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Abstract Signaling networks usually include protein-modification cycles. Cascades
of such cycles are the backbones of multiple signaling pathways. Protein gradients
emerge from the spatial separation of opposing enzymes, such as kinases and phospha-
tases, or guanine nucleotide exchange factors (GEFs) and GTPase activating proteins
(GAPs) for GTPase cycles. We show that different diffusivities of an active protein
form and an inactive form leads to spatial gradients of protein abundance in the cyto-
plasm. For a cascade of cycles, using a discrete approximation of the space, we derive
an analytical expression for the spatial gradients and show that it converges to an exact
solution with decreasing the size of the quantization. Our results facilitate quantitative
analysis of the dependence of spatial gradients on the network topology and reaction
kinetics. We demonstrate how different cascade designs filter and process the input
information to generate precise, complex spatial guidance for multiple GTPase effec-
tor processes. Thus, protein-modification cascades may serve as devices to compute
complex spatial distributions of target proteins within intracellular space.
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1 Introduction

Intracellular signaling processes, which convey signals from cell-surface receptors to
target genes in the nucleus, have a spatial as well as the (usually studied) temporal
dimension. The signals received at the cell membrane need to be transported across the
cell interior, and active transport or diffusion can therefore influence the input-output
characteristics of signal transduction processes [1]. In addition, pivotal processes such
as cell division, polarization and migration depend on the generation and processing
of intracellular signals that monitor the relative localization of cellular components,
either in relation to other components or to external cues. For instance, in mitosis
the spindle-positioning checkpoint surveys the position of chromosomes during their
distribution and delays cytokinesis until proper spindle positioning is attained [2].

Spatial separation of two opposing enzymes in a protein modification cycle was
predicted to create patterns of positional information within a cell [3]. In particular,
protein phosphorylation/dephosphorylation and GTPase activation/inactivation cycles
can generate spatial (activity) gradients. Such a protein modification cycle for GTPases
is shown in Fig. 1. For instance, if phosphorylation of a diffusible target protein is cat-
alyzed by a kinase localized to a scaffold, supra-molecular structure or the membrane,
whereas the opposing phosphatase is homogeneously dispersed, spatial gradients of
the protein phosphorylation state can occur. This reaction-diffusion system generates
a high level of phosphorylation of the target protein in the close vicinity of the scaffold
or near the membrane and a low phosphorylation level at distant cytoplasmic areas
[3,4]. Steadily changing gradients generate the spatial information, which guides the
processes that depend on the phosphorylation or activity state of the diffusible target
protein.

New experimental methods for detecting activity states of certain proteins in living
cells recently lead to an experimental observation of the predicted activity gradients.
For instance, fluorescence resonance energy transfer-based biosensors enabled the
detection of gradients of the small GTPases Cdc42 [5] and Ran [6–8] as well as of
phosphorylated stathmin, a microtubule-binding protein [9]. With suitable probes,
even highly unstable enzyme-substrate complexes can nowadays be monitored with
sub-cellular spatial resolution [10]. These studies have revealed that spatial gradients
of signaling molecules play important roles in the spatial coordination of cell division
processes, which often employ small GTPases to generate spatial “clues” [11].

Biochemical and genetic studies have provided evidence that different types of
GTPases interact in processes linked to spatial sensing. For instance, the interactions
between a Ras and a Rho GTPase couple the selection of a growth site to the devel-
opment of cell polarity in yeast [12]. Likewise, many real cellular signaling networks
are more complex than a single protein modification cycle [13]. Networks of small
GTPases involved in cell polarity and movement, when modeled as reaction-diffusion
systems, show that realistic representations of complex spatial processes, in princi-
ple, can be obtained [14]. However, beyond numerical simulation, a more fundamental
understanding of the qualitative behavior of cell signaling in space is currently lacking.

In this paper, we aim at investigating possible mechanisms of signal generation and
propagation using reaction-diffusion models. We start with single-protein modules
and extend the analyses to cascades of interacting proteins in order to reveal general
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Fig. 1 Network scheme for a three-level GTPase cascade. The grey box comprises the components par-
ticipating in a single (the first) level of the cascade, namely a guanine nucleotide exchange factor (GEF)
and a corresponding GTPase activating protein (GAP) that catalyze the conversion of GTPase-GDP to
GTPase-GTP (abbreviated by Gi-GDP and Gi-GTP) and vice-versa, respectively. In addition, GTPases
have (low) intrinsic GTP-hydrolyzing activities (not shown). The network includes three such modules.
They are connected through sequential activation of the GEFs for levels 2 and 3 by the active GTPases of
the corresponding previous levels

features of signaling processes in space. We demonstrate that different diffusivities
of active and inactive protein forms can lead to spatial gradients of protein abun-
dance (the local sum of all modulation states of that protein) in the cytoplasm. We
show how GTPase cascades can process and encode input information into complex,
non-monotonic spatial profiles of the GTPase activity gradients.

