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Abstract In the late 1970s, in two celebrated papers, Aizenman and Higuchi
independently established that all infinite-volume Gibbs measures of the two-
dimensional ferromagnetic nearest-neighbor Ising model at inverse temperature β ≥ 0
are of the form αμ+β + (1 − α)μ−β , where μ+β and μ−β are the two pure phases and
0 ≤ α ≤ 1. We present here a new approach to this result, with a number of advan-
tages: (a) We obtain an optimal finite-volume, quantitative analogue (implying the
classical claim); (b) the scheme of our proof seems more natural and provides a better
picture of the underlying phenomenon; (c) this new approach might be applicable to
systems for which the classical method fails.
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1 Introduction and results

We denote by � � {−1, 1}Z2
the set of spin configurations. Let � be a finite sub-

set of Z
2, which we denote by � � Z

2. The finite-volume Gibbs measure in �

for the two-dimensional nearest-neighbor ferromagnetic (2d n.n.f.) Ising model, with
boundary condition ω ∈ � and at inverse temperature β ≥ 0, is the probability
measure on � (with the associated product σ -algebra) defined by
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26 L. Coquille, Y. Velenik

μω
�;β(σ ) �

{
1

Zω
�;β

e−βH�(σ) if σi = ωi , for all i ∈ �c,

0 otherwise,

where �c � Z
2 \�, and the normalization constant Zω

�;β is the partition function.
The Hamiltonian in � is given by

H�(σ) � −
∑

{i, j}∩� �=∅

‖i− j‖1=1

σiσ j .

In particular, we denote by μ+
�;β , resp. μ−

�;β , the measures obtained using ω ≡ 1,
resp. ω ≡ −1.

For A ⊂ Z
2, we denote by FA the σ -algebra of all events depending only on the

spins inside A. A probability measure μ on � is an infinite-volume Gibbs measure
for the 2d n.n.f. Ising model at inverse temperature β if and only if it satisfies the DLR
equation

μ(· |F�c)(ω) = μω
�;β, for μ-a.e. ω, and all � � Z

2. (1.1)

We denote by Gβ the set of all such measures.
It is easy to prove that the sequences of measures (μ+�)� and (μ−�)� converge

weakly along any increasing sequence of finite sets � ↗ Z
2, the limit being inde-

pendent of the sequence chosen. We denote by μ+β and μ−β the corresponding limits;
these two measures are called the pure phases, and referred to as the + and −states,
and are easily seen to belong to Gβ . In particular, Gβ �= ∅, for all β ≥ 0.

It is a classical result, valid in a much broader context, that the set Gβ is a simplex
(see [15] for a general reference on Gibbs measures). However, determining explicitly
this set for a nontrivial model is a very delicate question.

For the 2d n.n.f. Ising model, it is not difficult to prove that μ+β and μ−β are always
extremal elements of Gβ , and that the latter set contains a unique element if and only
if μ+β = μ−β . It can be proved that the latter condition is satisfied if and only if β ≤ βc

(the difficult part is the behavior at βc), where 0 < βc < ∞ is the inverse critical
temperature. It follows that, in the non-uniqueness regime β > βc,Gβ contains at
least the two distinct extremal measures μ+β and μ−β .

In 1975, Messager and Miracle-Sole [21] proved that all translation invariant infi-
nite-volume Gibbs measures of the 2d n.n.f. Ising model are convex combinations
of μ+β and μ−β ; an earlier result on that problem was obtained by Gallavotti and
Miracle-Sole for large enough β [14]. (The corresponding claim for general 2d systems
at very low temperature was obtained later in [10].)

At this stage, the problem was thus reduced to proving that there are no transla-
tion non-invariant infinite-volume Gibbs measures in this model. Important progress
was made in 1979 by Russo [24], who proved that an infinite-volume Gibbs measure
for the 2d n.n.f. Ising model which is invariant under translations along one direc-
tion is necessarily invariant under all translations. Building up on these earlier results,
Aizenman [1] and Higuchi [19] (see also [16] for a more recent variant) independently
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A finite-volume version of Aizenman–Higuchi theorem 27

established, in the late 1970s, that all infinite-volume Gibbs measures of the 2d n.n.f.
Ising model are translation invariant, thus providing a complete description of the
set Gβ .

The goal of the present work is to introduce a new approach to this result, with a
number of distinctive advantages:

• We obtain a finite-volume, quantitative analogue (of course, implying the classical
claim). Our error estimate is of the correct order.

• The scheme of our proof seems more natural, and provides a clear picture of the
underlying phenomenon.

