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Abstract Tropical forests are known for their diverse insect fauna. We aimed to deter-

mine the effect and relative importance of latitude, elevation and climatic factors affecting

species richness and turnover in euglossine bee assemblages along a gradient of 18� lat-

itude from tropical rainforests to subtropical, deciduous dry forests in Peru and Bolivia.

Sixteen forest sites were sampled during the dry season. Variance partitioning techniques

were applied to assess the relative effects of the spatial and environmental variables on

species richness and composition. Furthermore, we conducted a Species Indicator Analysis

to find characteristic species for the biogeographic zones. There was a significant decrease

in species richness towards the subtropical area. The best predictors of species richness

were precipitation and its consequences on soil properties as well as temperature sea-

sonality. The abundance of euglossines was most closely related to precipitation and soil-

pH, but the causal links of abundance to these factors is unclear since soil-pH itself is

correlated to a drastic turnover of vegetation structure. Based on the analysis of assemblage

composition we propose three different assemblages with a transitional zone at the

southern tropical area. The biogeographical distribution of euglossine bees along our study

transect appears to be primarily related to climatic conditions and does not reflect the

common subdividion of Amazonia into drainage systems.
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Introduction

Tropical rainforests cover only 7% of the world’s landmass but are inhabited by approx-

imately 50% of all terrestrial species (Myers 1986). The factors determining and main-

taining this enormous biodiversity are still not fully understood. The relative importances

of environmental factors and biological interactions against random variation and dispersal

limitation have been debated for decades (Whittaker and Levin 1977; Brown 1984;

Hubbell and Foster 1986; Hurtt and Pacala 1995; Whitfield 2002; Ren-Cang et al. 2008;

Carranza et al. 2011).

Rainforests are not homogeneous but rather consist of a mosaic of different forest types

determined by edaphic and climatic factors as well as natural and anthropogenic distur-

bances (Gentry 1988; Tuomisto et al. 1995). In Peruvian Amazonia alone, Tuomisto et al.

(1995) recognized over 100 types of rainforest biotopes from satellites images. Pitman

et al. (2001), on the other hand, found homogenous dominant tree oligarchies at large

scales in Amazonia even under different environmental conditions. The decrease in species

similarity with geographic distance may also be explained by competitive exclusion

(Tuomisto et al. 2003a) and neutrality (Condit et al. 2002). The latter rules out competition

and produces a stochastic spread and loss of species driven by dispersal limitation (Hubbell

2001). This factor seems to play a role for the steep decline of similarity on small to

intermediate scales (Condit et al. 2002; Duque et al. 2002, 2009; Vormisto et al. 2004).

In Amazonia, the majority of studies considering large scale changes in species

diversity and composition have focussed on plant communities, while there are only few

studies considering animals, mostly vertebrates (e.g. Eberhard and Bermingham 2005;

Abrahamczyk and Kessler 2010). The number of studies considering insects is relatively

low. Recently, Vasconcelos et al. (2010) studied the beta diversity of ants along the

Amazon River, finding that distribution patterns depend mostly on precipitation regimes.

On a worldwide scale bees in general are most diverse in warm, temperate, and xeric

regions and decrease towards the humid tropics (Michener 1979). However, bees are still

the most important pollinators in the Neotropics (Fleming and Muchala 2008). Among

bees, orchid bees (Hymenoptera: Apidae: Apinae: Euglossini) are a distinctive and

exclusively Neotropical group of approximately 210 species in five genera (Kimsey and

Dressler 1986; Roig-Alsina and Michener 1993; Nemésio and Silveira 2007b). Euglossine

bees pollinate a wide array of plant families, especially orchids, in all states of forest

succession (Gilbert 1980; Dressler 1982d; Ackerman 1985). About 600–700 species of

orchids, roughly 10% of the Neotropical species (Ramı́rez et al. 2002; Ackerman 1983a, b)

are pollinated by male euglossine bees. Other plant families, e.g. Amaryllidaceae, Araceae,

Bignoniaceae, and Solanaceae, attract male euglossines as well (Dressler 1982d; Williams

and Dressler 1982; Sazima et al. 1993; Braga 2000; Schwerdtfeger et al. 2002). Due to

their ability to fly long distances in short times, orchid bees are one of the most important

long distance pollinator groups of Neotropical lowland rainforests and thus provide an

essential ecosystem function in Amazonia (Janzen 1971; Bawa 1990).

