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Malostranské nám. 25, 118 00 Praha 1, Czech Republic
valtr@kam.mff.cuni.cz

Abstract. In this paper we give a lower bound for the Erdős–Szekeres number in higher
dimensions. Namely, in two different ways we construct, for every n > d ≥ 2, a configura-
tion of n points in general position in Rd containing at most cd(log n)d−1 points in convex
position. (Points in Rd are in convex position if none of them lies in the convex hull of the
others.)

1. Introduction

A set of points in d-dimensional Euclidean space Rd is said to be in general position if
any≤ d+1 of the points are affinely independent. In their seminal paper written in 1935,
Erdős and Szekeres [3] proved that, for any integer n ≥ 3, there is a smallest integer f (n)
such that any set of at least f (n) points, in general position in the plane R2, contains the
vertex set of a convex n-gon. In fact, they proved the following quantitative result.
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Theorem 1 ([3], [4]).

2n−2 + 1 ≤ f (n) ≤
(

2n − 4

n − 2

)
+ 1.

Various extensions of this result and its relation to Ramsey theory are explored, e.g.,
in [1], [9], and [11]. The lower bound is conjectured to be sharp [3], [4]. The best upper
bound so far is

f (n) ≤
(

2n − 5

n − 2

)
+ 2,

see [10].
Much less is known about the situation in higher dimensions. We say that a set of

points in Rd is in convex position if none of the points lies in the convex hull of the
others. Let, for n > d ≥ 2, fd(n) denote the smallest integer such that any set of at
least fd(n) points, in general position in Rd , contains n points in convex position. Thus,
f (n) = f2(n). For d ≥ 3, the only known values of fd(n) are fd(n) = 2n − d − 1 for
d + 1 ≤ n ≤ �3d/2� + 1 (see [2] for the upper bound and [9] for the lower bound) and
f3(6) = 9 [2].

The study of fd(n)was initiated by Grünbaum in [6] who also established its existence
for every n > d via Ramsey’s theorem. A more effective general upper bound fd(n) ≤
f (n) follows from a simple projective argument (see [12]) and is slightly improved to

fd(n) ≤ f (n − d + 2)+ d − 2 ≤
(

2n − 2d − 1

n − d

)
+ d

in [8]. The aim of the present paper is to obtain the following general lower bound.

Theorem 2. For every d ≥ 2, there is a constant c = cd > 1 such that

fd(n) = �(cn1/(d−1)
).

Equivalently, for every N > d ≥ 2, there exists a configuration of N points in general
position in Euclidean d-space which does not contain more than c′(log N )d−1 points in
convex position, where the constant c′ = c′d only depends on the dimension d .

The first proof of Theorem 2 gives constants cd ≈ 20.37d and c′d ≈ 2/(d − 1)! (see the
Appendix). The second proof gives somewhat worse constants. We include both proofs,
since they are essentially different and their knowledge might help in attempts to close
the gap between the lower bound in Theorem 2 and the above-mentioned exponential
upper bound.

It has been conjectured by Füredi [5] that the bound in Theorem 2 is best possible apart
from the value of the constant c. On the other hand, Morris and Soltan [9] contemplate
about a possible recursive relation fd(n) = 4 fd(n − d) − 3 that would imply the
exponential lower bound fd(n) = �(4n/d). We present two proofs for Theorem 2 based
on two different constructions. Both constructions are in a sense recursive, but we think
they are essentially different and may provide a support to Füredi’s conjecture. After
we introduce some notation in Section 2, the first proof is presented in Section 3. The
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second proof is based on the notion of so-called d-Horton sets which generalize Horton’s
construction of planar point sets that do not contain empty convex 7-gons, see [7] and
[12]. This notion is explained in Section 4 and is used in Section 5 for the second proof
of Theorem 2. The Appendix contains calculations giving the constants cd ≈ 20.37d and
c′d ≈ 2/(d − 1)!.

2. Preliminaries

Fix the dimension d ≥ 2. Identify, for every 1 ≤ e ≤ d,Re with the unique e-dimensional
subspace of Rd spanned by the first e coordinate axes. This way R f is identified with a
subspace of Re, for every f ≤ e ≤ d.