2 Spatial gradients in single-protein modules

2.1 Activity gradients by reaction-diffusion processes

The development of imaging techniques allowed direct experimental observation of
activity gradients in the control of the mitotic spindle [6,8]. This process involves
the diffusible small GTPase Ran. Ran-GDP is activated by the guanine nucleotide
exchange factor (GEF) RCC1, which is predominantly bound to chromosomes [15].
In contrast, the hydrolysis of Ran-GTP is catalyzed by RanGAP1 that is homoge-
neously distributed in the surrounding area [6,16] (see Fig. 2). When the diffusivities
(D) of active Ran-GTP (c) and inactive Ran-GDP (cI ) are the same, this reaction-dif-
fusion system can be described as follows,

∂c

∂t
= D�c − vI (c), c + cI = ctot (1)
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Fig. 2 The Ran system for control of the mitotic spindle. Spatial separation of the opposing enzymes, GEF
RCC1 and RanGAP1, generates intracellular gradients of the small GTPase Ran. RCC1 localizes to chro-
mosomes, whereas RanGAP1 is homogeneously distributed in the cytoplasm. The concentration gradients
are shown by colour intensity. The characteristic length of the gradient is determined by the RanGAP1
activity and the Ran diffusivity (Eq. 3)

Here vI is the rate of RanGAP1-catalyzed GTP-hydrolysis, i.e. the rate of GTPase
inactivation. The total Ran concentration, ctot, is constant at each space and time point
on the time scale of the signal transfer [4]. In order to make analytical estimates, we
assume a spherical symmetry (Fig. 2) and that the RanGAP1 activity is far from satu-
ration, i.e., vI (c) = kI c (kI = Vmax/Km is the observed first-order rate constant). The
space geometry considered is the following: the Ran activator, RCC1, is bound to a
chromatin structure of the radius s, and the opposing enzyme RanGAP1 is dispersed
in the surrounding area of the radius M . Then, the steady state Ran-GTP concentration
c(r) is determined by [3],

D
r2

∂

∂r

(
r2 ∂c

∂r

)
− kI · c = 0, −D

∂c

∂r

∣∣∣∣
r=s

= vA,
∂c

∂r

∣∣∣∣
r=M

= 0, (2)

where vA is the GEF-catalyzed GTP exchange rate at the surface of the chromatin
structure. The analytical solution to this equation gives the ratio of the Ran-GTP con-
centration at the distance (r − s) from the chromosome to the Ran-GTP concentration
at the chromosome surface (r = s),

c(r)

c(s)
= e−α(r−s) · s

r
·
(

e2αr (αM + 1) + e2αM (αM − 1)

e2αs(αM + 1) + e2αM (αM − 1)

)
, α2 = kI

D
(3)
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Equation (3) shows that Ran-GTP decreases roughly exponentially with the dis-
tance (r −s) from the chromosome. The characteristic length of the Ran-GTP gradient
is determined as [3,17],

L = √
D/kI . (4)

Since the diffusivity of Ran is 20 µm2/s and the kI value is in the range of 0.5–5 s−1,
the Ran-GTP gradient appears to be precipitous with the characteristic length of
2–6µm [6,16], as indeed was measured experimentally [8]. Similar characteristic
length and nearly exponential form of the protein activity gradients were first reported
for the different geometry where protein is activated at the membrane of a spherical
cell and diffuses in the cell interior where it is deactivated [3]. This approximation
holds true if the deactivating enzyme is homogeneously distributed in the cytoplasm
and operates far from saturation. Note that the analytical solution can also be obtained
readily for the fully saturated condition [17]. Using discretization of the space, in this
paper we derive the analytical solution for a cascade of cycles and for arbitrary kinetics
of activating and deactivating enzymes. This allows us to explore multiple interaction
motifs of the GTPase cascades and to demonstrate how different spatial signals are
processed and controlled by these cascades.

In a general case, a source of active GTPase can be on many cellular membranes,
including the plasma membrane and the Golgi apparatus [18]. In the case of spherical
symmetry, the steady state solutions to reaction-diffusion equations for a 3-dimen-
sional system (Eqs. 2 and 3) have many similarities with solutions to a one-dimensional
system (see below). Without loss of generality, we will further consider a one-dimen-
sional system with Cartesian spatial coordinate x , where we assume that the GTPase
is activated at a source x = 0, can freely diffuse, and is converted to inactive GDP-
bound form. With identical diffusion coefficients D for both forms of the GTPase, the
stationary profile of activated GTPase c(x) is described by

kI · c(x) − D · ∂2c(x)

∂x2 = 0 (5)

with the specific GTP hydrolysis rate constant kI . To model the source, one can either
assume a fixed concentration c0 of active GTPase at the boundary x = 0,

c(0) = c0 (6)

or postulate that the rate of the surface-reaction (the GEF-catalyzed activation with
rate constant kA) equals the diffusive flux:

−D
∂c

∂x

∣∣∣∣
x=0

= vA (7)

For both scenarios, using a Neumann (zero flux) condition for the other system
boundary at xL
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∂c(x)

∂x

∣∣∣∣ x=xL

= 0 (8)

we obtain an analytical solution of the form

c(x) = c0 · exp(−ϕ · xL · (2 − x/xL)) + exp(−ϕ · x)

1 + exp(−2 · ϕ · xL)
, ϕ =

√
kI

D
(9)

with the gradient’s characteristic length L = 1/ϕ (see Eq. 4). For large ϕ and/or large
xL , thus, again c(x) ≈ c0 ·exp(−ϕ · x). Note that for the fixed-concentration boundary
condition (Eq. 6), the GEF activity at x = 0 does not control the activation level of
the GTPase near the source point (c0), whereas in the second scenario (Eq. 7) only c0
depends on the GEF activity.

