
ORIGINAL PAPER

Shu-Hua Xiao Æ Jun-Min Yao Æ Jürg Utzinger

Yue Cai Æ Jacques Chollet Æ Marcel Tanner

Selection and reversal of Plasmodium berghei resistance
in the mouse model following repeated high doses
of artemether

Received: 23 April 2003 /Accepted: 22 October 2003 / Published online: 16 December 2003
� Springer-Verlag 2003

Abstract Artemether, a derivative of artemisinin, is
effectively used for the treatment of malaria without
any clinically relevant resistance to date. Artemether
has also been developed as an antischistosomal agent,
exhibiting highest activity against immature parasites.
Here, we employ a rodent model and investigate
whether the proposed artemether treatment schedule
to prevent schistosome-attributable morbidity might
select for Plasmodium berghei resistance. Mice infected
with an ANKA strain of P. berghei were treated with
artemether at either 47 mg/kg or 300 mg/kg. Once
every 7–10 days, parasitized erythrocytes were passed
to the next group of mice, receiving the same doses of
artemether, for 50 passages. Resistance development
was slow but increased considerably over the final ten
passages. At the higher dose of artemether, the indices
of resistance were 4.8 and 8.8 after 40 and 50 pas-
sages, respectively. Importantly, resistance was unsta-
ble, since sensitivity reverted to near-normal after five
passages without drug pressure. A moderate index of
P. berghei resistance and no apparent reversibility was
found in comparative experiments employing
pyronaridine. In conclusion, the pace of resistance

development in P. berghei to repeated high doses of
artemether is slow and reversible.

Introduction

Malaria is the most important parasitic disease in the
world, causing >300 million clinical attacks and
>1 million deaths annually; and it disproportionately
affects children under 5 years of age in sub-Saharan
Africa (Breman 2001). Early diagnosis and prompt
treatment has become the backbone of control. For
several decades, chloroquine was the drug of choice, due
to its high efficacy, good tolerability, ease of adminis-
tration, low cost, and the slow pace at which resistance
developed (Wellems and Plowe 2001; Ridley 2002).
However, high levels of chloroquine resistance are now
common throughout Africa, prompting more than ten
countries to replace it with sulfadoxine-pyrimethamine
(SP) as the first-line antimalarial drug (Wongsrichanalai
et al. 2002). Unfortunately, resistance to SP soon
developed, with efficacy lasting <5 years in many set-
tings (Hastings et al. 2002a; Wongsrichanalai et al.
2002). Epidemiologists argue that the rapid spread of
drug-resistant strains of Plasmodium falciparum is the
primary obstacle to malaria control and that, without
new drugs, the disease burden might double over the
next 20 years (Breman 2001; Nosten and Brasseur 2002).

Against this background, the development of arte-
misinin and several semisynthetic derivatives (arteether,
artemether, artesunate, their active metabolite dihyd-
roartemisinin) as antimalarial drugs was of great
importance (Klayman 1985; Li and Wu 2003). The evi-
dence base is now compelling that artemisinins are safe
and can clear malaria-related symptoms and parasitemia
more promptly than any other antimalarial drug; and
there is no report of clinically relevant resistance thus far
(for a recent review, see Meshnick 2002). However, in
mice infected with P. berghei and repeatedly treated
either with artemisinin, artemether or artesunate at
increasing doses, resistant malaria parasites could be
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established (Li et al. 1986; Liu and Ren 1987; Cheng
et al. 1988; Chen et al. 2002). Importantly, these phe-
notypes were unstable, since resistance indices reverted
to normal values after the removal of drug pressure.

More recently, artemether also became recognized as
an antischistosomal drug. It displays potent activity
against the immature stages of schistosomes and pri-
marily targets the worm tegument (Utzinger et al. 2001;
Xiao et al. 2002a). The effects of artemether on bio-
chemical metabolism (Xiao et al. 2000) and antioxidant
systems (Xiao et al. 2002c) have been assessed, its pos-
sible long-term toxicity has been investigated (Xiao et al.
2002b), and progress has been made to elucidate its
possible mechanism of action against schistosomes
(Xiao et al. 2001, 2003). Laboratory studies and pre-
liminary clinical trials have demonstrated that combi-
nation chemotherapy with praziquantel and artemisinins
is beneficial over praziquantel monotherapy (Utzinger
et al. 2003b). Consequently, artemether exhibits poten-
tial within an integrated schistosomiasis control ap-
proach (Utzinger et al. 2001, 2003a; Xiao et al. 2002a;
N�Goran et al. 2003).