• This new approach relying on other properties of the underlying model, it might
be extendable to systems for which the classical approach does not apply.

Concerning the last point, it is worth pointing out that one of the main ingredients
necessary in order to build up a proof along the lines we use here is the availability
of a sharp control of interface properties, such as provided by the Ornstein–Zernike
theory developed in [5–7]. In particular, such estimates are available, e.g., for 2d Potts
models below the critical temperature, for which even establishing the infinite-volume
claim is an open problem. One of the main difficulties in this program, though, is that
the geometry of interfaces is much more complicated in systems with more than 2
phases (in the Ising case, interfaces are always lines connecting two points on the
boundary). Such an extension, which requires substantial adaptations of several steps
in the arguments below, is in progress [9].

There is one drawback in our approach: it does not imply uniqueness at the critical
temperature, while this can be extracted from the classical Aizenman–Higuchi result,
e.g., using [3]. However, this should not be surprising, since we expect that it should
also apply to models for which the transition is first-order, such as the 2d Potts model
with q ≥ 5 spin states. In that case, one expects Gβc to be the simplex with extremal
points given by all q low-temperature pure phases as well as the high temperature
phase.

Note that the absence of translation non-invariant infinite-volume Gibbs measures
is specific to the two-dimensional model: in higher dimensions, it was proved by
Dobrushin [11] that such measures exist at sufficiently large values of β (however,
all translation invariant measures are still convex combinations of μ+β and μ−β in
this case [2]). The main difference between the 2d case and its higher-dimensional
counterparts is that interfaces in 2d are one-dimensional objects and as such undergo
unbounded fluctuations (with diffusive scaling) at any β <∞, while horizontal inter-
faces in higher dimensions are rigid at large enough values of β. Actually, the existence
of a Brownian bridge diffusive limit in 2d has only been established [17] for a single
interface, resulting from the so-called Dobrushin boundary condition (earlier results
restricted to large β include [13,18]). The behavior of the system under a general
boundary condition is the main topic of the present work.

We set �r � {−�r, . . . , �r}2. For � � Z
2, we denote by 〈·〉ω

�;β the expectation

under the (finite-volume) measure μω
�;β and by 〈·〉+β , resp. 〈·〉−β , the expectation under

the (infinite-volume) measure μ+β , resp. μ−β .
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28 L. Coquille, Y. Velenik

We shall make use of the following notation: if R1, R2 and R3 are three expressions,
depending on various parameters (β, n, ω, etc.), and we write R1 = R2 + Oβ(R3),
this means that there exists a constant C(β) < ∞, depending on β only, such that
|R1 − R2| ≤ C(β)R3.

Our main result is the following. The proof can be found in Sect. 3.

Theorem 1.1 Let β > βc, ξ < 1/2 and ω ∈ �. Then, for any 0 < δ < 1/2− ξ , there
exists n0 = n0(β, ξ, δ) such that, for all n > n0, there exists a constant αn,ω(β) ∈
[0, 1] such that, for all F�nξ -measurable function f ,

〈 f 〉ω�n;β = αn,ω〈 f 〉+β + (1− αn,ω)〈 f 〉−β + Oβ

(‖ f ‖∞ n−δ
)
.

It is not difficult to deduce the Aizenman–Higuchi theorem from Theorem 1.1.

Corollary 1.1 For any β > βc,Gβ = {αμ+ + (1− α)μ− : 0 ≤ α ≤ 1}.
It is easy to check that the estimate we have on the error term in Theorem 1.1 is

essentially optimal (and could be made optimal with a little more care in the estimates,
replacing the box �na in the proof by a box �εn with ε sufficiently small).

Proposition 1.1 Let β > βc. There exist a local function f and a constant c = c(β) >

0 such that, for all n large enough, one can find ω ∈ � with

inf
α∈[0,1]

∣∣∣〈 f 〉ω�n;β − αn,ω〈 f 〉+β − (1− αn,ω)〈 f 〉−β
∣∣∣ ≥ cn−1/2.

2 Remarks and open problems

In this section, we make some comments about Theorem 1.1 and list some natural
related problems.

General boxes Our first comment is that the choice of a square box �n in
Theorem 1.1 does not restrict its generality. Indeed, similarly to what is done in the
proof of Corollary 1.1, given � ⊂ Z

2, we can consider the largest box �n ⊂ � and
use the Markov property to deduce that the claim of Theorem 1.1 remains true for �

(with this value of n). This shows that a small region deep inside a box of arbitrary
shape, with arbitrary boundary condition, will fall either deeply inside a region of
+phase or of −phase, with high probability.