Orchid bees range from southern Arizona and Texas (Minckley and Reyes 1996; Búr-

quez 1997) to Paraguay and northwestern Argentina (Moure 1967), inhabit preferably

densely forested environments (Ducke 1902; Braga 1976; Roubik and Ackerman 1987;

Oliveira and Campos 1995; Nemésio and Silveira 2006a, b, 2007a, b), and represent one of

the taxonomically and ecologically best studied groups of Neotropical bees (Cameron 2004;

Roubik and Hanson 2004; Michener 2007). Nemésio and Silveira (2007b) distinguished

three biogeographic zones in orchid bee community composition and diversity: Central

America (76 species), the Amazon Basin (127), and the Brazilian Atlantic forest (62).
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In Costa Rica and Panama, orchid bees reach their peak in community diversity at

approximately 800 m above sea level (Roubik and Hanson 2004), but local diversity pat-

terns in Amazonia, the distributional core of this group of bees (Ramirez et al. 2010), remain

largely unknown. The richest local assemblages of orchid bees consist of about 50 species

and can comprise 20–30% of the total regional bee diversity (Roubik and Hanson 2004).

Most species of orchid bees have relatively small distribution areas. Thus, only 12

species occur from southern Mexico to southeastern Brazil (Roubik and Hanson 2004).

The geographic distribution of individual bee species may be determined by a number of

factors such as climate, vegetation structure, competition with similar species (Rosenzweig

1995) as well as resources such as nest sites, resin, pollen and nectar sources, and perhaps

even microbial mutualists (Wcislo and Cane 1996). Furthermore, the presence of host bee

species is essential for cleptoparasitic Euglossini like Exaerete (Wcislo and Cane 1996).

To our knowledge, there are no studies assessing potential factors of species richness

and turnover of orchid bees on a large geographical scale. Only several local inventories of

euglossine faunas exist (see Nemésio and Silveira 2007b and references therein). In the

present study, we surveyed a latitudinal transect of more than 2000 km from tropical Peru

to subtropical Gran Chaco region in Bolivia. We evaluated the relative importance of

spatial and environmental factors in species turnover and abundances along this precipi-

tation and seasonality gradient.

Materials and methods

Study sites

Between May and October 2008 we sampled orchid bees at 16 sites along a latitudinal

gradient from tropical, evergreen rainforests (3.5� S; 73.5� W) in northern Peruvian

Amazonia to subtropical, deciduous forests in central Bolivia (21.6� S; 62.5� W; Fig. 1).

Study sites were located in primary, lowland forests between 119 m and 954 m a.s.l.. At

each locality, we established a 1 km transect inside the forest and a shorter 350 m transect

at the forest edge. Sampling was conducted for one to four days per site, depending on

logistical considerations and weather conditions. For orchid bees, surveys of a single day

have great utility, and may reveal almost as much about local community structure as

studies lasting a full year (Roubik 2004a). Soil samples were taken from the non-organic

horizon at each site and analysed for pH, cationic exchange capacity (CEC) and base

saturation. The Peruvian soil samples were analysed in the soil laboratory of the Uni-

versidad Nacional Agraria—La Molina, in Lima, Peru, and the Bolivian ones at the

Department of Plant Ecology at the University of Göttingen, Germany. Climate data was

extracted from WorldClim (Hijmans et al. 2005; Table 1).

