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Abstract

Quantum dots (QDs) and silica nanoparticles (SNs) are relatively new classes of fluorescent probes that
overcome the limitations encountered by organic fluorophores in bioassay and biological imaging appli-
cations. We encapsulated QDs and SNs in liposomes and separated nanoparticle-loaded liposomes from
unencapsulated nanoparticles by size exclusion chromatography. Fluorescence correlation spectroscopy
was used to measure the average number of nanoparticles inside each liposome. Results indicated that
nanoparticle-loaded liposomes were formed and separated from unencapsulated nanoparticles by using a
Sepharose gel. As expected, fluorescence self-quenching of nanoparticles inside liposomes was not observed.
Each liposome encapsulated an average of three QDs. These studies demonstrated that nanoparticles could
be successfully encapsulated into liposomes and provided a methodology to quantify the number of
nanoparticles inside each liposome by fluorescence correlation spectroscopy.

Introduction

Fluorescent probes for biomolecular recognition
have been widely used in bioassays and biological
imaging (Schrock et al., 1996; Trau et al., 2002).
However, organic fluorophores have characteris-
tics that limit their effectiveness for these applica-
tions, including poor photostability, low
brightness, and limited capability for multiplexed
analysis (Goldman et al., 2002; Yang et al., 2004).
Quantum dots (QDs) and silica nanoparticles
(SNs) are relatively new classes of fluorescent
probes that have the potential to overcome these
limitations. QDs (fluorescent semiconductor
nanocrystals) have broad excitation and size-
dependent, tunable, narrow-emission spectra that

allow the simultaneous excitation of several dif-
ferent-colored QDs at a single wavelength with
little spectral emission overlap for multianalyte
analysis (Alivisatos, 1996; Mattoussi et al., 1998;
Rodriguez-Viejo et al., 2000). Also, QDs have
been reported to be about 20 times brighter and
100 times more photostable in comparison with
organic dyes such as rhodamine (Chan & Nie,
1998). Fluorescent SNs are synthesized by a sol-
gel technique in which organic dyes are covalently
attached to the silica precursor (Stober et al., 1968;
Larson et al., 2003a). They are brighter and more
photostable than free organic dyes (Larson et al.,
2003a).

Liposomes are spherical vesicles consisting of
phospholipid bilayers surrounding an aqueous
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cavity. Because each liposome can contain up to
several million fluorescent dye molecules, thereby
providing greatly enhanced signals, liposomes
have been successfully used as reporter particles in
bioassays (Park & Durst, 2000; Esch et al., 2001;
Ahn-Yoon et al., 2003; Bacumner et al., 2004; Ho
et al., 2004). Therefore, liposomes have the
potential of entrapping large amount of fluores-
cent nanoparticles to amplify signal. In addition,
the biomimetic lipid bilayers of liposomes provide
high biocompatibility (Struck & Pagano, 1980;
Muller et al., 1995; Barber et al., 1996), thereby
enhancing the effectiveness of fluorescent nano-
particles for biological detection in vitro and
in vivo.

In this study, we encapsulated QDs and SNs
into liposomes by the reverse-phase evaporation
method. Nanoparticle-loaded liposomes were
separated from unencapsulated nanoparticles by
size-exclusion chromatography (SEC) and their
characteristics were investigated. Dual-color, two-
photon fluorescence correlation spectroscopy was
used to determine the number of nanoparticles
inside each liposome.

Experimental
Reagents

Common laboratory reagents were purchased
from Sigma-Aldrich Co. (St. Louis, MO) or
Fisher Scientific (Pittsburgh, PA). Sepharose CL-
2B and Sepharose CL-4B were purchased from
Sigma-Aldrich Co. Dipalmitoylphosphatidylcho-
line (DPPC), dipalmitoylphosphatidylglycerol
(DPPQG), dipalmitoylphosphatidylethanolamine-N-
(biotin) (N-biotinyl-DPPE), lissamine rhodamine
B-DPPE, nitrobenzoxadiazol-DPPE and poly-
carbonate syringe filters of 0.4 and 0.2 pm pore
sizes were purchased from Avanti Polar Lipids
(Alabaster, AL). Quantum dots (EviTags) were
purchased from Evident Technologies (Troy,
NY). Silica nanoparticles were kindly provided
by Hooisweng Ow and Ulrich Wiesner, Cornell
University, Ithaca, NY.

Encapsulant preparation

A 0.8 uM QD solution and a 122 nM SN solution
were each prepared in HEPES buffer (0.01 M at

pH 7.5, containing 0.2 M NaCl and 0.01%
sodium azide). Sucrose was used to adjust the
osmolality to 445 mOsmol/kg.

