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Abstract In this paper, we introduce the notion of a constrained Minkowski sum:
for two (finite) point-sets P,Q ⊆ R

2 and a set of k inequalities Ax ≥ b, it is de-
fined as the point-set (P ⊕ Q)Ax≥b = {x = p + q | p ∈ P,q ∈ Q,Ax ≥ b}. We show
that typical interval problems from computational biology can be solved by com-
puting a set containing the vertices of the convex hull of an appropriately constrained
Minkowski sum. We provide an algorithm for computing such a set with running time
O(N logN), where N = |P | + |Q| if k is fixed. For the special case (P ⊕ Q)x1≥β

where P and Q consist of points with integer x1-coordinates whose absolute values
are bounded by O(N), we even achieve a linear running time O(N). We thereby ob-
tain a linear running time for many interval problems from the literature and improve
upon the best known running times for some of them. The main advantage of the pre-
sented approach is that it provides a general framework within which a broad variety
of interval problems can be modeled and solved.

Keywords Interval problems · Convex hulls · Minkowski sums · Computational
biology

1 Introduction

The Minkowski sum of two (finite) point-sets P ⊆ R
2 and Q ⊆ R

2 is defined as
P ⊕ Q = {p + q | p ∈ P,q ∈ Q}. Minkowski sums are a fundamental concept in
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algorithmic geometry, in particular in robot motion planning [12, 13, 15, 18] and
placement problems [1, 6]. The convex hull of P ⊕ Q can be computed in linear
time [12] if the points in P and Q are sorted w.r.t. the value of some given linear
function, for example, the value of their x1-coordinate. The convex hull of P ⊕ Q

has at most N = |P | + |Q| vertices.
In this paper, we introduce the notion of a constrained Minkowski sum. For a

matrix A ∈ R
k×2 and a vector b ∈ R

k , the constrained Minkowski sum (P ⊕ Q)Ax≥b

is defined as the point-set

(P ⊕ Q)Ax≥b = {x ∈ P ⊕ Q | Ax ≥ b}.
For k = 1, the system Ax ≥ b consists of one linear inequality aTx ≥ β , and we write
(P ⊕ Q)aTx≥β . We call a constraint aTx ≥ β linearly sortable if all |aTp|, p ∈ P ,
and |aTq|, q ∈ Q, are integers bounded by O(N).

Our motivation for studying constrained Minkowski sums comes from a very
practical application. A large class of interval problems from computational biol-
ogy can be solved by maximizing a quasiconvex function over the points of a con-
strained Minkowski sum. Recall that a function f : D → R is called quasiconvex
if for all points s1, s2 ∈ D and all λ ∈ [0,1], one has f (λ · s1 + (1 − λ) · s2) ≤
max{f (s1), f (s2)}, where D ⊆ R

2 is a nonempty convex set. The function is qua-
siconvex if and only if its domain D and all its sublevel sets Sα = {s ∈ D | f (s) ≤ α},
α ∈ R, are convex, see, e.g., [5]. If R ⊆ R

2 is a finite set of points, then a quasicon-
vex function f attains its maximum over R on one of the vertices of the convex hull
conv(R) of R.

1.1 Contributions of This Paper

Our main result is an algorithm which computes a set R ⊆ (P ⊕ Q)Ax≥b containing
all vertices of conv((P ⊕Q)Ax≥b) in time O(N logN) if the number of constraints is
fixed. If the number of constraints is k, then this algorithm runs in time O(k logk+k ·
N logN). This shows that a quasiconvex function which can be evaluated in constant
time can be maximized over (P ⊕ Q)Ax≥b in time O(k · logk + k · N logN). As a
consequence, we obtain for many interval problems from the literature linear-time
algorithms and improve upon the best known running times for some of them. These
results are achieved via the following steps:

(i) First, we show that the number of vertices of the convex hull of a Minkowski
sum with one constraint is linear. In fact, we provide a tight bound.

(ii) This result is exploited to derive a linear-time algorithm which outputs a set R

containing all the vertices of conv((P ⊕ Q)aTx≥β) if the points of P and Q are
sorted w.r.t. the linear function aTx.

(iii) Next, we describe a divide and conquer algorithm which computes a set R ⊆
(P ⊕Q)Ax≥b containing all vertices of conv((P ⊕Q)Ax≥b) in time O(N logN)

if Ax ≥ b consists of two constraints.
(iv) If Ax ≥ b describes a triangle, we show how to reduce the computation of such

a set R to the case described in (iii)), which implies the main result by triangu-
lation of the convex polygon described by the system Ax ≥ b.



