}(\mathbb{R})/\mathbb{T}(\mathbb{Z})$ is compact.

6. Algebraic subgroups and actions of arithmetic lattices with noncommensurable stabilizers

In this section G denotes a connected linear algebraic Q-group; let

 $\mathcal{S}_G = \{ H | H$ is a connected Q-subgroup of G, of finite index in $\mathcal{N}_G (H (\mathbb{Z})^0) \}.$

We will show below that if H is a connected Q-subgroup of G , one always has the inclusion

 $\mathbb{H} < \mathcal{N}_{\mathfrak{g}}(\mathbb{H}(\mathbb{Z})^0).$

PROPOSITION 6.1

The action by conjugation of $\mathbb{G}(\mathbb{Z})$ *on* $\mathscr{S}_{\mathbb{G}}$ *is N.C.S. and* $\mathscr{S}_{\mathbb{G}}$ *contains all parabolic Q-subgroups of G.*

Lemma 6.2. *Let H be a Q-subgroup of G.*

(1)
$$
\mathcal{N}_G(\mathbb{H})(\mathbb{Q}) < \text{Com}_G(\mathbb{H}(\mathbb{Z}))
$$

(2) $\mathcal{N}_G(\mathbb{H})^0 < \mathcal{N}_G(\mathbb{H}(\mathbb{Z})^{\vee}).$

Proof of Lemma 6.2. Let us first show the implication (1) \implies (2). As $\mathcal{N}_G(\mathbb{H})$ is defined over Q, one has

$$
\mathscr{N}_{\mathbb{G}}(\mathbb{H})^0<\overline{\mathscr{N}_{\mathbb{G}}(\mathbb{H})(\mathbb{Q})}
$$

by a theorem of Rosenlicht [Bor, 18.3]. On the other hand Lemma 5.2 implies

$$
\overline{\mathrm{Com}_G(\mathbb{H}(\mathbb{Z}))} < \mathcal{N}_G(\overline{\mathbb{H}(\mathbb{Z})}^0)
$$

and hence (1) implies (2).

In order to prove (1) we may assume that H is connected. Let $X_{\mathbf{0}}(H)$ be the set of Q-characters of H and set

$$
\mathbb{H}_0 \doteq \bigcap_{\chi \in X_{\mathbf{Q}}(\mathbf{H})} \mathbf{Ker} \chi.
$$

Clearly, $H_0(\mathbb{Z})$ is a subgroup of finite index in $H(\mathbb{Z})$ and it follows from [BHC] that $\mathbb{H}_{0}(\mathbb{Z})$ is a lattice in $\mathbb{H}_{0}(\mathbb{R})$. Observe also that $\mathcal{N}_{G}(\mathbb{H})(\mathbb{Q})$ acts on $X_{O}(\mathbb{H})$ and hence normalizes H_0 .

Let $G < GL(n, \mathbb{C})$ for some n, fix $g \in \mathcal{N}_{\mathbb{C}}(\mathbb{H})(\mathbb{Q})$ and choose an integer $m \geq 1$ such that mg and mg^{-1} are in $M_n(\mathbb{Z})$. For the subgroup

$$
\Gamma \doteqdot \{ \gamma \in \mathbb{H}_0(\mathbb{Z}) | \gamma \equiv \text{id} \bmod m^2 \},
$$

we have $g\Gamma g^{-1} \subset M_n(\mathbb{Z})$ and $\det(g\Gamma g^{-1}) \subset \{1, -1\}$; hence $g\Gamma g^{-1} \leq \mathbb{H}_0(\mathbb{Z})$. Furthermore, Γ is of finite index in $\mathbb{H}_{0}(\mathbb{Z})$ and since $\mathbb{H}_{0}(\mathbb{Z})$ is a lattice in $\mathbb{H}_{0}(\mathbb{R})$, the conjugate $q\Gamma q^{-1}$ is of finite index in $\mathbb{H}_{0}(\mathbb{Z})$ as well. Hence

$$
g \in \text{Com}_G(\mathbb{H}_0(\mathbb{Z})) = \text{Com}_G(\mathbb{H}(\mathbb{Z})).
$$