2.2 Emergence of spatial gradients of protein abundances within cells

Spatial gradients of protein abundance within a cell can emerge when the diffusivities
of an active (for instance, phosphorylated) form and an inactive (unphosphorylated)
form are different. In fact, the active form of a signaling protein often interacts with
other proteins and generates multi-protein complexes. The Stokes radius of a complex
can be much larger than the radius of the original, inactive form. According to the
Einstein–Stokes equation, this can lead to a significant decrease in the diffusion coef-
ficient of the active form, provided that the complex is sufficiently stable, and therefore
the total residence time of the active form in the complex is large. The Einstein–Stokes
equation for the diffusion coefficient reads,

D = kB T

6πηS
, (10)

where kB is the Boltzmann’s constant, T is the absolute temperature, η is the viscosity
of the medium, and S is the Stokes radius, which is roughly proportional to the cube root
of the molecular weight (MW). Therefore, if an active form of a low MW protein asso-
ciates with a high MW protein, or forms a multi-protein complex, the diffusion coeffi-
cient of the complex will be considerably less than the diffusivity of an inactive form.

In contrast with a general case for the GTPase system described by Eq. (5), we
will need two separate equations to account for the dynamics of phosphorylated and
unphosphorylated forms, as their sum will now depend on the spatial coordinate. In
addition, we will not make any a priori assumption about the kinetics of the membrane
kinase and diffusible phosphatase. Assuming that the association of the phosphory-
lated form (c) with other proteins does not protect this form against the phosphatase
activities, the spatio-temporal behavior of phosphorylated form and inactive, unphos-
phorylated form (cI ) will be described by the reaction diffusion system with similar
reaction terms, but different diffusivities, D and DI , respectively. For illustrative pur-
poses, we consider the simplest one-dimensional (1-D) geometry, and all results apply
readily to a 3-D case. This simplest 1-D geometry corresponds to a cylindrical bacte-
rial cell of the length H . We will assume that a kinase is localized to the membrane
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at a single pole of this cell (at the spatial coordinate x = 0) and a phosphatase is
distributed in the cytoplasm. The kinase rate vA is defined as the surface-rate at x = 0.
The phosphorylated protein (c) diffuses into the cell and gets dephosphorylated by
the phosphatase at rate vI . The spatio-temporal dynamics of the phosphorylated pro-
tein form c and of the unphosphorylated form cI of the interconvertible protein are
governed by the following reaction-diffusion equations,

∂c

∂t
= D

∂2c

∂x2 − vI (c)
(11)

∂cI

∂t
= DI

∂2cI

∂x2 + vI (c)

The boundary conditions are the following,

−D
∂c

∂x

∣∣∣∣
x=0

= DI
∂cI

∂x

∣∣∣∣
x=0

= vA; ∂c

∂x

∣∣∣∣
x=H

= ∂cI

∂x

∣∣∣∣
x=H

= 0 (12)

In contrast to the previous section, here we allow for any functional form of the
phosphatase rate vI . In this general case, the following can be derived. At the steady
state, the time derivatives are zero, and from Eq. (11), it follows,

D
∂2c

∂x2 + DI
∂2cI

∂x2 = 0 (13)

Integrating Eq. (13) from 0 to x , and taking into account the boundary conditions,
Eq. (12), we have,

D
dc

dx
+ DI

dcI

dx
= D

dc

dx

∣∣∣∣
x=0

+ DI
dcI

dx

∣∣∣∣
x=0

= 0 (14)

Finally, integrating Eq. (14) from 0 to x and rearranging, we obtain,

D (c(0) − c(x)) = DI (cI (x) − cI (0)) . (15)

Since the diffusivity D of the phosphorylated form is smaller than the diffusivity
DI of inactive protein, D < DI , the phosphoprotein gradient Gradp ≡ c(0) − c(x)

is more precipitous than the gradient GradI ≡ cI (x)− cI (0) of the unphosphorylated
protein,

Gradp/GradI = DI /D ≥ 1.

Importantly, Eq. (15) shows that the difference in the diffusivities D and DI brings
about the spatial gradient, Gradtot, of the protein abundance,

ctot(x) = c(x) + cI (x),
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Fig. 3 Spatial gradients of protein abundance for the phosphorylated form (c, dashed line), unphos-
phorylated form (cI , dotted line), and total protein (ctot , solid line). We used Eq. (9) to compute the
gradient for c. Parameters were set to realistic values for the Ran system, namely D = 1 µm2 s−1, DI =
2 µm2 s−1, kI = 4 s−1. Concentrations are normalized such that c(x = 0) = 2 a.u. and cI (x = 0) = 1 a.u

Gradtot = ctot(0) − ctot(x) =
(

1 − D

DI

)
(c(0) − c(x))

=
(

1 − D

DI

)
Gradp (16)

With realistic parameter values, pronounced spatial gradients in protein abundance
appear (Fig. 3). We conclude that precipitous gradients of the phosphorylated form
may lead to inhomogeneous spatial distribution of the total number of molecules of
the target protein, if the diffusivities of active and inactive forms are different.