For any e ≤ d , denote by πe the orthogonal projection fromRd ontoRe. Thus, for the
point a = (a1, . . . , ad) ∈ Rd , πe(a) = (a1, . . . , ae) ∈ Re. We also use the same symbol
to denote the restriction of πe to any R f , e ≤ f ≤ d. If it is not a cause for ambiguity
we will denote the projection from Re to Re−1 simply by π .

We say that a set P of points in Re is in strongly general position if it is in general
position and, for f = 1, . . . , e− 1, any f + 1 points of P determine an f -dimensional
affine subspace which is not parallel to the (e− f )-dimensional subspace ofRe spanned
by the last e − f coordinate axes of Re, which we denote by (R f )⊥e .

Lemma 3.

(i) If P is in strongly general position in Re, then so is every subset of P .
(ii) P is in strongly general position in Re if and only if Q is in strongly general

position in Re for every Q ⊆ P of cardinality ≤ e + 1.
(iii) If P is in strongly general position in Re, then there is a point p ∈ Re, p �∈ P ,

such that P ∪ {p} is in strongly general position in Re.
(iv) If P is in strongly general position in Re, then |π f (P)| = |P| and π f (P) is in

strongly general position in R f for every 1 ≤ f ≤ e.

Proof. The first two assertions are immediate consequences of the definition. To see
the third one, observe that if P ∪ {p} is not in strongly general position, then p is con-
tained in the union of finitely many proper affine subspaces of Re that clearly cannot
cover the whole space Re. Obviously, it is enough to prove the last assertion in the case
f = e − 1. We may assume, based on the first three assertions, that |P| = e. Thus
let P = {p1, . . . , pe}. Write A = Aff(p1, . . . , pe) for the affine hull of P . We claim
that π(A) = Aff(π(p1), . . . , π(pe)) = R

f = R
e−1. Indeed, A ⊆ π(A) + (R f )⊥e ,

indicating that f = dim A ≤ dimπ(A) + 1. Were dimπ(A) ≤ f − 1, it would
follow that A = π(A) + (R f )⊥e . In particular, A would be parallel to (R f )⊥e , a
contradiction. An immediate consequence of this claim is that |π f (P)| = |P|, and
also that dim Aff(π(q1), . . . , π(qg+1)) = g for every 1 ≤ g ≤ f − 1 and every
subset Q = {q1, . . . , qg+1} of P . If Aff(π(Q)) was parallel to (Rg)⊥ f in R f , then
Aff(Q) ⊆ Aff(π(Q))+ (R f )⊥e would be parallel to (Rg)⊥ f + (R f )⊥e = (Rg)⊥e in Re,
a contradiction. This completes the proof of the last assertion.
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Next, we will need the notion of order type that we only introduce for finite point sets
in general position. We say that two finite point sets of equal size, in general position in
R

e, are of the same order type if there is a one-to-one correspondence between them that
preserves the orientation of each (e+ 1)-tuple. It is clear that small perturbations do not
affect the order type. More precisely, a routine compactness argument yields

Proposition 4. For every finite set of points X = {x1, x2, . . . , xt }, in general position
inRe, e ≤ d , there is a (largest) δ = δd(X) > 0 such that the following holds. Whenever
Y = {y1, y2, . . . , yt } ⊂ R

e satisfies |y j
i − x j

i | < δ for every 1 ≤ i ≤ t and every
1 ≤ j ≤ e, then Y is also in general position in Re, and has the same order type as X .
In particular, X is in convex position if and only if so is Y .

Finally, we denote by mc(P) the maximum size of any subset of P which is in convex
position.

3. Recursive Construction

We will need the following general construction. Suppose that a set X = {x1, . . . , xt } is
in strongly general position in Re. Let 0 < ε ≤ εe(X) = min{δ f (π f (X)) | 1 ≤ f ≤ e}.
Choose, for every x ∈ X , a vector v(x) = (v1(x), . . . , ve(x)) such that 0 < v1(x) <
v2(x) < · · · < ve(x) < ε and v f (x) < εv f+1(x) for every 1 ≤ f < e. These vectors
can be chosen in such a way that the set X ′ = {x ± v(x) | x ∈ X} of size 2|X | is in
strongly general position, in which case X ′ is called an ε-double of X (see Fig. 1).

The following properties are immediate consequences of Lemma 3 and Proposition 4.

Proposition 5.

(i) If X ′ is an ε-double of X , then π f (X ′) is an ε-double of π f (X) for any 1 ≤ f ≤ e.