The purpose of this paper is to investigate whether
the proposed artemether treatment schedule to prevent
schistosome-attributable morbidity might select for
resistant P. berghei in the mouse model. For compari-
son, the antimalarial drug pyronaridine (Dutta et al.
2000) was also tested.

Materials and methods

Mice, parasites, and drugs

Male and female mice of a Kunming strain, weighing 20±2 g and
purchased from the Shanghai Animal Center of the Chinese
Academy of Sciences (Shanghai, China), were used throughout.
Mice were fed commercial rodent food and water ad libitum in the
animal care facility of the Institute of Parasitic Diseases (IPD),
Chinese Center for Disease Control and Prevention (Shanghai,
China).

An ANKA strain of P. berghei, maintained at IPD over the past
47 years, was employed. Erythrocytes parasitized with P. berghei
were collected from donor mice and, according to the level of
parasitemia, blood was diluted with physiological saline to reach
approximately 107 P. berghei-parasitized donor erythrocytes per
0.2 ml.

Artemether was obtained from the Kunming Pharmaceutical
Corp. (lot 97080; Kunming, China). The drug was suspended in
1% tragacanth at final concentrations of either 4.7 g/l or 30 g/l.
The Department of Pharmaceutical Chemistry at IPD synthesized
pyronaridine phosphate, which was dissolved in distilled water. It
was used at a concentration of 0.47 g/l, calculated by pyronaridine
free bases.

Development of resistance

Fifteen mice were intraperitoneally infected in random order, each
with approximately 107 P. berghei-parasitized erythrocytes. The
day of infection was designated D0. On D3, the parasitemia of each
infected mouse was assessed and, when it reached 3–5%, three
groups of five mice were formed. Each mouse in the first group
was treated orally with artemether at a dose of 47 mg/kg

(corresponding to about 50% CD50 for P. berghei in mice). The
second group of mice was each given artemether at a 6.4-fold
higher dose (300 mg/kg). Doses of 300–400 mg/kg have previously
been used for the prevention of patent schistosome infections in the
murine model (Utzinger et al. 2001); and a dose of 300 mg/kg
corresponds to about 3· CD50 for P. berghei in mice. The third
group of mice received oral pyronaridine at a dose of 4.7 mg/kg
(2· CD50). Blood was examined on D6, D8, D10, D13, D15, D17, etc.
When the parasitemia reached 3–5% in any of the groups, mice
were selected for blood donation for subsequent passages. At each
passage, the same dose of the drugs was given as on D3. In all three
groups, P. berghei were passed for a total of 50 passages.

Determination of resistant P. berghei

The sensitivity of P. berghei to two different dose levels of
artemether and pyronaridine was determined with a standard 4-day
test (Peters et al. 1975). After every fifth to tenth passage, groups of
ten mice were infected with 107 P. berghei-parasitized donor ery-
throcytes. Infected mice were then treated daily for four consecu-
tive days, commencing 3 h post-infection with either artemether (at
two different doses) or pyronaridine. Parasitemia was assessed by
Giemsa-stained thin smears prepared from tail blood after the final
dose. The reduction in mean parasite counts in any of the treatment
groups was calculated as a percentage of those quantified in the
untreated control groups. The 90% effective level (ED90) was cal-
culated using a linear regression method and an index of resistance
(I90) was calculated from the ratio of ED90 of the resistance line to
that of the parent line (for an example, see Peters et al. 1975). The
I90 values were grouped into four categories, according to Merkli
and Richle (1980): (1) I90=1.0, sensitive, (2) I90=1.01–10.0, slight
resistance, (3) I90=10.01–100.0, moderate resistance, and (4)
I90>100.0, high resistance.

Results

Intervals among passages

When mice infected with P. berghei and treated orally
with artemether at the lower dose of 47 mg/kg at 3 days
post-infection, the parasitemia reached 3–5% in some of
the mice within 3 days. Blood collection for obtaining
parasitized erythrocytes was therefore carried out on D7

and employed for subsequent infections. Following each
passage, artemether was administered at the same dose
as at 3 days post-infection. Throughout the experiments,
the same interval of 7 days was adhered to between
subsequent passages, up to the final 50th passage. The
total duration of this series of experiments was
16 months.