Suppose that the association of the active form of the target protein with another
protein protects this form from deactivation by the opposing enzyme in the cyto-
plasm. For instance, the binding of Ran-GTP to importin-β prevents the GTP hydro-
lysis catalyzed by RanGAP, extending the characteristic length of the gradient of the
Ran-GTP-importin-β complex [6]. However, even in this case the gradient of the
total Ran concentration will occur within the cell. The sum of the free Ran-GTP and
Ran-GDP concentrations remains constant, as their diffusivities are the same, whereas
the emerging gradient of the Ran-GTP-importin-β complex results in the gradient of
the Ran abundance in the cell.

3 Spatial gradients in protein cascades

3.1 Quantized reaction-diffusion model for GTPase cascades

To extend the simple models for a single gradient to more complicated signaling pro-
cesses, we will consider signaling cascades, where GTPases at each cascade level
positively or negatively control GEFs or GAPs for GTPases at subsequent levels.
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According to the model scenarios, the systems’ components can freely diffuse or are
localized to specific membranes or cell structures. Moreover, the transitions from the
active GTP-bound form to the inactive GDP-bound form can occur with or without
associated GAP. To establish a corresponding, generalized model, we assume that the
spatial distribution of GEFs and GAPs can be approximated by discrete values. More
specifically, we consider a one-dimensional spatially distributed system with Cartesian
spatial coordinate x that is sub-divided into N sections. These sections may, but do not
need to correspond to cell compartments such as the membrane or nucleus. Individual
GEF and GTPase reactions may be assigned to each section. The corresponding N +1
positions of section boundaries are xk with k ∈ {0, . . . , N }.

Similar to the simple version of the single-GTPase system (see the previous sec-
tion, Eq. 5), we will assume equal diffusion coefficients (D) for GTP- and GDP-bound
GTPases. Then, the stationary profile of active GTPase ci (x) in section i ∈ {1, . . . , N }
can be described by

− vI (i) · ci (x) + vA(i) · [ctot − ci (x)] + D · ∂2ci (x)

∂x2 = 0 (17)

Note that the GTP hydrolysis rates vI (i) and the GTP exchange rates vA(i) are now
defined specifically for each section. This allows for a discrete approximation of the
effects that GTPases may exert on each other provided there are no feedback loops.
Moreover, the reaction rate laws vI (i) and vA(i) can be arbitrary functions of the
system’s components.

For continuity at the borders between sections, concentrations and fluxes at each
side of an interior border n ∈ {1, . . . , N − 1} have to be identical, that is,

cn(x) |xn
= cn+1(x) |xn

; ∂cn(x)

∂x

∣∣∣∣ xn

= ∂cn+1(x)

∂x

∣∣∣∣ xn

. (18)

Furthermore, we consider a closed system [x0, xN ] with Neumann boundary condi-
tions, which implies

∂c1(x)

∂x

∣∣∣∣ x0

= ∂cN (x)

∂x

∣∣∣∣ xN

= 0 (19)

The solution of PDE (17) has the following form:

ci (x) = α(i) · exp(−ϕ(i) · x) + β(i) · exp(+ϕ(i) · x) + ξ(i), (20)

where the characteristic length scale 1/L( j) = ϕ( j) and the constant term ξ( j) are

given by ϕ( j) =
√

vI ( j)+vA( j)
D and ξ( j) = ctot ·vA( j)

vI ( j)+vA( j) , respectively. For determining
the parameters α(i) and β(i), continuity and boundary conditions (18), (19) yield
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β(1) · g(1, 0)2 − α(1) = β(N ) · g(N , N )2 − α(N ) = 0

α(n) · f (n, n) + β(n) · g(n, n) + ξ(n)

= α(n + 1) · f (n + 1, n) + β(n + 1) · g(n + 1, n) + ξ(n + 1)
(21)

ϕ(n)[β(n) · g(n, n) − α(n) · f (n, n)]
= ϕ(n + 1)[β(n + 1) · g(n + 1, n) − α(n + 1) · f (n + 1, n)]

Here, to simplify the notation we have defined two auxiliary functions f ( j, k) and
g( j, k) as

f ( j, k) = exp(−ϕ( j) · xk); g( j, k) = f ( j, k)−1 = exp(+ϕ( j) · xk) . (22)

Elimination of β(n) and α(n) in Eq. (21) leads to

α(n) = γ1,1(n) · α(n + 1) + γ1,2(n) · β(n + 1) + γ1,3(n)
(23)

β(n) = γ2,1(n) · α(n + 1) + γ2,2(n) · β(n + 1) + γ2,3(n)

with

γ1,1(n) = δ(n) · f (n + 1, n) · g(n, n);
γ2,1(n) = [1 − δ(n)] · f (n + 1, n) · f (n, n)

γ1,2(n) = [1 − δ(n)] · g(n + 1, n) · g(n, n);
γ2,2(n) = δ(n) · g(n + 1, n) · f (n, n)

(24)
γ1,3(n) = ε(n) · g(n, n);
γ2,3(n) = ε(n) · f (n, n)

δ(n) = 1/2 [ ϕ(n + 1)/ϕ(n) + 1 ];
ε(n) = 1/2 [ ξ(n + 1) − ξ(n) ].