X an "-double of X

Fig. 1. A four-point planar set and its ε-double.
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(ii) If y j
i ∈ {x j

i − v j (xi ), x j
i , x j

i + v j (xi )} for 1 ≤ i ≤ t and 1 ≤ j ≤ e, then, for
every 1 ≤ f ≤ e, the sequence π f (y1), . . . , π f (yt ) has the same order type in
R

f as the sequence π f (x1), . . . , π f (xt ).

The key observation is compressed in the following lemma.

Lemma 6. Let X ⊂ Re be in strongly general position. If 0 < ε ≤ εe(X) is small
enough, then for any ε-double X ′ of X ,

mc(X ′) ≤ mc(X)+mc(π(X)).

Proof. Suppose that C ⊆ X ′ is in convex position. Consider first C1 = {x ∈ X | x −
v(x) ∈ C or x + v(x) ∈ C}. It follows from Proposition 5(ii) that C1 is also in convex
position. Thus, |C1| ≤ mc(X). Next, consider C2 = {x ∈ X | x−v(x) ∈ C and x+v(x) ∈
C}. If ε is small enough, then the vectors v(x) (x ∈ X) are almost parallel to the
eth coordinate axis, and therefore, due to the strongly general position condition and
Proposition 5(ii), π(C2) is in convex position. Thus, |C2| = |π(C2)| ≤ mc(π(X)).
Since |C | = |C1| + |C2|, the result follows.

Proof of Theorem 2. Fix any one-point set X0 in Rd . Suppose that, for some integer
i ≥ 0, a set Xi of points in strongly general position in Rd has already been defined.
Choose a very small εi > 0 and consider an εi -double X ′i of Xi ; then it follows from
Proposition 5 that πe(X ′i ) is an εi -double of πe(Xi ) for every 1 ≤ e ≤ d. Applying
Lemma 6 to the sets πe(Xi ) for d ≥ e ≥ 2, we obtain that if εi is small enough, then
mc(πe(X ′i )) ≤ mc(πe(Xi )) + mc(πe−1(Xi )), for 2 ≤ e ≤ d. Choose such a small εi ,
and set Xi+1 = X ′i .

This way an infinite sequence X0, X1, X2, . . . of sets, in strongly general position in
R

d , is constructed such that |Xi | = 2i (see Fig. 2).

X0 X1 X2 X3

Fig. 2. The first four sets X0, X1, X2, X3 (the case d = 2).
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Theorem 2 follows immediately from the following lemma.

Lemma 7. mc(πe(Xi )) ≤ 2i e−1 for every 1 ≤ e ≤ d and i ≥ 1.

Proof. The statement is clearly valid if e = 1 or i = 1. For double induction let
e ≥ 2, i ≥ 1 and suppose that the assertion has already been proved for the pairs e, i
and e − 1, i . Then, according to the construction of Xi+1,

mc(πe(Xi+1)) ≤ mc(πe(Xi ))+mc(πe−1(Xi ))

≤ 2i e−1 + 2i e−2

≤ 2(i + 1)e−1,

as stated.

A more careful calculation in fact yields that mc(πe(Xi )) ≤ (2/(e − 1)!)i e−1 +
O(i e−2), see the Appendix. Thus, for large n and N , Theorem 2 is valid with cd ≈ 20.37d

and c′d ≈ 2/(d − 1)!, respectively.

4. d-Horton Sets

Before we define d-Horton sets, we need to introduce some other notions.
We say that a point a = (a1, a2 . . . , ad−1, ad) lies below a hyperplane h if

(a1, a2, . . . , ad−1, ad + c) lies on h for a unique c > 0. Similarly, a lies above h if
(a1, a2, . . . , ad−1, ad + c) lies on h for a unique c < 0.

Let A, B be two finite sets of points in strongly general position in Rd . We say that
A lies deep below B and B lies high above A if there are two sets A′ ⊇ A, B ′ ⊇ B in
strongly general position, each of size at least d, such that the following holds: any point
of A′ lies below any hyperplane determined by d points of B ′ and any point of B ′ lies
above any hyperplane determined by d points of A′.