24 Discrete Comput Geom (2009) 42: 22–36

We close this section by arguing why our result for a fixed number of constraints
is optimal in the algebraic decision-tree model. Ben-Or [3] showed that the set-
disjointness problem has a lower bound of Ω(n logn) in this model of computa-
tion. Set disjointness is defined as follows. Given two sets A = {a1, . . . , an} ⊆ R and
B = {b1, . . . , bn} ⊆ R, one has to decide whether A ∩ B = ∅ holds. Set-disjointness
can be reduced to the problem of maximizing a quasiconvex, even linear, function
over a constrained Minkowski sum in linear time as follows. Construct the point-
sets P = {(0,−a) | a ∈ A} and Q = {(0, b) | b ∈ B}. The point (0,0) is contained in
P ⊕ Q if and only if A and B are not disjoint. Thus, the maximum of the objective
function −x2 over the constrained Minkowski sum (P ⊕ Q)x2≥0 is equal to 0 if and
only if A and B are not disjoint. We therefore have the following theorem.

Theorem 1 The problem of maximizing a quasiconvex objective function f over the
constrained Minkowski sum (P ⊕Q)Ax≥b requires time Ω(N logN) in the algebraic
decision tree model even if f is a linear function and Ax ≥ b consists of only one
constraint.

2 Interval Problems from Computational Biology

Numerous interval problems that arise in computational biology can be formulated in
the following abstract form.

Given an array a1, . . . , an of real numbers and an objective function f , com-
pute an interval [i, j ] such that the interval ai, ai+1, . . . , aj satisfies some given con-
straints and maximizes f .

Often, the function f = f (�, s) depends on the sum s = ai + · · · + aj of the
interval and its length, � = j − i + 1. Here are just a few examples from the literature
which fit into this framework:

(a) The maximum-sum segment problem [10]: Given L and U , find an interval with
length between L and U such that its sum is as large as possible.

(b) The maximum-density segment problem [11]: In addition to the array, weights
w1, . . . ,wn > 0 and bounds L,U are given. Among all intervals [i, j ] with
weight L ≤ wi + · · · + wj ≤ U , find one with the largest density (ai + · · · +
aj )/(wi + · · · + wj).

(c) The longest biased interval [2]: Given a bias 0 ≤ b ≤ 1, find an interval [i, j ]
which has an average (ai + · · · + aj )/(j − i + 1) ≥ b and which is as long as
possible. Allison [2] uses this problem in the context of “preferred characters,”
where we additionally have that ai ∈ {0,1}, as one can use ai as an indicator for
whether a character in the array is “preferred” or not.

(d) The length-constrained heaviest segments [16]: Given a bound L, find an inter-
val [i, j ] with length at least L which has maximum average (ai + · · · + aj )/

(j − i + 1). This is in fact a special case of problem (b). (Set all wi = 1 and
U = n.)

(e) DNA copy number data analysis [17]: Here, the objective is to find an interval
[i, j ] such that |ai +· · ·+aj |/√j − i + 1 is as large as possible. Problem (e) also
has an application in statistics, see the multiresolution criteria problem in [7].
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(Please note that originally, Lipson et al. [17] consider the value (ai + · · · +
aj )/

√
j − i + 1 without the absolute value | · |, but this poses no problem for the

application, as pointed out in [4].)

We now show that these problems can be solved by maximizing a quasiconvex func-
tion over the points of a constrained Minkowski sum. An interval [i, j ] has length
�(i, j) = j − i + 1 and sum s(i, j) = ai + · · · + aj . If we map each interval [i, j ] to
the two-dimensional point (�(i, j), s(i, j)), we obtain a point-set Z. Problem (e), for
example, is the problem of maximizing the quasiconvex function f (�, s) = |s|/√�

over Z.
It remains to describe how the point-set Z can be seen as a constrained

Minkowski sum. For 1 ≤ i, j ≤ n, define the points pj = (j, a1 + · · · + aj ) and qi =
(−i + 1,−(a1 + · · · + ai−1)). For i ≤ j , we then have pj + qi = (j − i + 1, ai +
· · · + aj ), i.e., the first coordinate of pj + qi corresponds to the length of the interval
[i, j ], and the second corresponds to the sum of the interval. If i > j , then the sum
pj + qi does not correspond to an interval in the same way.

Now let P = {p1, . . . , pn},Q = {q1, . . . , qn}. The constrained Minkowski sum
(P ⊕Q)x1≥1 contains all the points to which intervals of the array are mapped to. The
constraint x1 ≥ 1 guarantees that we omit the meaningless intervals with negative or
zero length. If in fact the interval problem requires that only intervals of length at
least, say, L be considered, then we can replace the constraint by x1 ≥ L. Thus,
problem (e) can be understood as maximizing the quasiconvex function f (x1, x2) =
|x2|/√x1 over (P ⊕ Q)x1≥1.