Proof of Proposition 6.1. For the first assertion, take $H_1, H_2 \in \mathscr{S}_G$ such that $\mathcal{N}_G(\mathbb{H}_1)(\mathbb{Z})$ and $\mathcal{N}_G(\mathbb{H}_2)(\mathbb{Z})$ are commensurable, hence $\mathcal{N}_G(\mathbb{H}_1)^0(\mathbb{Z})$ and $\mathcal{N}_G(\mathbb{H}_2)^0(\mathbb{Z})$ are also commensurable. Since H_i is connected, we have $H_i < \mathcal{N}_G(H_i)^0$ and since $\mathbb{H}_{i} \in \mathscr{S}_{\mathbb{G}}$, Lemma 6.2.2 implies that \mathbb{H}_{i} is of finite index in $\mathscr{N}_{\mathbb{G}}(\mathbb{H}_{i})^{\circ}$, in particular $\mathbb{H}_{1}(\mathbb{Z})$ and $\mathbb{H}_2(\mathbb{Z})$ are commensurable. This implies $\mathbb{H}_1(\mathbb{Z})^{\sim} = \mathbb{H}_2(\mathbb{Z})^{\sim}$, and hence

$$
\mathbb{H}_1 = \mathcal{N}_G(\overline{\left(\mathbb{H}_1(\mathbb{Z}\right)}^0)^\circ = \mathcal{N}_G(\overline{\left(\mathbb{H}_2(\mathbb{Z}\right)}^0)^\circ = \mathbb{H}_2).
$$

For the second assertion, let P be a parabolic Q-subgroup of G. Since $P \subset \mathcal{N}_G(\overline{P(Z)}^0)$, the subgroup $\mathbb{P}' \doteq \mathcal{N}_{\mathbb{G}}(\overline{\mathbb{P}(\mathbb{Z})}^0)$ is Q-parabolic and hence $\mathcal{R}_{\mathbb{G}}(\mathbb{P}') \subset \mathcal{R}_{\mathbb{G}}(\mathbb{P})$. Since $\overline{\mathbb{P}(\mathbb{Z})}^0$ is normal in P' we have

$$
\mathscr{R}_u(\overline{\mathbb{P}(\mathbb{Z})}^0) \subset \mathscr{R}_u(\mathbb{P}').
$$

On the other hand, $\overline{\mathscr{R}_{\nu}(\mathbb{P})(\mathbb{Z})} = \mathscr{R}_{\nu}(\mathbb{P})$ and hence $\mathscr{R}_{\nu}(\mathbb{P})$ is a (normal) subgroup of $\overline{\mathbb{P}(\mathbb{Z})}^0$, which implies $\mathscr{R}_{u}(\overline{P(Z)}^0) \supset \mathscr{R}_{u}(\mathbb{P})$. This finally shows that $\mathscr{R}_{u}(\mathbb{P}) = \mathscr{R}_{u}(\mathbb{P}')$ and hence $P=P'$.

Examples. Assume G to be a semi-simple, defined over Q and Q-simple. Let H be a connected semi-simple Q-subgroup of G which is maximal as a Q-subgroup. Then $H = \mathcal{N}_G(H)$, and hence $H = Com_G(H)$ by Lemma 5.2. Observe that $G(Z)$ is a lattice in $G(\mathbb{R})$ and that $H(\mathbb{Z})$ is a lattice in $H(\mathbb{R})$, by [BHC].

Maximal subgroups of the classical groups have been classified by Dynkin [Dyn]. In case G is $SL(n, \mathbb{C})$ with its standard Q-structure, examples of subgroups H as above include (to quote but a few):

- (i) orthogonal groups $SO(q) \subset SL(n, \mathbb{C})$ for a non degenerate quadratic form q over Q.
- (ii) the symplectic group $Sp(n, \mathbb{C}) \subset SL(n, \mathbb{C})$ (*n* even),
- (iii) the images of the fundamental representations $SL(m, \mathbb{C}) \rightarrow SL(\binom{m}{n}, \mathbb{C})$.