Preparation of nanoparticle-loaded liposomes

Liposomes were prepared using a modified version
of the reverse-phase evaporation method descri-
bed by Siebert et al. (1993). About 45 pumol
DPPC, 5 pmol DPPG, 5 pmol N-biotinyl-DPPE,
and 45 umol cholesterol were dissolved in 3 ml of
a chloroform/methanol solution (volume ratio,
5:1). While sonicating the suspension at 45°C,
0.6 ml of encapsulant was added. Using a vacuum
rotary evaporator, the organic solvent was
removed. Then, an additional 0.4 ml of encapsu-
lant was added and the vacuum rotary evaporator
was applied again. After the liposomes were
formed, they were incubated for 30 min at 45°C
and, finally, extruded 30 times through polycar-
bonate syringe filters with 0.4 um pore size.
Samples for fluorescence correlation spectroscopy
were extruded with 0.4 and 0.2 pm pore-size filters
in series.

Size exclusion chromatography (SEC) of liposomes

Unencapsulated QDs were separated from the
liposomes by size exclusion chromatography using
Sepharose CL-2B column (25x1.5 cm). HEPES
buffer (0.01 M, pH 7.5) was used as the ecluent
containing 0.2 M NaCl and 0.01% sodium azide.
Sucrose was used to adjust the osmolality to
515 mOsmol/kg. The flow rate was controlled at
25.1 ml/h. The eluted liposomes were collected at
I ml/tube by a Retriever 500 fraction collector
(ISCO, Lincoln, NE), followed by fluorescence
measurement using a RF-551 spectrofluorometric
detector (Shimadzu, Kyoto, Japan). Unencapsu-
lated SNs were separated from the liposomes by
size exclusion chromatography using Sepharose
CL-4B column (25x1.5cm). HEPES buffer
(0.01 M, pH 7.5) was used as the eluent containing
0.2 M NaCl and 0.01% sodium azide. Sucrose was
used to adjust the osmolality to 515 mOsmol/kg.
The flow rate was controlled at 45.2 ml/h. The
eluted liposomes were collected at 1.5 ml/tube by
the Retriever 500 fraction collector, followed by
fluorescence measurement using the RF-551 spec-
trofluorometric detector.



Measurement of the average number of
nanoparticles inside each liposome

We used two-photon fluorescence correlation
spectroscopy (FCS, Developmental Resource for
Biophysical Imaging Opto-Electronics, Cornell
University, Ithaca) to measure the number of
fluorescent particles in the focal volume, thereby
calculating the sample concentration (Larson
et al., 2003b). Dual-color, cross-correlation
experiments were performed to measure the intact
liposome concentration and nanoparticle concen-
tration released after liposome lysis, thus permit-
ting measurements of the nanoparticle quantity
inside each liposome. We incorporated 0.4 mol%
red lissamine rhodamine B (LRB)-DPPE into the
liposome bilayers for green QD encapsulation and
0.4 mol% green nitrobenzoxadiazol-DPPE for red
SN encapsulation in the preparation of nanopar-
ticle-loaded liposomes described above. We lysed
liposomes by adding 0.5 ml of 30 mM n-OG to
5 ul liposome solution.

Results and discussion

Size exclusion chromatography of QD-loaded
liposomes

The sizes of QDs and liposomes are approximately
50 nm and 300 nm, respectively. We separated
unencapsulated QDs from the liposomes by SEC
using Sepharose CL-2B. Figure 1 shows that QD-
loaded liposomes were formed and separated by
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Figure 1. Elution profiles on Sepharose CL-2B of buffer-
loaded liposomes and QD-loaded liposomes detected by
fluorescence. The first peak at 20 ml corresponds to the
eluted liposomes and the second broad peak is the unen-
capsulated QDs
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Sepharose CL-2B. Because QD-loaded liposomes
contained fluorescent QDs, they produced higher
fluorescence intensity than the empty (buffer-loa-
ded) liposomes. Empty liposomes were detectable
by fluorescence based on the property of large
liposomes to scatter light, the degree of which can
be detected and measured. The recovery of QDs
from the column was poor due to the adsorption
of some QDs to the top of the column matrix.
Reynolds et al. also reported this problem while
separating polystyrene beads using a size-exclusion
column (Reynolds et al., 1983).

Size exclusion chromatography of SN-loaded
liposomes

Because of the size difference between SNs
(~20 nm) and liposomes (~575 nm), we also used
SEC to separate unencapsulated SNs from SN-
loaded liposomes. Instead of Sepharose CL-2B, we
used Sepharose CL-4B, which has smaller pore
sizes because SNs are smaller than QDs. The elu-
tion profile of SN-loaded liposomes plotted in
Figure 2 exhibits two distinct peaks at respective
elution volumes of 16 and 32 ml, which corre-
spond to liposome-entrapped and free SNs. This
also demonstrated that SN-loaded liposomes were
formed and separated well by Sepharose CL-4B.
Like QDs, the recovery of unentrapped SNs from
the column was also poor, thereby producing little
fluorescence in Figure 2.