Instead of evaluating f on all points of (P ⊕ Q)x1≥1, we first apply an algorithm
for computing a point-set R ⊆ (P ⊕Q)x1≥1 which contains all vertices of the convex
hull of the constrained Minkowski sum. We then evaluate f on the points of R and
choose a point with maximum value. If evaluating f on a point takes time O(1),
which is a reasonable assumption, then the time for evaluating f on R is bounded by
the running time for computing R.

In the case that additional constraints are needed, like the constraint that we should
only consider intervals which have a length bounded by U , we can add the corre-
sponding constraint like x1 ≤ U and compute the constrained Minkowski sum with
two or more constraints. Problem (a), for example, is the problem of maximizing
f (x1, x2) = x2 under the constraints L ≤ x1 ≤ U . For some problems, the modeling
is immediate; for others, extra precautions have to be taken. A detailed modeling is
given in the appendix of this paper.

The system Ax ≥ b typically consists of one constraint which either is linearly
sortable or is of the form α ≤ aTx ≤ β , where both constraints are linearly sortable. In
the first case, Theorem 5 below shows that the maximization problem can be solved
in linear time, whereas Theorem 7 below shows linear running time in the second
case. We therefore obtain the following corollary.

Corollary 1 Problems (a)–(e) can be solved in time O(n).

In particular we improve upon the best known running times of O(n logn) [4]
and O(n2) [2] for problems (e) and (c), respectively. More generally, we have the
following.
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Corollary 2 Let a1, . . . , an be an array of numbers, let f (�, s) be a quasiconvex
function, and L,U natural numbers. The problem of finding an interval [i, j ] whose
value f (�(i, j), s(i, j)) is maximum among all intervals whose length satisfies L ≤
�(i, j) ≤ U can be solved in linear time O(n). If additionally, a fixed number of linear
constraints on � and s are given that the interval has to satisfy, then the problem can
be solved in time O(n logn).

3 Minkowski Sums with One Constraint

Before we inspect Minkowski sums with one constraint, we first have to recall a
well-known fact about unconstrained Minkowski sums, see, e.g., [8]. See Fig. 1 for
an illustration.

Theorem 2 Let P and Q be finite point-sets in the plane, and let Z = conv(P ⊕ Q)

be the convex hull of the Minkowski sum of P and Q. Then the sequence of vertices
of Z in clockwise order can be written as

pi1 + qj1, . . . , pik + qjk
, (1)

where each appearance of each p and each q in (1) is consecutive. In other words, if
p ∈ P appears in a sum of (1), then there exist an index �p and an integer μp such
that all appearances of p are in the positions �p, �p + 1, . . . , �p + μp in (1), where
all these integers are taken modulo k. Similarly, if q ∈ Q appears in a sum in (1), then
there exist an index �q and an integer μq such that all appearances of q are in the
positions �q, �q + 1, . . . , �q + μq in (1), where all these integers are taken modulo k.

How can one compute such a sequence as it is described in Theorem 2? First, one
computes the clockwise order of the vertices of the convex hull of P and Q individu-
ally. Let pl and ql be the leftmost vertices of P and Q, respectively. The sequence is
initiated with pl +ql . Let p+q be the most recent element in the sequence, and let p′
and q ′ be the successors of p and q in the clockwise order of the vertices of conv(P )

Fig. 1 An illustration of Theorem 2. The point p3, for example, appears more than once in the convex
hull of the Minkowski sum. These appearances are however consecutive. Similarly, the point q1 appears
four times consecutively
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and conv(Q), respectively. If the polygonal curve defined by p + q,p + q ′,p′ + q ′
turns to the right, one chooses p + q ′ as the next point in the sequence. Otherwise,
the next point is p′ + q .

Theorem 2 implies that the number of vertices of conv(P ⊕ Q) is bounded by
|P | + |Q|. We want to find an efficient algorithm which computes a set R containing
all the vertices of Z = conv((P ⊕ Q)aTx≥β). Clearly this depends on the number of
vertices of Z. How large is this number? It turns out that we can answer this question
exactly.

3.1 A Tight Bound on the Number of Vertices

We begin with a lower bound. The left part of Fig. 2 shows the part of the unit circle
in which the first coordinate x1 is nonnegative. This half-circle is closed with the line
segment from (0,−1) to (0,1). In addition, for some small number ε > 0, we have
sketched the constraint x1 ≥ −ε by a line which is located to the left of the half-circle.
Now bend the line segment of the half-circle a little bit outside so that the result is
a curve which, from bottom to top, turns to the right and is symmetric around the
x1-axis. Place distinct points p1, . . . , pn on the upper half of the half-circle. Place the
points p′

1, . . . , p
′
n on the lower part of the half-circle so that pi and p′

i are symmetric
around the x1-axis. For each of the points pi and p′

i , there exists a vector qi which
is parallel to the x1-axis such that pi + qi and p′

i + qi are on the curve closing the
half-circle.