Census techniques

Euglossine bees were baited with the eight most powerful attractants following Ackerman

(1983c): 1–8 cineole, benzyl acetate, methyl benzoate, eugenol, methyl salicylate, methyl

cinnamate, skatole, vanillin. Additionally to the latter ones, the commercial drugs Olbas,

and Gelomyrtol, as well as hydrogendiethylester and tea-tree oil were used in the Bolivian

sites because they are known to be highly attractive to orchid bees (M. Schwerdtfeger,

‘‘personal communication’’) and in order to increase sampling coverage. The fluid agents
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were dripped on a sheet of filter paper and refreshed every 30 min. The crystalline

chemicals were separately placed in small bags made of thin paper towels. All baits were

placed about 15 paces apart and 1.7 m above ground in a straight line. From 7.30 am to

3.30 pm, we patrolled these lines, netting all bees hovering at a bait or trap. Additionally,

at the Bolivian sites, self-made modified McPhail traps were used (Steyskal 1977). The

bees were killed with ethyl acetate or formol. Specimens were dried on silica gel, put into

paper bags for transport, and later pinned for identification. The species were identified

following Dressler (1982a, b, c, 1985), Kimsey (1982), Bonilla-Gómez and Nates-Parra

(1992), Bembé (2004), Roubik (2004b), Anjos-Silva and Rebêlo (2006), Oliveira (2006)

and Nemésio and Silveira (2009).

Data analysis

To assess the effect of incomplete sampling, a linear regression analysis was used to relate

the number of species per site to the number of individuals per site. In addition to raw

species numbers, we also estimated total species numbers with several species richness

estimators (ACE, ICE, Chao 1, Chao 2, Jack 1, Jack 2, Bootstrap, MMMeans, MMRuns)

using EstimateS (Colwell et al. 2004). For analyses considering abundances, we divided
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Fig. 1 Location of the study sites in western Amazonia. BV Buena Vista, C Corbalán, CI Centro de
Investigación y Capacitación Rı́o Los Amigos (CICRA), CO Contamana, MO Moyobamba, NA Rı́o Nanay,
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the number of individuals collected per site by the number of sampling days to compensate

for unequal sampling intensity.

To assess the relationships between the number of raw and estimated species numbers

and the number of individuals against the geographic, climatic and edaphic variables, we

conducted pairwise linear regression analyses. To test for habitat heterogeneity, we cal-

culated the maximum altitudinal range five km around each study site by using Google

Earth maps. We took edaphic variables into account because they are closely related to

vegetation types (Tuomisto et al. 1995, 2003b) and thus influence orchid bees indirectly.

We repeated the regression analyses of the observed species number against environmental

factors excluding Eufriesea because species of this genus are known to be seasonal in their

occurrence. Then, we calculated multiple linear models in R (R Development Core Team

2007) to select the best combination of explanatory variables. Models were fitted itera-

tively by the step function and manually using the AICc criterion (Burnham and Anderson

2004). Due to a clear spatial structure shown by the sampling localities, we also conducted

general least squares models with the program ‘‘Spatial Analysis in Macroecology: SAM’’

(Rangel et al. 2006) which additionally includes the spatial relationship between the sites.

To analyse changes in assemblage composition between study sites, we first used

Detrended Correspondence Analyses (DCA), with downweighting rare species in PcOrd

5.0 (McCune and Mefford 1999). We downweighted rare species because without

downweighting, DCA patterns tend to be dominated by rare species whose patterns

however are less reliably documented because of their low sampling intensity (Leyer and

Wesche 2008). We excluded the southernmost site (Corbalán) since we did not find any

orchid bee there. Second, we used simple Mantel tests using Sørensen similarity index to

assess the relationships between assemblage composition and environmental factors. The

Mantel analysis was done with the original similarity data and with estimated similarity

data calculated in EstimateS (Colwell et al. 2004) to test whether incomplete sampling had

an influence of our results. Third, we used partial Mantel tests in R based on quantitative

Sørensen similarity indices (Bray-Curtis), geographical distances and environmental

factors.

Finally, we conducted a Species Indicator Analysis (Dufrene and Legendre 1997) as

implemented in PcOrd 5.0 by variously dividing the dataset into geographical regions: I.