Infected mice that received oral artemether at the
higher dose of 300 mg/kg displayed parasitemia levels of
3–5% at D8. The intervals between subsequent passes of
P. berghei-parasitized erythrocytes to mice was once
every 10 days throughout the experiments, up to the
final passage. Consequently, this series of experiments
took 24 months.

Those mice that were infected with P. berghei and
received an initial oral dose of 4.7 mg/kg pyronaridine
reached a parasitemia of 3–5% only at D18. Parasitized
erythrocytes were therefore passed once every 20 days.
However, following the third passage, the same level of
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parasitemia was reached after a considerably shorter
interval, namely 12 days. Consequently, P. berghei par-
asites were passed once every 14 days, up to the eighth
passage. Intervals between subsequent passages were
further shortened to 10 days, up to the 18th passage, and
to 7 days until the end of the experiments (50th passage).
Overall, this series of experiments lasted for 22 months.

Development of resistance to the drugs

Table 1 summarizes the ED90 and I90 values measured in
P. berghei-infected mice that were repeatedly treated
with either artemether or pyronaridine. Both at the
lower and at the higher doses of artemether, the devel-
opment of resistance by the rodent parasite P. berghei to
this drug was slow, since only slight resistance levels
of 2.4–2.5 were quantified after 20–25 passages. The I90
gradually increased following the next 20 passages, to
reach levels of 4.5–4.8 after the 40th or 45th passage.
After completion of the 50th passage, the indices of
resistance had increased to 7.1 at the lower (47 mg/kg)
and 8.8 at the higher (300 mg/kg) dose of artemether.
These values still indicate a low level of resistance.
Moreover, the resistance phenotype was unstable, since
the sensitivities of the malaria parasites to artemether
reverted significantly when the parasites derived from
the 50th passage were transferred through mice without
drug pressure for five passages. The lower dose of ar-
temether showed an I90 value of 1.6, while the corre-
sponding I90 at the higher dose of artemether was 2.2. At
the higher dose of artemether, an additional experiment
was carried out by passing P. berghei parasites derived

from the 30th passage through mice without drug pres-
sure for five passages. This resulted in an I90 of 1.1.

The development of resistance in the P. berghei par-
asite to pyronaridine, repeatedly administered at a dose
of 4.7 mg/kg, was considerably more rapid and more
pronounced when compared with artemether. After the
15th passage, the malaria parasites showed an I90 of 5.4,
which was higher than the I90 values obtained after 40–
45 passages of artemether, even when administered at a
high dose. When pyronaridine was employed for 25
sequential passages, a moderate index of resistance
of 16.6 was found. This I90 did not increase further
following subsequent passages, but fluctuated be-
tween 13.3 and 16.8 between the 35th and 50th passages.
However, and in sharp contrast to artemether, the sen-
sitivity of P. berghei parasites derived from the 50th
passage exhibited no apparent recovery to pyronaridine
after they were transferred through mice without drug
pressure for five passages.

Discussion

In view of widespread P. falciparum resistance to chlo-
roquine, the rapidly increasing extent of resistance to
other antimalarials, and a growing number of epidemi-
ological settings with multi-drug resistant falciparum
malaria, artemisinin and its derivatives have become
critically important for the treatment and control of this
disease. There are at least four features of the artemisi-
nins worth discussing. First, no cross-resistance between
artemisinins and other artimalarial drugs has been ob-
served, with the possible exception of mefloquine (Noedl
et al. 2001). Second, owing to their very short elimina-
tion half-lives, the chances of developing resistance
appear to be low (Hastings et al. 2002b). Indeed, there
have been no reports to date of clinically relevant
resistance among this group of antimalarials, although
these drugs have been used widely, particularly in
Southeast Asia (White 1999; Price 2000; Walker et al.
2000; Haynes 2001; Hyde 2002; Meshnick 2002; Ittarat
et al. 2003). Third, there is high recrudescence following
a single dose. Therefore, treatment courses of at least
three consecutive days are required when artemisinins
are used alone, or more appropriately in combination
with other antimalarials (Hastings et al. 2002b; Ridley
2002; Ittarat et al. 2003; White and Pongtavornpinyo
2003). Fourth, there is limited evidence from animal
models that sustained high parenteral doses of certain
artemisinin derivatives can result in some unique and
selective brain stem neurotoxicity (Dayan 1998;
Genovese et al. 2000; Li et al. 2002). Fortunately, there
is no evidence for similar reactions in humans.