Finally, let P = {p1, . . . , pn,p
′
1, . . . , p

′
n} and Q = {0, q1, . . . , qn}. Then

conv((P ⊕ Q)x1≥−ε) has the vertices P ∪ {p1 + q1, . . . , pn + qn,p
′
1 + q1, . . . ,

p′
n + qn}. This shows that conv((P ⊕ Q)x1≥−ε) can have |P | + 2 · |Q| − 2 vertices.

This proves the following theorem.

Theorem 3 For each n ∈ N, there exist point-sets P and Q with |P | ≥ n and |Q| ≥ n

and a constraint aTx ≥ β such that the number of vertices of (P ⊕Q)aTx≥β is at least

min
{
2 · |P | + |Q|, |P | + 2 · |Q|} − 2.

Fig. 2 A lower bound
construction for the number of
vertices
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Next, we now show that this lower bound is tight. Without loss of generality we
can assume that the constraint aTx ≥ β is x1 ≥ 0. Now let P = {p1, . . . , pn} and
Q = {q1, . . . , qm}, where the pi and qj are sorted nondecreasingly according to their
x1 coordinates. For i ∈ {1, . . . , n}, the number J (i) denotes the first index such that
pi + qJ(i) is a valid point. Clearly one has

(P ⊕ Q)x1≥0 =
n⋃

i=1

({pi, . . . ,pn} ⊕ {qJ(i), . . . , qm}). (2)

Theorem 4 The polygon Z = conv((P ⊕ Q)x1≥0) has at most min{2 · |P | + |Q|,
|P | + 2 · |Q|} − 2 vertices.

Proof For symmetry reasons, it is enough to show that Z has at most 2 · |P |+ |Q|−2
vertices. Clearly, this holds if n = 1, since then Z has at most |Q| vertices.

For n > 1, we argue by induction. Consider the Minkowski sum

M = {p1, . . . , pn} ⊕ {qJ(1), . . . , qm}.

Let p1 + q∗
1 , . . . , p1 + q∗

μ be the vertices involving p1 from the clockwise-order
representation of conv(M) as in Theorem 2, see Fig. 3. Let K be the set K =
{q∗

2 , . . . , q∗
μ−1}. The vertex-representation of conv(M) does not contain a pair pi + q

for i ≥ 2 and q ∈ K , since the appearance of such a q ∈ K then would not be consec-
utive. Thus, the convex hull of M is the convex hull of the point-set

({p1} ⊕ {
q∗

1 , . . . , q∗
μ

}) ∪ ({p2, . . . , pn} ⊕ ({qJ(1), . . . , qm} \ K
))

. (3)

Now (P + Q)x1≥0 is equal to

M ∪ ({p2, . . . , pn} ⊕ {q1, . . . , qJ (1)−1}
)
x1≥0.

Therefore, (P + Q)x1≥0 is the convex hull of the union of the three sets

{p1} ⊕ {q∗
1 , . . . , q∗

μ} ∪ {p2, . . . , pn} ⊕ ({qJ(1), . . . , qm} \ K
)

∪ ({p2, . . . , pn} ⊕ {q1, . . . , qJ (1)−1}
)
x1≥0.

Fig. 3 An illustration of the
proof of Theorem 4
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Fig. 4 Computing the set
{p1 + q∗

1 , . . . , p1 + q∗
μ}

Every point in the second set above is valid. This shows that

(P + Q)x1≥0 = ({p1} ⊕ {q∗
1 , . . . , q∗

μ}) ∪ ({p2, . . . , pn} ⊕ Q \ K
)
x1≥0. (4)

The polygon conv({p1} ⊕ {q∗
1 , . . . , q∗

μ}) has |K| + 2 vertices, whereas, by induction,
the convex hull of ({p2, . . . , pn}⊕Q\K)x1≥0 has at most 2 ·(|P |−1)+|Q|−|K|−2
vertices. This proves the claim. �

Remark 1 Notice that we can augment the set K in the proof above with the convexly
dependent points of {qJ(1), . . . , qm}. Let D ⊆ {qJ(1), . . . , qm} denote the subset of
points which are not vertices of conv({qJ(1), . . . , qm}. Each occurrence of K in the
proof above, starting from (3), can be replaced by K ∪ D. This means that we have
the following strengthening of (4):

(P + Q)x1≥0 = ({p1} ⊕ {
q∗

1 , . . . , q∗
μ

}) ∪ ({p2, . . . , pn} ⊕ Q \ (K ∪ D)
)
x1≥0.