Peru NW of the Amazon and Ucayali Rivers; Peru SE of the Amazon and Ucayali Rivers;

tropical Bolivia; subtropical Bolivia. II. Peru; tropical Bolivia; subtropical Bolivia. III.

Peru; Bolivia. IV. Peru plus tropical Bolivia; subtropical Bolivia.

Results

In total, we collected 1524 specimens of euglossine bees representing 59 species in five

genera (App. 1). Fifty-seven species (96.6%) were identified to species level while the

remaining two species were sorted into morphospecies. Eight species (14%) were found at

more than ten sites, while 15 (25%) were only found at a single site and seven (12%) at two

sites. No euglossine bees were found at the southernmost site (Corbalán). Mean species

numbers were 20.4 ± 4.7 for the Peruvian sites, 20.3 ± 5.7 for the tropical Bolivian sites,

and 5.5 ± 4.9 for the two subtropical sites.

There was no significant correlation between the number of species per site and the

number of sampling days per site (R = 0.14, P = 0.60). However, the number of indi-

viduals collected at a site was significantly correlated to the number of species per

site (R = 0.68, P = 0.004; Table 2). This suggests that sampling completeness may have
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affected our species counts. However, when we controlled for incomplete sampling by

using species richness estimators (Table 1), results of linear regression analyses between

the estimated number of species and the environmental factors were similar to those using

the raw species numbers (Table 2). For this reason, all further analyses were conducted

with the raw data only. When we repeated the regression analyses of the observed species

number against environmental factors excluding Eufriesea, we found no qualitative dif-

ferences compared with the results for the regression analyses of the complete species set.

Therefore we do not further report these results.

Looking at all explanatory variables separately, species and individual numbers per site

were significantly related to several climatic factors such as mean annual temperature and

precipitation or temperature and precipitation seasonality but also to edaphic factors such

as base saturation or soil-pH (Table 2; Fig. 2).

Table 2 R-values for the simple linear regression analysis of the number of species and individuals cor-
rected by sampling days against environmental factors; D elevation 5 km (m) = maximum altitudinal range
five km around the study site

Number of
species

Estimated number
of species

Number of
individuals

Mean temperature 0.44 0.34 0.6*

Temperature seasonality -0.68** -0.66** 0.52*

Minimum temperature 0.55* 0.46^ 0.50*

Mean precipitation 0.73*** 0.68** 0.56*

Precipitation seasonality -0.60* -0.64** 0.49^

Latitude -0.58* -0.60* 0.05

Elevation 0.04 0.19 -0.17

D elevation 5 km 0.28 0.35 -0.33

Soil-pH -0.52* -0.61* 0.44^

Base saturation -0.58* -0.64** 0.57*

Cationic exchange capacity 0.04 0.09 0.24

Number of individuals 0.68** 0.66** -

Number of individuals corrected by sampling days 0.75*** 0.70*** -

Sampling days 0.08 0.20 -

^ P \ 0.10; * P \ 0.05; ** P \ 0.01; *** P \ 0.001

Fig. 2 Relationships of the number of orchid bee species and individuals per site against mean annual
precipitation. R and P-values are based on linear regression analyses
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The multiple linear model best explaining species richness per site (R2 = 0.84,

P = 0.001; AICc = 110.89) included five factors: temperature seasonality (P = 0.006),

mean annual precipitation (P = 0.002), elevation (P = 0.07), CEC (P = 0.03), and base

saturation (P = 0.187). The comparable model for the number of individuals (R2 = 0.53,

P = 0.025; AICc = 143.1) only included mean annual precipitation (P = 0.045), mini-

mum temperature (P = 0.101), and CEC (P = 0.133). The comparable General Least

Squares models in SAM taking spatial structure into account for species numbers

(R2 = 0.83, AIC = 120.8) included temperature seasonality (P = 0.005), mean annual

precipitation (P \ 0.001), elevation (P = 0.028), CEC (P = 0.009), and base saturation

(P = 0.086) and for the number of individuals (R2 = 0.54, AIC = 151.0) mean annual

precipitation (P = 0.001) and CEC (P = 0.044).