We denote the (d − 1)th prime number by pd (thus, p2 = 2, p3 = 3, . . .). Let
H = {h0, h1, ..., hk} be a set of points in strongly general position inRd , d ≥ 2, ordered
according to the first coordinate (i.e., if i < j , then hi has a smaller first coordinate than
hj ). (Note that the definition of strongly general position implies that any two points of
H differ in the first coordinate.) We define pd sets Hz, z = 0, . . . , pd − 1, forming a
partition of H as follows:

Hz := {hi ∈ H : i ≡ z (mod pd)}, z = 0, . . . , pd − 1.

We now define the so-called d-Horton sets introduced in [12]. A finite set of points
in strongly general position in Rd , d ≥ 1, is said to be a d-Horton set if either d = 1 or
|H | ≤ 1 or if it satisfies the following three recursive conditions:

(a) π(H) is (d − 1)-Horton,
(b) each of the sets Hz, z = 0, 1, . . . , pd − 1, is d-Horton,
(c) any index set I , I ⊆ {0, 1, . . . , pd−1}, |I | ≥ 2, can be partitioned into nonempty

sets J and I − J in such a way that the set
⋃

z∈J Hz lies deep below the set⋃
z∈(I−J ) Hz .
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h0 h2

h4

h6

h1

h3

h5 h0

h1

h2

h3

h4

h5

h6

H0

H0
H1

H1

(a) (b)

Fig. 3. Two examples of 2-Horton sets.

In dimension d = 2, condition (a) is void and condition (c) asserts that the subset H0

lies deep below or high above the subset H1. Two examples of 2-Horton sets are given
in Fig. 3. An example of a 3-Horton set can be obtained from each of them by lifting the
points h1, h4 in the third dimension by 1 and the points h2, h5 by 10 (say).

5. Construction Using d-Horton Sets

A recursive construction of d-Horton sets of arbitrary size was given in [12]. Thus, to
give an alternative proof of Theorem 2, it suffices to prove the following theorem:

Theorem 8. No d-Horton set of cardinality n ≥ 2 contains a subset in convex position
of size ≥ c′′ logd−1 n, where the constant c′′ = c′′d only depends on d .

The proof of Theorem 8 relies on the following lemma.

Lemma 9. Let A1, A2, A3 be three finite sets of points in strongly general position in
R

d such that Ai lies deep below Aj for all 1 ≤ i < j ≤ 3. If C is a set in convex position
intersecting both A1 and A3, then π(C ∩ A2) ⊂ Rd−1 is in convex position.

Proof. Suppose that the setπ(C∩A2) is not in convex position. Then, by Carathéodory’s
theorem, there are d + 1 points t, t1, . . . , td ∈ C ∩ A2 such that π(t) lies in the convex
hull of π(t1), . . . , π(td).

Let l(t) be the vertical (i.e., parallel to the last axis) line through t , and let K be the
convex hull of t1, . . . , td (K is a (d − 1)-dimensional simplex). Since C is in convex
position, t cannot lie in K . We may suppose without loss of generality that t lies strictly
below (the hyperplane through) K . Let a be any point in C ∩ A1. Since C is in convex
position, t lies also outside of conv(K ∪ {a}) = conv{a, t1, . . . , td}.
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Suppose that the bottommost point of l(t) ∩ conv(K ∪ {a}) lies on that face of the
simplex conv(K ∪ {a}) which is spanned by a, t1, t2, . . . , td−1 (say). Then a lies above
the hyperplane determined by the points t, t1, t2, . . . , td−1—a contradiction.

Proof of Theorem 8. We proceed by induction on d. The statement is trivially true for
d = 1, since no three points in R1 are in convex position. Now, let d > 1, let H be a
d-Horton set of size n ≥ 2, and let C ⊆ H be in convex position.

We inductively choose d-Horton sets H = H (0) ⊇ H (1) ⊇ H (2) ⊇ · · · so that, for
each s ≥ 0, H (s+1) is one of those sets H (s)

i , i = 0, . . . , pd−1,which intersect C , and all
other sets H (s)

i intersecting C lie high above it. The existence of such a set H (s+1) = H (s)
i

follows from condition (c) in the definition of d-Horton sets (if |H (s)| ≥ pd · d, then the
relation “to lie high above” is a linear order on the sets H (s)

i , i = 0, . . . , pd − 1, and the
set H (s+1) is uniquely determined).

Similarly, we inductively choose d-Horton sets H = G(0) ⊇ G(1) ⊇ G(2) ⊇ · · · so
that, for each s ≥ 0, G(s+1) is one of the sets G(s)

i intersecting C , and all other sets G(s)
i

intersecting C lie deep below it.
If possible, we choose different sets H (1) and G(1). We may then assume that H (1) �=

G(1), since otherwise C ⊆ H (1) and the proof for the smaller set H (1) gives the statement
also for the set H .