We need this in the following linear-time algorithm to compute a superset of the
vertices of (P ⊕ Q)x≥0.

3.2 A Linear-Time Algorithm

The proof of Theorem 4 also suggests an algorithm to compute a set R ⊆ (P ⊕Q)x1≥0
containing all vertices of Z = conv((P ⊕ Q)x1≥0) in linear time if the points are
sorted nondecreasingly according to their x1-values.

In fact, the set K from the proof can be computed in time O(|K|) if the con-
vex hull of {qJ(1), . . . , qm} and the two neighbors of p1 on the convex hull of
{p1, . . . , pn} are known. This works as follows. Let pr and pl be the neighboring
vertices of p1 in clockwise and counterclockwise direction of conv({p1, . . . , pn}),
see Fig. 4. Assume for simplicity that all x1-values of points in P and Q respec-
tively are different. The point qJ(1) is a vertex of conv({qJ(1), . . . , qm}), and p1 is
a vertex of conv({p1, . . . , pn}). In fact those points are the unique leftmost vertices
respectively. With these points at hand, the points q∗

1 , . . . , q∗
μ can easily be computed

in time O(k) by following the neighbors of qJ(1) clockwise along the convex hull
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of {qJ(1), . . . , qm} until the slope on the upper hull is less than the slope of the line-
segment p1,pr and counterclockwise until the slope on the lower hull is more than
the slope of the line-segment p1,pl .

We are now ready to describe the complete algorithm, which we call CONSTR-
MINKOWSKI, to compute a superset R of the vertices of (P ⊕ Q)x1≥0. With the
Graham scan algorithm (from right to left) for convex hulls [8], we compute for each
point pi its two neighbors on the convex hull of {pi, . . . ,pn}. The set R is initialized
with the empty set.

The algorithm now proceeds recursively. If the set P contains only one point, then
we compute (P ⊕ Q)≥0 directly.

Else, we compute the convex hull of {qJ(1), . . . , qm} ⊆ Q with the incremental
Graham scan algorithm from right to left. Then, we compute the points q∗

1 , . . . , q∗
μ.

We store each point of {p1} ⊕ {q∗
1 , . . . , q∗

μ} in R and delete each point in K =
{q∗

2 , . . . , q∗
μ−1} from Q. Using the notation of Remark 1, recall that the Graham scan

deletes the convexly dependent points D of {qJ(1), . . . , qm}. We connect q∗
1 and q∗

μ

to obtain the convex hull representation of {qJ(1), . . . , qm} \ (K ∪ D).
With the thereby updated set Q := Q \ ((K ∪ D), we recursively compute a su-

perset of the vertices of ({p2, . . . , pn} ⊕ Q)x1≥0 and add these points to R.

Theorem 5 The above described algorithm CONSTR-MINKOWSKI correctly com-
putes a set R containing all the vertices of (P ⊕ Q)x1≥0 in linear time, provided that
the points in P and Q are sorted according to their x1-value.

Proof Correctness follows from Theorem 4 and Remark 1. The total running time
for convex hull computations on the set of points in Q is bounded by O(|Q|). This
is because the convex-hull representation of {qJ(1), . . . , qm} after the deletion of the
points in K and the deletion of convexly dependent points of {qJ(1), . . . , qm} can
be repaired in constant time by connecting q∗

1 with q∗
μ. Notice that the deletion of

the convexly dependent points is done by the Graham scan anyway. The succeeding
convex hulls of points in Q can be computed by continuing the Graham scan. Thus,
the time which is required by the Graham scan is in total O(m). This shows the
claim. �

4 Minkowski Sums with More than One Constraint

In this section, we show how to compute a set R ⊆ (P ⊕ Q)Ax≥b containing the
vertices of conv(P ⊕ Q)Ax≥b in time O(N logN) if the number of constraints in
Ax ≥ b is fixed. If the number k of constraints is not fixed, our algorithm has a
running time of O(k · log k + k · (N logN)).

First, we present an algorithm for the case of two constraints. Then we consider
the case with three constraints, i.e., where the convex polygon T = {x ∈ R

2 | Ax ≥ b}
is a triangle. We then show how to reduce the computation of a set R containing the
vertices of conv((P ⊕ Q) ∩ T ) to a sequence of a fixed number of Minkowski sum
computations with two constraints. Finally, for larger k, we triangulate the polygon
U = {x ∈ R

2 | Ax ≥ b} into k triangles, compute sets Ri, i = 1, . . . , k, containing
the vertices of the constrained Minkowski sums yielded by these triangles and then
return the union of the Ri .
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4.1 Minkowski Sums with Two Constraints

Consider the constrained Minkowski sum (P ⊕ Q)Ax≥b = {x | x ∈ P ⊕ Q,Ax ≥ b},
where Ax ≥ b consists of two linear inequalities aT

1 x ≥ b1 and aT
2 x ≥ b2.