The DCA (Fig. 3) revealed clear environmental gradients related to the species com-

position of the studied euglossine assemblages. Axis 1 was mainly related to a gradient in

temperature seasonality and minimum temperature as well as to mean annual precipitation,

soil-pH, and soil base saturation. Axis 2 was related to a gradient in soil cationic exchange

capacity (CEC). The simple Mantel tests using the original and estimated data (Table 3)

disclosed significant relationships of the similarity of species composition between sites to

temperature seasonality, mean annual precipitation, precipitation seasonality as well as

inter-site distance, but with lower r-values for the estimated data. However, once spatial

distance was taken into account by the partial Mantel tests, no other environmental factor

showed a significant relationship to species composition.

The Species Indicator Analysis (Table 4) recovered nine species with significantly

structured distributions when the study region was subdivided into three components, with

three species showing a preference for Peru, four for tropical Bolivia, and two for sub-

tropical Bolivia. When the two Bolivian regions were combined, the analysis recovered

nine significant species as well as, four in Peru and five in Bolivia. Finally, only two

species showed significant distribution patterns when the subtropical Bolivian sites were

contrasted with all other sites (Table 4). All three analyses included Eulaema meriana as

Fig. 3 DCA based on the species composition of the sampled bee assemblages; the black lines indicate the
environmental factors as marked (Axis 1: eigenvalue = 0.73, length of gradient = 4.56; Axis 2:
eigenvalue = 0.13, length of gradient = 1.63); min. temp minimum temperature, mean pre mean annual
precipitation, CEC cationic exchange capacity, precipit precipitation seasonality, base sat base saturation,
temp. se temperature seasonality, NA Nanay, TR Rio Tapiche I, TW Rio Tapiche II, MO Moyobamba, TA
Tarapoto, CO Contamina, PI Pijuayal, PA Panguana, PM Puerto Maldonado, CI Cicra, VT Villa Tunari,
S Sacta, BV Buena Vista, SC Santa Cruz, RS Rı́o Seco, Corbalán (not shown)
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being an indicator species for Peru or tropical sites. Eulaema bombiformis and Euglossa
intersecta were recovered as indicator species for Peru, and Euglossa fimbriata and Eu-
glossa magnipes for Bolivia in both analyses contrasting Peru with Bolivian regions. The

remaining species were only chosen as indicator taxa in single analyses. When we addi-

tionally divided the sites in Peru into sites northwest and southeast of the Amazon and

Table 3 Regression (R) values
for simple the Mantel tests
between species composition and
environmental factors for original
and estimated similarity data