By successive elimination of the α(n + 1) , β(n + 1) in the 2(N − 1) Eqs. (21) and
(23), we obtain for coefficient β(N ) in the final section

β(N ) =
∑N−1

j=1 (�1,3( j)−g(1, 0)2 · �2,3( j))

g(1, 0)2
[
g(N , N )2 · �2,1(N −1)+�2,2(N −1)

]−g(N , N )2 · �1,1(N −1)−�1,2(N −1)

(25)

employing an auxiliary function � j,k(l) ( j ∈ {1, 2} , k ∈ {1, 2, 3}) defined by

� j,k(l)=
{

γ j,k(l) for l = 1

γ1,k(l) · � j,1(l − 1) + γ2,k(l) · � j,2(l − 1) for 2 ≤ l ≤ N −1
. (26)

All other coefficients α(i) and β(i) can be calculated recursively from Eqs. (21)–(24).
Note that for numerical accuracy, slightly different implementations are advantageous
(e.g., replacing products of exponential functions by single variables).
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3.2 Accuracy of the quantized model

First, we sought to assess the accuracy of the above GTPase model with spatial quanti-
zation. In this model, the GTP hydrolysis rates vI (i) and the GTP exchange rates vA(i)
are section-specific to account for spatial heterogeneity of input signals such as GEF
and GAP activities. For simple gradients, one can obtain analytical solutions for the
reaction-diffusion system where the reaction rates are continuous functions in space
(i.e. PDE (17) and boundary conditions (19), omitting the index i). We can, thus, evalu-
ate the accuracy of the quantized model against such a simple case. Here, we consider a
linear gradient of GEF activity but spatially homogeneous GTP hydrolysis rates, that is,

vc
I (x) = kGTPase , vc

A(x) = kGEF · x (27)

where superscripts c denote that the rates are continuous functions of the spatial coor-
dinate x . For the quantized model, we employed a discrete approximation of the GEF
gradient, namely the activity at the midpoint of each interval. Correspondingly, we
obtain the rates for the i th interval by

vI (i) = kGTPase , vA(i) = kGEF · 1

2
(xi−1 + xi ) (28)

For realistic mathematical models, kinetic parameters need to be set according to
the in vivo situation. However, consistent parameters for all components of a GTPase
cycle have only been determined in few cases; in particular, protein concentrations in
living cells are often unknown. Therefore, we consider the ranges of in vitro activities
(catalytic constants) for typical GTPases, GAPs and GEFs. A survey of the litera-
ture leads to the following estimates of kcat values: GTPase activity without GAP
k∗

GTPase ≈ 10−4 − 10−1 s−1, GTPase activity with GAP kGTPase ≈ 100 − 102 s−1,
and GEF activity kGEF ≈ 100 − 104 s−1 [19–25]. In addition, we assume that pro-
tein concentrations for all components are of the same order of magnitude, i.e. that the
above relative rates will reflect the effective constants in vivo. In the following, we will
therefore consider arbitrary units for these concentrations; apparently, more detailed
estimates will be needed when considering specific biological systems (which is not
the aim of this study). Diffusion constants were approximated with the Einstein–Stokes
Eq. (10) using the molecular weight of typical GTPases. This results in diffusion coef-
ficients D ≈ 0.5 − 50 µm2s

−1
, when taking into account that effective diffusion in

the cytoplasm may be 5–20 times slower than in water [26], which agrees well with
experimentally determined intracellular diffusion coefficients for proteins [3].

Figure 4b shows the analytical solution for the resulting gradient of active GTPase
for plausible parameter values along with simulation results for the discrete model
when considering 2, 4, 8, or 16 intervals. The corresponding discretization of the GEF
activity is given in Fig. 4a. Already for 8 sections, the approximation converges to the
true solution and with N = 16, the gradients become indistinguishable. We conclude
that the quantized model, which relies on piecewise-nonlinear approximations of the
gradient, accurately describes the steady-state GTPase gradients at least for simple
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Fig. 4 Approximation of spatial GTPase gradients by a quantized model. a Approximation of the linear GEF
activity gradient (black bold line) by discrete average values in N = 2, 4, 8, or 16 segments (gray thin lines).
(b) Comparison of GTPase activity gradients obtained from the piece-wise continuous approximation model
for the corresponding number of segments (gray thin lines) with the analytical solution (black bold line). The
following parameter values were employed: D = 1 µm2 s−1, kGEF = 50 s−1, kGTPase = 20 s−1, ctot = 1

cases, provided that the spatial quantization is sufficiently fine. In the following, to
ensure accuracy of the results, we therefore use N = 50 sections.

3.3 Sequential activation of GTPases along the cascade

In a first scenario for spatial effects on GTPase signaling, we investigated a three-level
GTPase cascade with sequential activation of GEFs (see the network scheme in Fig. 1).
More specifically, GEF activities on levels 2 and 3 are controlled positively by active
GTPase at levels 1 and 2, respectively. The first-level GEF, in contrast to all other
components of the system, is assumed to be localized at a discrete cellular position,
for instance, at the cell membrane or in association with a supramolecular structure in
the cell’s center. This scenario is equivalent to signal transduction in MAP kinase cas-
cades, which has previously been shown to allow for signal propagation in space [1].