First, we sort P and Q w.r.t. increasing values of aT
1 x and aT

2 x. This can be done
in time O(N logN). After this preprocessing, any subset P ′ ⊆ P and Q′ ⊆ Q can be
sorted in time O(N).

Consider the first inequality aT
1 x ≥ b1. By translation, we can assume that b1 = 0.

For a given γ ∈ R, define the sets

PL = {
p ∈ P | aT

1 p < −γ
}
,

P= = {
p ∈ P | aT

1 p = −γ
}

and

PR = {
p ∈ P | aT

1 p > −γ
}
.

Likewise, define QL,Q=,QR according to whether aT
1 q < γ , aT

1 q = γ , or aTq > γ .
The number γ can be chosen in such a way that |PL| + |QR| ≤ �n/2� and |PR| +
|QL| ≤ �n/2�, and this can also be done in time O(|P |+ |Q|) by starting with a large
γ and decreasing it in a plane-sweep manner.

Observe that the points in PL ⊕ (QL ∪Q=) and in (PL ∪P=)⊕QL do not satisfy
the inequality aT

1 x ≥ 0 and hence do not satisfy the system Ax ≥ b. On the other
hand, every point in (PR ∪P=)⊕ (QR ∪Q=) satisfies aT

1 x ≥ 0, but it might or might
not satisfy aT

2 x ≥ b2. This constraint still needs to be checked.
For the remaining points, even Ax ≥ b has to be checked. We have shown that the

following formula holds:

(P ⊕ Q)Ax≥b = (
(PL ∪ PR ∪ P=) ⊕ (QL ∪ QR ∪ Q=)

)
Ax≥b

= (PL ⊕ QR)Ax≥b ∪ (PR ⊕ QL)Ax≥b

∪(
(PR ∪ P=) ⊕ (QR ∪ Q=)

)
aT

2 x≥b2
.

It leads to the following recursive algorithm CONSTR-MINKOWSKI2 (Fig. 5) for
k = 2.

The algorithm uses a global array R of points to which the recursive calls add
points. When the algorithm terminates, R contains all vertices of conv((P ⊕Q)Ax≥b).
We set R = ∅ in the beginning.

Theorem 6 Algorithm CONSTR-MINKOWSKI2 (Fig. 5) computes a set of points R ⊆
(P ⊕ Q)Ax≥b which contains all vertices of conv((P ⊕ Q)Ax≥b). Its running time is
O(N logN), where N = |P | + |Q|. The convex hull of a constrained Minkowski sum
with two constraints has O(N logN) vertices.

Proof Let T (n) be the running time of the algorithm excluding the time required
to sort P and Q w.r.t. aT

1 x and aT
2 x for the first time. Notice that the sorting in the

recursion can be done in time O(N). Likewise step (10) requires time O(N), by
Theorem 5. Neglecting floors and ceilings, we obtain the recursion

T (N) ≤ 2 · T (N/2) + O(N).
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Algorithm: CONSTR-MINKOWSKI2 (P,Q,Ax ≥ b)

Input: Point-sets P,Q ⊆ R
2 and 2 linear constraints given by Ax ≥ b.

The first constraint is aT
1 x ≥ b1, the other constraint is aT

2 x ≥ b2.
Output: A set of points R ⊆ (P ⊕ Q)Ax≥b which contains all

vertices of conv((P ⊕ Q)Ax≥b).

(1) Use translation on P and Q to obtain b1 = 0.
(2) Sort the sets P and Q in increasing order w.r.t. aT

1 x and aT
2 x.

(3) if (|P | + |Q| ≤ 2), then
(4) add each point in (P ⊕ Q)Ax≥b to R

(5) else
(6) Determine γ ∈ R such that |PR|+|QL| ≤ �n/2� and |PL|+|QR| ≤ �n/2�.
(7) The following calls add points to the global set R:
(8) CONSTR-MINKOWSKI2PR,QL,Ax ≥ b

(9) CONSTR-MINKOWSKI2PL,QR,Ax ≥ b

(10) CONSTR-MINKOWSKIPR ∪ P=,QR ∪ Q=, aT
2 x ≥ b2

Fig. 5 Algorithm for computing the Minkowski sum with two constraints.

This shows the claim. �

We obtain the following corollary.