* P \ 0.05; ** P \ 0.01;
*** P \ 0.001

Original data Estimated data

Mean temperature 0.11 0.01

Temperature seasonality 0.73*** 0.24***

Minimum temperature 0.24 0.10

Mean precipitation 0.49** 0.18*

Precipitation seasonality 0.37** 0.14**

Elevation 0.05 -0.01

Soil-pH -0.02 0.04

Base saturation 0.08 -0.01

Cationic exchange capacity 0.30 0.13

Inter-site distance 0.59*** 0.18***

Table 4 Results of the species indicator analyses

Peru NW/Peru
SE/tropical Bolivia/
subtropical Bolivia

Peru/tropical
Bolivia/subtropical
Bolivia

Peru/
Bolivia

Subtropical
Bolivia/tropical
sites

Eufriesea pulchra – Peru^ Peru^ –

Euglossa amazonica Trop. Bolivia** Trop. Bolivia* Bolivia^ –

Euglossa cordata – – Bolivia* –

Euglossa chalybeata Trop. Bolivia^ Trop. Bolivia^ – –

Euglossa despecta – – Bolivia** –

Euglossa fimbriata Subtrop. Boliva* Subtrop. Boliva* Bolivia* –

Euglossa ignita Peru NW* Peru*** Peru*** –

Euglossa imperialis – – – Topical^

Euglossa intersecta – Peru** Peru** –

Euglossa laevicincta – – Peru^ –

Euglossa magnipes Trop. Bolivia** Trop. Bolivia** Bolivia* –

Euglossa mixta Trop. Bolivia^ Trop. Bolivia* – Tropical*

Euglossa modestior Trop. Bolivia* Trop. Bolivia^ – –

Euglossa orellana Trop. Bolivia** Trop. Bolivia** – –

Euglossa securigera – – Bolivia* –

Eulaema bombiformis – Peru** Peru** –

Eulaema meriana Peru SE^ Peru*** Peru** Tropical*

Eulaema mocsaryi – – Peru^ Tropical^

Eulaema pseudocingulata – – Peru^ –

Exaerete frontalis Peru NW^

^ P \ 0.10; * P \ 0.05; ** P \ 0.01; *** P \ 0.001
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Ucayali Rivers we found only one species significant for the NW-region and one mar-

ginally significant each for the NW-and SE-region.

Discussion

This is the first study relating species richness and abundance of orchid bees to abiotic

factors along a latitudinal gradient. Overall, we found that climatic and soil conditions

captured a substantial amount of the variation in alpha diversity of orchid bees in western

Amazonia. Especially the annual amount of precipitation was related to the distribution

pattern of orchid bee individuals and species along the gradient (Fig. 2). In striking contrast

to other bee families, where the highest species richness is commonly found in drier,

subtropical regions (Michener 1979, 2007; Roubik 1989; Radchenko and Pesenko 1994),

we found a dramatic loss of species richness from tropical to subtropical ecosystems. This

decline between the two biomes may be a response to the transition from low annual

amplitudes in temperature and precipitation, no or few arid months, and the absence of frost

to a marked seasonality in precipitation and temperature and even occasional nocturnal

freezing. This transition goes hand in hand with a marked turnover in plant community

composition from evergreen rain forests to seasonally dry, deciduous forests (Justiniano and

Fredericksen 2000; Abrahamczyk and Kessler 2010). Whether this latitudinal decline of

alpha diversity of orchid bee assemblages is directly related to climatic conditions or some

other, proximal factor such as the availability of food plants or plant species adapted to

pollination by orchid bees cannot be answered with the data available at present. A com-

parison with the numbers of individuals recorded does not provide conclusive evidence in

this regard. Species richness and individual numbers per site were strongly correlated, and

the regression analyses recovered very similar suites of environmental variables.

The latitudinal decline of species richness and it’s relationship to climatic factors

parallel the situation in many other plant and animal groups (Wiens et al. 2006; Hawkins

and De Vries 2009; Hu et al. 2010). The causes for this decline are still unknown, and may

involve either the carrying capacity of ecosystems as determined by water availability and

temperature (Hawkins et al. 2003), or historical and evolutionary causes (Wiens and

Donoghue 2004). In many tropical and subtropical areas in the southern hemisphere, water-

related variables are the best predictors of several animal richness patterns (Hawkins et al.

2003). One potential explanation for invertebrates could be that hot environments create

problems with desiccation because of their small body size (Hawkins et al. 2003). This is

reflected in our study, since bee abundances increased with the amount of mean annual

precipitation. In our study, the linear model revealed that additionally to mean annual

precipitation and temperature seasonality, elevation, CEC and base saturation also

accounted for alpha diversity. However, especially the soil parameters probably only have

an indirect effect on bee assemblages via their relationships to plant communities and

habitat structure (Tuomisto et al. 1995, 2003b). Geographical distance only played a minor

role in determining the differences in species richness of orchid bees, which coincides with

the results of Vasconcelos et al. (2010) for ants.

The biogeographic division of the orchid bee assemblages of our study regions into

three parts seems to be the best choice based on the DCA. Rı́o Seco and Santa Cruz form

one cluster representing the subtropical, seasonal sites climatically differentiated from the

others by several arid months and temperatures near zero degrees Celsius. The tropical

Bolivian sites Villa Tunari, Sacta and Buena Vista represent the second cluster distin-

guished from the Peruvian sites by a higher temperature seasonality. We interpret this
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cluster as a transition zone from tropical, non-seasonal, evergreen rain forests in the north

to seasonally drought deciduous forests in the south. The third cluster includes the ten

Peruvian sites. Unfortunately, we lack study sites from northern Bolivia so that the possible

transition between the second and third cluster remained unsampled.