To model the network’s steady-state behavior, we denote by n the consecutive num-
ber of each GTPase cycle, that is, the level in the cascade. We extend the notation for
PDE (17) such that ci,n(x) is the concentration of the active, nth GTPase in section i
at position x . Correspondingly, additional subscripts for total GTPase concentrations,
for reaction rates, and for kinetic parameters specify the respective GTPase. To model
the positive influence of the nth GTPase activity on the (n + 1)th GEF activity, we
define the average GTPase activity at level n in section i as:

c̄n(i) = ci,n

(
xi−1 + xi

2

)
(29)

Assuming linear kinetics for GTPase and GEF activities, the cascade model is fully
specified with:

vI,n(i) = kGTPase,n , vA,n(i) =
{

kGEF,n · cGEF
n (i)

kGEF,n · c̄n−1(i)

for n = 1

for n > 1
, (30)
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Fig. 5 Spatial gradients of GTPase activity for a three-step cascade with sequential activation of GEFs. Only
the GEF for the first level was assumed to be concentrated in a narrow zone (grey area), while all other compo-
nents were assumed to be freely diffusible. GTPase activities for level 1 (dotted line), level 2 (dashed line) and
level 3 (solid line) are shown for three scenarios with linear dependency between GTPase activity and GEF
activity: a one-sided activation, b two-sided activation, and c central activation zone. Panels (d–f) contain
the corresponding simulation results with Michaelis–Menten type rate laws for GEF activation. Parameters
were set as follows: relative concentrations for all GTPases of one (arbitrary) unit (ctot

n = 1 a.u.), identical
properties of all GTPases, namely Dn = 1 µm2 s−1, kGEF,n = 2 s−1, kGTPase,n = 0.5 s−1, cGEF

1 (i) = 0
a.u. or 1 a.u. according to the scenario for first-level GEF localization, and Michaelis–Menten constants for
GEF activation KM,GEF,n = 0.25 a.u

Here cGEF
n (i) is the assumed GEF concentration in the i th segment. The linear depen-

dency of GEF activity on the previous level’s active GTPase concentration considers
the cases when either the GTPase itself functions as a GEF, or when the GTPase
activates the GEF and there are no saturation effects.

For this linear model, we consider three different localizations of the first-level
GEF in one-dimensional space (by appropriate settings of cGEF

1 (i)) that correspond
to localization at one membrane, at both membranes, and in the nucleus. In the first
scenario (Fig. 5a), sequential activation along the cascade leads to propagation of the
signal generated at the membrane in space, as found earlier in numerical simulations
[1]. Cells could use such mechanisms, for instance, to convey signals from the mem-
brane to the nucleus despite ubiquitous inactivation mechanisms. Note also that the
form of the gradients becomes increasingly unlike simple exponential decay functions,
indicating that networks of GTPases might be capable of generating more complicated
spatial patterns. Such patterns arise, for instance, for activation of the first GTPase at
both boundaries (Fig. 5b) or in the cell’s center (Fig. 5c). These situations are remi-
niscent of (dynamic) communication between poles of cylinder-shaped bacterial cells
to establish the division plane [27–29], and of the RanGAP system discussed in the
previous section, respectively.

Approximation of spatial gradients with the quantized model, in addition, allows
for investigation of how coupling kinetics influence GTPase gradients. For instance,
instead of the linear dependencies above, the GTPase–GEF interactions can be
described by Michaelis–Menten type kinetics. These rate laws arise when the previous
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level’s GTPase activates the GEF, e.g. by forming an enzyme-activator complex, and
the total concentrations of the proteins are such that they may limit complex formation
(i.e., saturation may occur). The corresponding non-linear dependencies are:

vA,n(i) =
{

kGEF,n · cGEF
n (i) for n = 1

kGEF,n · c̄n−1(i)
KM,GEF,n+c̄n−1(i)

for n > 1
. (31)

With low values for the affinity constants (KM,GEF,n = c0
n/4), but otherwise iden-

tical parameter values, we obtain the GTPase gradients shown in Fig. 5d–f. Due to
the higher sensitivity of 2nd- and 3rd-level GEFs to the upstream GTPases at low
activities, the corresponding GTPase profiles change substantially compared to the
linear model (Fig. 5a–c). For the Michaelis–Menten type kinetics, signals can either
propagate better than for linear kinetics (as shown in Fig. 5), but also depending on
the activation threshold, signals can propagate less effectively than for linear kinetics
(not shown). Thus, networks of interacting protein modification cycles can establish
mechanisms for shaping spatial gradients, either to overcome limitations in signal
propagation, or for spatial coordination of cellular processes. The network interaction
topology as well as the detailed kinetics influence steady-state output signals, with
a potential of forming complicated systems for signal propagation and processing in
space.

3.4 Spatial computation with GTPase cascades

The examples of GTPase cascades discussed above imply the possibility that additional
network interactions can result in systems that allow for more complicated processing,
i.e., computation of spatial signals. To investigate this potential, we first considered a
feed-forward circuit, which is a common motif in cellular signal processing [30,31].
In feed-forward circuits, downstream targets are affected both directly and indirectly
(through intermediary components in the chain). This motif can function in informa-
tion filtering, modification of response dynamics, and pulse generation, depending on
the signs of interaction and the parameter values.

In transferring this principle to spatial computation, we replace the sequential acti-
vation of GEFs in the “conventional” GTPase cascade by the following interactions:
each downstream GAP is positively regulated by all upstream active GTPases (see the
network scheme in Fig. 6a). Again, the 1st-level GEF is specifically localized, while
all other components can diffuse freely. With Michaelis–Menten type kinetics for the
regulatory interactions, the rate laws for this model then read:

vI,1(i) = kGTPase,1, vI,2(i) = kGTPase,2 · c̄1(i)

KM,GAP,2 + c̄1(i)
,

vI,3(i) = kGTPase,3 · [c̄1(i) + c̄2(i)]
KM,GAP,3 + c̄1(i) + c̄2(i)

, vA,n(i) = kGEF,n · cGEF
n (i).