References

- $[A'B]$ A'Campo N and Burger M, Réseaux arithmétiques et commensurateurs d'après G A Margulis, *Invent. Math.* 116 (1994) 1-25
- [Ada] Adams S, Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups, *Topology* 33 (1994) 765-783
- [BCH] Bekka M, Cowling M and de la Harpe P, Some groups whose reduced C^* -algebra is simple, *Publ. Math. IHES 80* (1994) 117-134
- [Bin] Binder M W, On induced representations of discrete groups, *Proc. Am. Math. Soc.* 118 (1993) 301-309
- [Bor] Borel A, *linear algebraic groups,* second enlarged edition, Springer, 1991
- [BHC] Borel A and Harish-Chandra, Arithmetic subgroups of algebraic groups, *Ann. Math.* 75 (1962) 485-535
- [Bou] Bourdon M, Structure conforme au bord et flot géodésique d'un CAT (-1)-espace, *l'Enseignement math.* **41** (1995) 63-102
- [Bow] Bowditch B H, Geometrical finiteness for hyperbolic groups, *J. Funct. Anal.* 113 (1993) 245-317
- **[Boz]** Bozejko M, Some aspects of harmonic analysis on free groups. *Colloquium Math.* 41 (1979) 265-271
- **[BUM]** Burger M and Mozes S, CAT (-1)-spaces, divergence groups and their commensurators. *J. Am. Math. Soc.* 9 (1996) 57-93
- [Coo] Coornaert M, Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, *Pacific J. Math.* 159 (1993) 241-270
- [CoP] Coornaert M and Papadopoulos A, Une dichotomie de Hopf pour les flots géodésiques associés aux groupes discrets d'isométrie des arbres, *Trans. Am. Math. Soc.* 343 (1994) 883-898
- [Cor] Corwin L, Induced representation of discrete groups, *Proc. Am. Math. Soc.* 47 (1975) 279-287
- [Dix] Dixmier J, *Les C*-algèbres et leurs représentations*, Gauthier-Villars, 1969
- [Dyn] Dynkin E B, The maximal subgroups of the classical groups (1952), *Transl. Am. Math. Soc. Serie* 2, 6 (1957) 254-378
- [FRZ] Fenn R, Rolfsen D and Zhu J. Centralisers in the braid group and singular braid mbnoid, *Enseignement Math.* (to appear)
- EGli] Glimm J, Type I *C*-algebras, Ann. Math.* 73 (1961) 572-612
- [GhH] Ghys E and de la Harpe P, *Sur les groupes hyperboliques d'après M Gromov*, Birkhäuser, 1990
- [Har] de la Harpe P, Groupes hyperboliques, algèbres d'opérateurs et un théorème de Jolissaint, *C. R. Acad. Sci. Paris, Série I* 307 (1988) 771-774
- [KrR] Kropholler P H and Roller M A, Relative ends and duality groups, *J. Pure Appl. Algebra* 61 (1989) 197-210
- [Mac] Mackey G W, *The theory of unitary group representations*, The University of Chicago Press, 1976
- [Mar] Margulis G A, *Discrete subgroups of semisimple Lie groups,* Springer, 1991
- [Oba] Obata N, Some remarks on induced representations of infinite discrete groups, *Math. Ann.* 284 (1989) 91-102
- [Ono] Ono T, Sur une propri6t6 arithm6tique des groupes commutatifs, *Bull. Soc. Math. France* **85** (1957) 307-323
- [Par] Paris L, *Parabolic subgroups of Artin groups,* preprint, Dijon (1995)
- [Pat] Patterson S J, The limit set of a Fuchsian group, *Acta Math.* 136 (1976) 241-273
- [Ped] Pedersen G K, *C*-algebras and their automorphism groups,* Academic Press, 1979
- [PrR] Prasad G and Raghunathan M S, Cartan subgroups and lattices in semi-simple groups, *Ann. Math. 96* (1972) 296-317
- [Shi] Shimura G. *Introduction to the arithmetic theory t~f automorphic functions* (1971) (Iwanami Shoten and Princeton Univ. Press)
- [Sul] Sullivan D, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, *Acta Math.* 153 (1984) 259-277

[Yos] Yoshizawa H, Some remarks on unitary representations of the free group, *Osaka Math.* J. 3 (1951) 55-63