Characterization of nanoparticle-loaded liposomes

The absorption and emission spectra of both types
of nanoparticle-loaded liposomes were measured
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Figure 2. Elution profiles on Sepharose CL-4B of buffer-
loaded and SN-loaded liposomes detected by fluorescence
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by a spectrophotometer and spectrofluorometer,
respectively. Since liposomes scatter light, their
absorption spectrum is just a measure of scattered
light, and the shorter the wavelength, the higher
the intensity. The absorption intensity of lipo-
somes, therefore, increased with decreasing wave-
length. Diederichs (1996) also reported similar
properties of the absorption spectrum of lipo-
somes. On the other hand, liposome-entrapped
nanoparticles exhibited fluorescent emission spec-
tra similar to the free nanoparticles.

While the fluorescence of organic dyes in the
liposomes is self-quenched, liposome-encapsu-
lated nanoparticles produced a relatively strong
signal. We also compared the fluorescence of
intact versus lysed nanoparticle-loaded liposomes
and our results showed no significant fluorescence
difference between them (data not shown). This is
a great benefit for bioassays since liposome lysis
will not be required for fluorescence measure-
ments. Also, fluorescent signals can be detected
when liposome lysis is not feasible, such as in a
lateral flow assay. Conventionally, the signal of
organic dye-loaded liposomes on the test strip can
only be read by color intensity (Park & Durst,
2000; Ahn-Yoon et al., 2003). Due to the absence
of self-quenching in nanoparticle-loaded lipo-
somes, the fluorescence intensity on a test strip
can be detected, thereby providing increased
sensitivity.

Number of nanoparticles inside each liposome based
on FCS

Fluorescence correlation spectroscopy (FCS) is a
technique that analyzes fluorescence intensity
fluctuations arising from molecules diffusing in
and out of a microscopic detection volume of
about one femtoliter defined by a tightly focused
laser beam (Rigler, 1995; Maiti et al., 1997). In
dual-color, cross-correlation FCS, the fluorescence
signals from the two fluorophores are recorded
simultaneously, and the fluctuations in the fluo-
rescence signal of one fluorophore are correlated
with those of the other fluorophore (Kim &
Schwille, 2003). If fluorescent nanoparticles are
encapsulated inside a dye-labeled liposome, they
will pass through the FCS detection volume
together, resulting in coincident fluctuations in
both detector channels, which can be detected by

cross-correlation analysis of fluctuations in the
two channels.

In Figure 3, the cross-correlation between QDs
and liposomes is shown for the intact liposome
sample, which indicates that QDs were encapsu-
lated inside the liposomes. After liposome lysis, the
cross-correlation amplitude was observed to be
zero due to the dissociation of the QDs and lysed
liposomes.

For measuring the quantity of QD-loaded lipo-
somes and released QDs after liposome lysis,
autocorrelation analysis was used. The amplitude
of the autocorrelation curve at © = 0 is inversely
proportional to the average number of fluorescent
molecules in the detection volume. This provides a
direct measure of the concentration (Levin &
Carson, 2004). Figure 4 shows the autocorrelation
curves of QD-loaded liposomes and released QDs
for the same concentration of liposomes. The
concentrations of QD-loaded liposomes and
released QDs were 0.32 and 0.94 nM, respectively.
Hence, we calculated that each liposome contained
an average of three QDs. Unfortunately, we could
not measure the SN quantity inside each liposome
due to the spectral overlap between SNs and
nitrobenzoxadiazol-liposomes.

Although liposomes did not provide much sig-
nal amplification due to the small number of QDs
encapsulated, they still provided protection and
biocompatibility for QDs during biological detec-
tion in vitro and in vivo. In addition, the small
number of encapsulated QDs can be explained by
the large size (~50 nm diameter) and Ilow
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Figure 3. Cross-correlation curves of intact and lysed QD-
loaded liposomes
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Figure 4. Autocorrelation curves of intact QD-loaded
liposomes and released QDs after liposome lysis

concentration (0.8 uM) of the QD solution
(encapsulant) for liposome preparation.

Conclusions

Demonstration of the successful encapsulation of
QDs and SNs into liposomes was achieved. As
expected, self-quenching of the fluorescence was
not observed for either QD-loaded or SN-loaded
liposomes. When a 0.8 uM QD solution was used
for liposome encapsulation, each liposome con-
tained an average of three QDs based on dual-
color fluorescence correlation spectroscopy. In the
future, smaller and more highly concentrated QDs
will be needed for liposome encapsulation in an
attempt to increase the number of quantum dots
inside each liposome.
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