(32)
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Fig. 6 Network interactions can result in non-monotonic spatial gradients. a In this example, we assume
that GEF activity of the first level is localized at the membrane (grey box), while all other activities (GTPases
abbreviated by Gi , GAPs, GEFs) are freely diffusible. In addition, we consider the following regulatory
interactions (denoted by grey arrows): the first-level GTPase-GTP activates GAPs of both downstream
GTPases and the second GTPase-GTP induces third-level GAP activity in an additive manner. b Simulation
results for GTPase activities at level 1 (dotted line), level 2 (dashed line) and level 3 (solid line). The grey
area denotes localization of first-level GEF activity (i.e. cellular compartments where cG E F

1 (i) = 1 a.u.,

otherwise this parameter was set to zero). The other parameter values were: Dn = 4 µm2 s−1, kGEF,n =
10 s−1, kGTPase,1 = 1 s−1, kGTPase,2 = kGTPase,3 = 50 s−1, kM,GAP,2 = 0.1, kM,GAP,3 = 2, ctot

n = 1

The system’s behavior is shown in Fig. 6b for a plausible set of parameter values.
This example demonstrates that gradients may be non-monotonic: the concentration
of the first active GTPase decreases with the distance, but as this GTPase activates
the 2nd-level GAP, the active concentration of 2nd-level GTPase increases with the
distance. Hence, the configuration operates as an inverter of signals in space. At the
third level of the cascade, the interactions (repression of GTPase activity by both
upper-level GTPases) results in an activity peak around the center of the simulated
cell. More complicated rate laws, such as Hill kinetics, for the GAP activation can
result in more pronounced peaks. Two aspects of these simulation results are notewor-
thy. First, network interactions may yield non-monotonic behavior of single gradients
across the spatial dimension. Second, this pulse generation corresponds to the behav-
ior of the spatially homogeneous feed-forward loop in the time domain, which could
be employed to relay signals to spatially defined compartments. Both aspects pro-
vide evidence for the notion that GTPase networks may establish devices for spatial
computation inside living cells.

3.5 A device for sensing cellular distances

Finally, to illustrate the usability of GTPase networks in spatial information process-
ing, we focus on a specific task, namely sensing (computing) the spatial location of
a target component in relation to a cellular structure. In other words, we want to find
a cellular device that is able to relay a signal proportional to the relative location of
an organelle or a supramolecular structure back to a specific cellular location. Such
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signaling devices could be important, for instance, for spatial coordination in cell
division where the position of chromosomes has to be sensed for an accurate distri-
bution of the genetic material into mother and daughter cells. For simplicity, we only
consider the setting in one spatial dimension and assume that a signal at the system
boundaries (x = 0 and x = xN ) should be indicative of the distance from these
boundaries to a target component.

In such a GTPase network, components of the system are localized to different
cellular structures, i.e., the membranes and the target component. Figure 7 shows an
example network scheme. Here, 1st-level GEF activity localizes to the membranes and
the target component. We assume that the 2nd- and 3rd-level GTPases have very low,
that is, negligible intrinsic capacities to hydrolyze GTP and are consequently depen-
dent on GAPs for inactivation. In our scenario, these GAP activities for the second and
third GTPase are associated with the target component only. All other components are
freely diffusible in space. Compared to a standard cascade scheme, the network lacks
an activation of second-level GEF by the first-level, active GTPase, but includes sev-
eral activating and deactivating interactions: (i) 1st-level GTPase → 2nd-level GAP,
(ii) 1st-level GTPase → 3rd-level GEF, and (iii) 2nd-level GTPase → 3rd-level GAP.
Hence, although this scheme is more complicated than the systems discussed so far,
it contains many regulatory interactions of the former. This is reflected in the model
structure with respect to the rate laws for GTP hydrolysis and GDP→GTP exchange,
respectively:

vI,1(i) = kGTPase,1, vI,2(i) = kGTPase,2 · c̄1(i)

KM,GAP,2 + c̄1(i)
,

vI,3(i) = kGTPase,3 · c̄2(i)

KM,GAP,3 + c̄2(i)
, vA,n(i) =

⎧⎨
⎩

kGEF,n · cGEF
n (i) for n = 1, 2

kGEF,3 + k∗
GEF,3·c̄1(i)

KM,GEF,3+c̄1(i)
for n = 3

(33)

Note that for the 3rd-level GEF we include constitutive activity and activation by the
first GTPase.

Simulation results for an example parameter set are shown in Fig. 8 for different
localizations of the target component between the left system boundary and the center.
With increasing distance of the target component, the 3rd-level GTPase activity as the
output signal increases at the location x = 0. This is a result of decreasing levels of
active 1st-level GTPase that could inhibit the second-level GTPase, which in turn is
needed for activation (and inactivation) of the third-level GTPase at this location. In
particular the discrete localization of downstream GAPs and the downstream interac-
tions sharpen the gradients, which is apparent from comparison of 2nd- and 3rd-level
GTPase activity profiles. Figure 9 shows the quantitative input-output characteristics
of the sensing device. Notably, the input (spatial distance)—output (activity of the
third GTPase at x = 0) characteristics is roughly linear and has high gain, which
are desirable features of a spatial sensor. The complicated network structure as well
appears necessary from this data because such characteristics are not found at the cas-
cade’s upper levels. Altogether, this confirms that cells might use cascades together
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Fig. 7 Network with differential localization of components to cellular structures. Here, GEF activity of
the first level is localized at the membranes and at another (target) cellular structure (light grey box), while
we assume that the GAP activities for the second and third GTPase are localized exclusively to the cellular
structure (indicated by dark grey shading). All other components can diffuse freely without being retained
at particular cellular locations. Compared to a standard cascade scheme, the network lacks an activation of
second-level GEF by the first-level, active GTPase, but includes control of the third-level GEF as well as
of the second- and third-level GAPs

with structural elements, playing the role of “relay” stations where bound GEFs or
GAP may increase or decrease the gradients, to establish spatial sensing devices.