Corollary 3 Let Ax ≥ b be a system of two constraints. The convex hull of
(P ⊕ Q)Ax≥b can be computed in time O(N log2 N) in general and in time
O(N logN) if one of the two constraints is linearly sortable.

4.2 Two Parallel Constraints

If the two constraints from above are of the form aTx ≥ L and aTx ≤ U , then we can
obtain a running time of O(N) if the constraints are linearly sortable or the sets P and
Q are pre-sorted, as we describe now. This is particularly the case if the constraints
in the interval problems of Sect. 2 are bounding the length of the interval from above
and below. Together with this extra trick, we obtain linear running times for all listed
interval problems.

Suppose without loss of generality that the constraints are L ≤ x1 and x1 ≤ U .
The parallel constraints form a vertical strip with a width of w = U −L ≥ 0. We will
show how to split the point-sets P and Q so that we obtain a number of Minkowski
problems with only one constraint. The main idea is as follows: Split all points of
P and Q into disjoint subsets P1, . . . ,Pu and Q1, . . . ,Qv such that each subset is
contained in a vertical strip of width w/4.

Now consider Pi ⊕ Qj . It follows that the resulting points are contained in a ver-
tical strip of width w/2. Since the distance between L and U is w, we can conclude
that at most one constraint L or U is located in this vertical strip of width w/2, or the
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strip is either completely inside or outside of L ≤ x1 ≤ U , and therefore we obtain a
Minkowski problem with one or zero constraints. We do not know the number u + v

of subsets of P and Q, but one subset Pi can only be combined with six subsets of Q,
since the subsets are disjoint and all other possible Minkowski sums contain points
that violate L ≤ x1 or x1 ≤ U . We thus have the following theorem.

Theorem 7 Suppose that the points in P and Q are sorted w.r.t. aTx. Then one can
compute a set containing the vertices of conv((P ⊕ Q)α≤aTx≤β) in linear time.

4.3 Minkowski Sums with an Arbitrary Number of Constraints

Suppose now that the system Ax ≥ b contains an arbitrary number k of constraints.
First, we compute the vertex representation of the polygon U = {x ∈ R

2 | Ax ≥ b}
and then triangulate U into at most k − 2 triangles. (By adding constraints, if neces-
sary, we can assume that U is bounded.) We thus reduce the problem of computing
a superset of the vertices of the convex hull of (P ⊕ Q)Ax≥b to the computation of k

such supersets for triangles in time O(k · logk).
Let the triangle T be given by T = {x ∈ R

2 | aT
i x ≤ bi, i = 1,2,3}. In the fol-

lowing we explain how to reduce the computation of conv((P ⊕ Q) ∩ T ) to the con-
strained Minkowski sum computation with two constraints.

Suppose that each edge of the triangle contains a point of P ⊕Q, see Fig. 6. In this
case, each vertex of conv((P ⊕Q)∩T ) is a vertex of conv((P ⊕Q)∩Ci), where Ci is
the cone Ci = {x ∈ R

2 | aT
i x ≤ bi, a

T
i+1x ≤ bi+1}, where indices are taken modulo 3.

Therefore, we only need to show how to transform T into a triangle T ′ so that the
following two conditions hold:

(a) (P ⊕ Q) ∩ T ′ = (P ⊕ Q) ∩ T .
(b) Each edge of T ′ contains a point of (P ⊕ Q).

Consider the cone C1 = {x ∈ R
2 | aT

1 x ≤ b1, a
T
2 x ≤ b2}, see Fig. 7(a). Now com-

pute a set R which contains all the vertices of (P ⊕ Q) ∩ C1. Let x be the ver-
tex of the triangle defined by the constraints aT

1 x ≤ b1 and aT
3 x ≤ b3. Now we can

determine in time linear in R the point r ∈ R ∩ T which is first hit if we rotate
the constraint aT

1 x ≤ b1 around x in such a way that the vertex of T defined by
aT

1 x = b1 and aT
2 x = b2 is invalid, see Fig. 7(b). Clearly, we can replace the con-

straint aT
1 x ≤ b1 by its rotated variant and thereby obtain a triangle T̃ which satisfies

T̃ ∩ (P ⊕Q) = T ∩ (P ⊕Q). The edge defined by the new constraint contains a point
of P ⊕ Q.

By repeating this operation above for each edge of T we can thus construct a
triangle T ′ which satisfies (a) and (b). Together with Theorem 6, this shows that we

Fig. 6 Each edge contains a
point of (P ⊕ Q)
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(a) An edge of T does not con- (b) The replacement of the edge

tain a point of (P ⊕ Q) resulting in a new triangle T̃ .