While the short half-lives of the artemisinins
necessitate repeated drug administration or combina-
tion chemotherapy, it is probably the most crucial
pharmacokinetic feature for delaying the development
of resistance (White 1999; Hastings et al. 2002b; White
and Pongtavornpinyo 2003). However, it is important

Table 1 Development and reversal of resistance to artemether
(repeatedly administered at either low or high doses) and pyro-
naridine by an ANKA strain of Plasmodium berghei in mice
(I90 = ED90resistance strain/ED90 parent strain; see Materials and
methods). Malaria parasites derived from the 30th passage were
transferred through mice without drug pressure for five passages;
and the sensitivity of the parasites to artemether increased signifi-
cantly, with I90 (3.6/3.3) = 1.1.n.d. Not determined

Number of
passages

Artemether Pyronaridine

47 mg/kg 300 mg/kg 4.7 mg/kg

ED90 I90 ED90 I90 ED90 I90

Parental line 3.3 – 3.3 – 0.8 –
5 4.0 1.2 n.d. n.d. 0.8 1.0
10 n.d. n.d. 8.1 2.5 n.d. n.d.
15 5.8 1.8 n.d. n.d. 4.4 5.4
20 n.d. n.d. 8.1 2.5 n.d. n.d.
25 7.7 2.4 n.d. n.d. 13.6 16.6
30 n.d. n.d. 13.8 4.2 n.d. n.d.
35 8.1 2.5 n.d. n.d. 13.8 16.8
40 n.d. n.d. 16.0 4.8 n.d. n.d.
45 14.8 4.5 n.d. n.d. 12.3 15.0
50 23.3 7.1 29.1 8.8 10.9 13.3
After removal of drug pressure
5 5.3 1.6 7.1 2.2 10.0 12.1
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to note that resistant lines of P. berghei have been
generated in the mouse model. For example, the
administration of artemisinin at stepwise-increasing
doses to mice infected with an ANKA strain of
P. berghei revealed an I50 of 53.4 after 58 passages (Li
et al. 1986). In another study, an I50 of 18.4 was found
after 60 passages (Chen et al. 2002). Similarly, lines of
P. berghei have been established resistant to artemether
with an I90 of 16 after 70 passages (Cheng et al. 1988)
and to artesunate with an I90 of 29.3 after 21 passages
(Liu and Ren 1987). Importantly, these resistant phe-
notypes were unstable, since the sensitivities progressed
toward normal values after several passages without
drug pressure. Recently, a resistant strain of P. yoelii
was also obtained in the murine model (Peters and
Robinson 1999). Resistance was unstable and appeared
to be influenced by multiple factors, e.g. the accumu-
lation of significantly less drug than in sensitive para-
sites and an alteration in the translationally controlled
tumor protein homologue, which is a possible drug
target (Walker et al. 2000).

The experimental work presented here focused on
artemether and exhibits two unique aspects over previ-
ous studies. First, instead of stepwise increases in the
dose of artemether, the drug was administered at the
same dose throughout. Second, there were constant
intervals of 7 days or 10 days between subsequent
treatments. Adhering to this protocol and administering
artemether at two different doses resulted in slight
indices of resistance after completion of the 50th pas-
sage, namely 7.1–8.8. This is considerably lower than the
I90 of 16, which was found previously by another group
of researchers after 70 passages (Cheng et al. 1988).
Comparing these two studies reveals that the pace of
resistance development was slower when artemether was
administered at the same dose throughout, as opposed
to stepwise increases. Reassuringly, resistance develop-
ment appears to be unstable and reversible, since the
sensitivities at the two different artemether concentra-
tions approached normal levels after only five passages
after the removal of drug pressure. Therefore, different
ways of exposing rodent malaria parasites to artemether
seem to select a common phenotype of resistance that is
reversible. These observations are consistent with
unstable artemisinin resistance in P. yoelii and the causes
are likely to be multifactorial.

Finally, although it is speculative to extrapolate
resistance mechanisms across species and hosts, our re-
sults might be of practical importance. Our experimental
design mirrored the proposed treatment schedule of
artemether for the prevention of patent schistosome
infections in humans. Namely, repeated administration
once every 2–4 weeks during transmission periods
(Utzinger et al. 2001; Xiao et al. 2002a; N�Goran et al.
2003). In view of the possibility to select artemisinin-
resistant P. falciparum, at least in culture (Inselburg
1985), for the time being artemisinins should not be
recommended against schistosomiasis in areas where
malaria co-exists. However, as demonstrated here and

confirming previous results, the risk of resistance
development in the malarial parasite appears to be low.
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