4 Discussion

A hallmark of signaling pathways is the spatial separation of activation and deacti-
vation processes, e.g., a protein can be phosphorylated at the cell surface by a mem-
brane-bound kinase and dephosphorylated in the cytosol by a cytosolic phosphatase.
Given the measured values of protein diffusion coefficients and of phosphatase and
kinase activities, the spatial separation is shown to result in precipitous phospho-pro-
teins gradients [3,4]. When the phosphatase activities are too high, the gradients of the
active phosphorylated kinase are becoming very steep and the phosphorylation sig-
nal decays before reaching the target. This termination of signaling by phosphatases
necessitates mechanisms to facilitate signal propagation across a cell. In fact, recent
experimental and theoretical work showed that endocytosis, scaffolding, molecular
motors, and traveling waves of phospho-proteins are involved in the propagation of
signals to different cellular locations [32–34].

At the same time, spatial gradients of active kinases and GTPases can guide effec-
tor processes that are crucial for cell physiology. For instance, when a cell moves
and changes its shape, the target protein can become increasingly phosphorylated in
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Fig. 8 Cascades can establish spatial sensing devices. The simulation results were obtained for the network
configuration shown in Fig. 7. Here, GEF activity of the first level is localized at the membrane (grey areas
at the boundaries). The location of a cellular component (third grey bar, indicating the location of GAP2
and GAP3) is to be tracked and a signal has to be conveyed back to the membrane. Panels a–d show the
resulting GTPase gradients (level 1: dotted lines, level 2: dashed lines, and level 3: solid lines) as the cellular
component is moved from the membrane (left boundary) to the center of the cell. Parameter values are:
Dn = 5 µm2 s−1, kGEF,1 = 10 s−1, kGEF,2 = kGEF,3 = 1 s−1, k∗

GEF,3 = 5, kGTPase,1 = kGTPase,2 =
5 s−1, kGTPase,3 = 100 s−1, kM,GAP,2 = kM,GAP,3 = 0.5, kM,GEF,3 = 10, ctot

n = 1, and cGEF
n (i) = 0

a.u. or 1 a.u. according to the geometry (see Fig. 7)

cell’s protrusions such as lamellipodia, where the membrane surface to volume ratio
increases [35]. Instructively, not only spatial gradients of protein forms with distinct
activities, but also gradients of the protein abundance emerge when the active form
diffuses slower than the inert, inactive form (see Eq. 16).

Small GTPases play central roles in multiple physiological processes, including cell
division, motility, and cytoskeleton rearrangements. In the present paper, we show how
complicated spatial gradients and protein activity profiles emerge in cellular GTPase
cascades where the activated forms of GTPases at each cascade level can activate or
inactivate GEFs or GAPs for the other levels of a cascade. A precipitous decrease in
the activity of a first level GTPase, which is activated by a membrane-bound GEF and
is a GAP for the next level down the cascade, can result in a sharp increase in the
GTPase activity at the second cascade level (Fig. 6). Moreover, if both the first and
second level GTPases are GAPs for the third level in a cascade, the spatial activity
profile of the third GTPase can be non-monotonical. Depending on the reaction kinet-
ics (e.g., far from, or close to saturation for enzymes with Michaelis-Menten kinetics)
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Fig. 9 Input-output behavior for the spatial sensing device in terms of the GTPase activities at the cell
membrane as a function of the localization of the target component (see Figs. 7 and 8 for details). Dotted,
dashed, and solid lines denote first-, second-, and third-level GTPase activity, respectively

and the cascade architecture, the spatial profiles of GTPase activity can fit a variety of
functional dependencies, thereby allowing for computation of intricate spatial signals.

These computational capacities of GTPase networks—in contrast to the simpler
example of chromosome capture enabled by the RCC1 gradient—are largely unex-
plored. Here, we propose a device for sensing spatial distances in a living cell based
on a GTPase cascade. Models such as this could help explain important, yet currently
barely understood processes that require a spatial sensing component. For instance, at
the end of mitosis in budding yeast, cells delay cytokinesis until one pair of chromo-
somes has reached the future daughter cell. Intriguingly, this system operates without
physical contact between daughter cell membrane and spindle pole body, the principal
locations of GTPases and their effectors involved in the corresponding signaling pro-
cesses [36]. Experimental data on multiple interacting components, including protein
activities and their spatial localization, in this and similar systems are hard to obtain.
Therefore, we believe that general mathematical models exploring the computational
capabilities of protein activity gradients are a promising avenue towards rational exper-
imental design and, ultimately, deeper insight into spatial sensing mechanisms.
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