The biogeographic pattern detected by us disagrees with commonly found separation of

Amazonian faunistic regions where assemblages are subdivided by river drainages (Silva

& Oren 1996; Bates et al. 1998). For example, we found no clear separation between sites

north and south of the Amazon and Ucayali Rivers, usually considered the major bio-

geographic barrier in western Amazonia. Our results agree with the finding of Dick et al.

(2004) who reported that in euglossine bees the phylogenetical structure across a broad

spatial scale is weaker than in any other Neotropical group previously examined, and may

derive from a combination of Quarternary speciation, population expansion and long

distance gene flow. In our case, thus, the biogeographic patterns may reflect past changes in

the distribution of vegetation types dring the Pleistocene climatic fluctuations (Nemésio

and Silveira 2007b). But although such shifts are undisputed, the actual distribution of

different vegetation types at different points in time remain controversial for Amazonia

(Hoorn et al. 2010; Ramirez et al. 2010; Werneck et al. 2010). We therefore consider it

premature to try to interprete the latitudinal separation of orchid bee assemblages in these

terms. Finally, biogeographical subdividions of Amazonia rarely go as far south as our

study, which includes sites in the Paraná drainage and in subtropical vegetation types.

Considering all the above points, we conclude that the biogeographic patterns detected by

us most likely reflect current climatic conditions.

In conclusion, our results support previous studies that patterns of species richness of

Amazonian plant and animal assemblages are largely accounted for by climatic and edaphic

factors (ter Steege et al. 2003; Wittmann et al. 2006; Vasconcelos et al. 2010). How these

factors determine species numbers remains unknown, however. In the case of orchid bees,

the abundance and diversity of nesting sites and nesting material, predators and flower

phenology and availability may play important mediating roles (Roubik and Hanson 2004).

However, detailed data on these factors are very difficult to obtain. Regardless of the

underlying causes, the observed relationship between euglossine species richness and local

climate have important implications regarding the expected climatic changes resulting from

global change and altered land use. The Amazon basin is likely to experience novel climate

conditions by the end of the 21st century (Williams et al. 2007). As a census studies of

euglossine bees can be conducted quite easily, the present study may represent a baseline

against which to assess future changes in species richness or the elvational or latitudinal

distribution of species, as predicted for tree species (Toledo et al. 2010).
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Bonilla-Gómez MA, Nates-Parra G (1992) Abejas euglosinas de Colombia (Hymenoptera: Apidae) I. Claves

ilustradas. Caldasia 17:149–172
Braga PIS (1976) Atração de abelhas polinizadoras de Orchidaceae com auxı́lio de iscas-odores na campina,
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Ducke A (1902) As espécies Paraenses do gênero Euglossa. Boletim do Museu Paraense 3:561–577
Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible

asymmetrical approach. Ecol Monogr 67:345–366
Duque A, Sánchez M, Cavalier J et al (2002) Different floristic patterns of woody understorey and canopy

plants in Colombian Amazonia. J Trop Ecol 18:499–525
Duque A, Phillips JF, von Hildebrand P et al (2009) Distance decay of tree species similarity in protected

areas on Terra Firme forests in Colombian Amazonia. Biotropica 41:599–607
Eberhard JR, Bermingham E (2005) Phylogeny and comparative biogeography of Pionopsitta parrots and

Pteroglossus toucans. Mol Phylogenet Evol 36:288–304
Fleming TH, Muchala N (2008) Nectar-feeding bird and bat niches in two worlds: pantropical comparisons

of vertebrate pollination systems. J Biogeogr 35:764–780

2998 Biodivers Conserv (2011) 20:2981–3001

123



Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and
geographical gradients. Ann Mo Bot Gard 75:1–34

Gilbert LE (1980) Food web organization and the conservation of Neotropical diversity. In: Soulé ME,
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