We have |H (s+1)| ∈ {�|H (s)|/pd�, �|H (s)|/pd�}. It follows that |H (w)| = 1, where
w = �logpd

n�. Similarly, |G(w)| = 1.
We consider the decomposition of H into sets H\(H (1) ∪ G(1)), H (1)\H (2), . . . ,

H (w−1)\H (w), H (w),G(1)\G(2), . . . ,G(w−1)\G(w),G(w). We will show that each of these
2w + 1 sets contains at most (pd − 1)c′′d−1 logd−1 n points of C . Then the size of C is
at most (2w + 1)(pd − 1)c′′d−1 logd−1 n < c′′d logd n, where c′′d = 10(pd − 1)c′′d−1 (say),
and the theorem follows.

For each s = 1, . . . , w − 1, the set H (s)\H (s+1) is a disjoint union of the pd − 1
sets H (s)

i different from H (s+1). If we intersect any such set H (s)
i with C and make

the π -projection, the resulting set is a subset of π(H) in convex position by Lemma 9
(applied on A1 := H (s+1), A2 := H (s)

i , A3 := G(1)—here we use that H (1) �= G(1)).
Since π(H) is a (d − 1)-Horton set of size n, it follows from the inductive hypothesis
that H (s)\H (s+1) contains at most (pd − 1)c′′d−1 logd−1 n points of C . Analogously, the
same estimate holds for each of the sets G(s)\G(s+1) and also for the set H\(H (1)∪G(1)).
It certainly also holds for the one-point sets H (w) and G(w).

Appendix

Here we prove that, for every fixed e ≥ 1, mc(πe(Xi )) ≤ (2/(e − 1)!)i e−1 + O(i e−2).
Notice first that mc(πe(X1)) = mc(π1(Xi )) = 2 for every e, i ≥ 1. Based on the

inequality

mc(πe(Xi+1)) ≤ mc(πe(Xi ))+mc(πe−1(Xi )) (1)

one can readily check that

mc(πe(Xi )) ≤ 2i (2)

holds for every 1 ≤ i ≤ e.
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Consider the unique polynomial pe of degree e− 1 that satisfies pe(i) = 2i for every
1 ≤ i ≤ e. Thus, p1 ≡ 2 and

mc(π1(Xi )) ≤ p1(i) (3)

for every i ≥ 1. The sequence (ai ) defined by the recursion a1 = 2, ai+1 = ai + pe(i)
satisfies ai = q(i) for some polynomial q of degree e. It is easy to check that ai = 2i

holds for every 1 ≤ i ≤ e + 1, and thus q = pe+1. By induction it follows from
inequalities (1)–(3) that mc(πe(Xi )) ≤ pe(i) for every e, i ≥ 1. The coefficients of the
polynomial pe(x) = a1xe−1 + a2xe−2 + · · · + ae can be obtained from the solution of
the system of linear equations

e∑
j=1

aj i
e− j = 2i

for 1 ≤ i ≤ e. By Cramer’s rule we can express a1 as the ratio of the determinants of two
e × e matrices B = (bi j ) and D = (di j ), where bi j = 2i if j = 1, bi j = i e− j if 1 < j ,
and di j = i e− j . Given that D can be obtained from a Vandermonde matrix by exchanging
certain columns we obtain that det D = (−1)(

e
2)(e− 1)! (e− 2)! · · · 1!. Similarly, if we

expand det B according to its first column we obtain that det B =∑e
i=1(−1)i+12i det Bi ,

where Bi is again a Vandermonde matrix. In fact we have that

det Bi = (−1)(
e−1

2 )
(e − 1)! (e − 2)! · · · 1!

(e − i)! (i − 1)!
,

and therefore the leading coefficient of pe is

ai = (−1)(
e−1

2 )−(e
2)

2

(e − 1)!

e−1∑
i=0

(−2)i
(

e − 1

i

)
= 2

(e − 1)!
.

Therefore pe(x) = (2/(e − 1)!)xe−1 + O(xe−2), proving our claim.
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4. P. Erdős and G. Szekeres, On some extremum problems in elementary geometry, Ann. Univ. Sci. Budapest.
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