Fig. 7 Reducing to two constraints when r /∈ T

can compute a set R which contains all the vertices of conv((P ⊕ Q) ∩ T ) in time
O(N logN). Summarizing, we obtain the following theorem.

Theorem 8 Given a set of k linear inequalities Ax ≥ b and point-sets P,Q ⊆ R
2,

one can compute a set R ⊆ (P ⊕ Q)Ax≥b containing all vertices of
conv((P ⊕ Q)Ax≥b) in time O(k · log k + k · N logN), with N = |P | + |Q|. The
number of vertices is bounded by O(k · N logN).

4.4 Final Remarks

We close with some open problems. It is an interesting question whether the running
time for 2 constraints can be further improved to linear time if all constraints are
linearly sortable.

An interesting structural question is how many vertices conv((P ⊕ Q)Ax≥b) can
have if k ≥ 2. We only have the bound O(k ·N logN), which follows from our divide-
and-conquer algorithm and triangulation. However, we suspect that this is not an
exact bound. A related question is the following. If S is an arbitrary subset of P ⊕Q,
how many vertices can conv(S) have? This question was also considered by Halman
et al. [14]. Eisenbrand et al. [9] have shown that any subset S ⊆ P ⊕ Q has at most
O(N4/3) vertices.

Acknowledgement We would like to thank the two anonymous referees for their helpful remarks and
suggestions, which helped us to improve the presentation of these results.

Appendix: Modeling the Interval Problems

In this appendix, we show in more details how the interval problems can be modeled.

(a) This is the problem of maximizing the quasiconvex function f (�, s) = s under the
constraints L ≤ � ≤ U . These two constraints are linearly sortable, the constraint
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x1 ≥ 1 is replaced by x1 ≥ L, hence our algorithm gives a running time O(n)

(Theorem 7) which matches the running time O(n) in [10].
(b) To model this problem, we proceed as follows: Since the objective function

does not depend on � but on the weights instead, we have to use a different
mapping which sets pj = (w1 + · · · + wj ,a1 + · · · + aj ) and qi = (−(w1 +
· · · + wi−1),−(a1 + · · · + ai−1)). Since all weights wi are positive, we can dis-
card intervals with negative or zero length by the constraint x1 ≥ wmin, where
wmin = min{wi | i = 1, . . . , n}. In order to discard intervals with a weight which
is too small, we use the constraint x1 ≥ c, where c = max{wmin,L}. We then com-
pute the constrained Minkowski sum ({p1, . . . , pn} ⊕ {q1, . . . , qn})c≤x1≤U and
maximize the quasiconvex function f (x, y) = y/x. Notice that since the weights
are all positive, the numbers w1 + · · · + wi are sorted, and therefore the running
time we obtain is O(n) (Theorem 7), which matches [11].

(c) The function f (�, s) = � is quasiconvex, the linear constraint is s ≥ b · �. The
bias b is a constant, say b = b1/b2 for natural numbers b1 and b2. Then, the
constraint is equivalent to b2 · s − b1 · � ≥ 0. In the application, s counts the
number of “preferred” characters, i.e., s ∈ {0, . . . , n}. The sets P and Q used
to model that problem thus have integer coordinates with absolute values O(n).
b2 · s − b1 · � is linearly sortable, as its absolute values are also bounded by
O(n). This means that the problem is solved by maximizing f (�, s) = � under
the constraint b2 · s − b1 · � ≥ 0. The constraint x1 ≥ 1 in the Minkowski sum
can be omitted, since we are maximizing �: When the array contains at least one
preferred character (the other case is trivial), then the maximum � is at least 1,
and it does not matter that we are allowing intervals of zero or negative length.
Our (worst-case) running time for this problem thus is O(n), improving upon the
(worst-case) trivial running time O(n2) in [2].

(d) This is the problem of maximizing the quasiconvex function f (�, s) = s/� under
the constraint � ≥ L. We can model the problem as a constrained Minkowski
sum with only one constraint x1 ≥ L (replacing x1 ≥ 1). Since P and Q have
x1-coordinates which are integers with absolute values O(n), the constraint is
linearly sortable, and we obtain a linear-time algorithm for the problem. This
improves upon the result from [16], where the running time is O(n logL), but
only equals the running time O(n), which results from the algorithm for the more
general problem (b) in [10].

(e) Here one wants to maximize the quasiconvex function f (�, s) = |s|/√� with-
out extra constraint. Our algorithm yields running time O(n), improving the re-
sults from [4], where unconstrained Minkowski sums were used to obtain an
O(n logn) bound. We could now even generalize problem (e) by allowing extra
parameters L and U . The task would be to find an interval with length at least L

and at most U such that f (�, s) is as large as possible. We obtain a running time
of O(n) for this generalized problem.
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