“Generic” boundary condition As discussed above, the estimate we have on the
error term in Theorem 1.1 is essentially optimal. However, it seems very likely that a
“generic” boundary condition should yield, with high probability, configurations with
no crossing interfaces, which should improve the error term to e−O(n). One of the
difficulties is to give a precise meaning to the word “generic” in this context. One
possible choice would be to sample the boundary condition according to some natural
probability measure. Unfortunately, very little is known about the Ising model with a
strongly inhomogeneous boundary condition. The only work we are aware of that is
related to this question is [25], in which the following result is proved: let the spins of
ω be independent Bernoulli random variables with parameter 1/2. Then, for almost
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A finite-volume version of Aizenman–Higuchi theorem 29

all ω, the probability of appearance of an interface goes to zero as the system size goes
to infinity, provided that β be large enough. This shows that, for a generic boundary
condition, typical configurations of the low-temperature Ising model do not possess
macroscopic interfaces.

A related issue, whose solution would probably be helpful in making progress in
the previously mentioned problem, is that of wetting above an inhomogeneous sub-
strate. Consider a 2d n.n.f. Ising model at inverse temperature β > βc, in a box �n

with+boundary condition along the vertical and top sides of the box, and−boundary
condition along the bottom side. If the interaction σiσ j between the spins in the bot-
tom row of �n and those outside the box is modified to hσiσ j , with h > 0, then an
interface is present along the bottom wall. As long as h < hw(β), for some explicitly
known value 0 < hw(β) < 1, the interface sticks to the bottom wall, its Hausdorff
distance to the wall being O(log n); this is the so-called partial wetting regime. When
h ≥ hw(β), the interface is repelled away from the bottom wall, and the Hausdorff dis-
tance becomes O(

√
n); this is the complete wetting regime. The transition between

these two regimes is called the wetting transition. All this is rather well understood,
see [22] for a review. Understanding the corresponding problem when the homoge-
neous boundary field h is replaced by site-dependent boundary fields hi is much more
difficult and still mostly open [12].

A final open problem that might be of interest is to understand how robust the
Dobrushin boundary conditions are: start with such a boundary condition, and ran-
domly flip a density ρ > 0 of spins; does the macroscopic interface survive? What
can be said about the critical ρ at which the macroscopic interface disappears?

3 Proof of the main result

We shall need several technical results about the 2d n.n.f. Ising model. These can be
found in Appendix A, as well as all relevant definitions for the proofs we present
below. We urge the reader not familiar with duality or the random-line representation
to read this appendix first.

The proof of Theorem 1.1 comprises two main steps: (i) Proving that, with high
probability, at most one interface approaches the center of the box �n , (ii) proving
that this interface, when present, undergoes unbounded fluctuations (actually of order√

n). It will then follow that any local observable, with support close to the center of
the box, will lie, with high probability, deep inside the + or −phase.

3.1 Typical configurations have at most one interface near the center of the box

As explained in Appendix A, we associate to the boundary condition ω the set b(ω) ≡
{b1, . . . , b2M } of endpoints of the open contours induced by ω. We also denote by
�(σ ) ≡ {�1(σ ), . . . , �M (σ )} the set of the latter open contours in a configuration σ

compatible with the boundary condition ω (their ordering is chosen according to some
fixed, but arbitrary, rule). � induces a matching of the elements of b(ω). Of course,
not all possible matchings of b(ω) can be realized in this way, and we denote by (ω)

the set of all admissible matchings; a particular admissible matching, realized in a
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30 L. Coquille, Y. Velenik

configuration σ , is denoted by π(σ). The notation (b, b′) ∈ π(σ) means that b and b′
are matched in π(σ). The open contour with endpoints b and b′ is denoted by �b,b′ .

Let max{2ξ, 3
4 } < a < 1, and set �̄2na � [−2na, 2na]2 ⊂ R

2. The next lemma
shows that, with high probability, a pair (b, b′) in an admissible matching, whose
associated open contour intersects the box ��

na , must be such that the segment bb′
intersects �̄2na .

Lemma 3.1 Let max{2ξ, 3
4 } < a < 1. There exists C1(β) > 0 such that, for all n

large enough,

μω
�n;β

(
∃(b, b′) ∈ π(σ) : �b,b′ ∩��

na �= ∅, bb′ ∩ �̄2na = ∅

)
≤ e−C1n2a−1

.

Proof Let (b, b′) ∈ b(ω), such that bb′ ∩ �̄2na = ∅. The line segment bb′ splits �n

into two disjoint components �1
n and �2

n (with a fixed rule for attributing the vertices
falling on the segment to one of these two sets), with �̄2na ⊂ �1

n (see Fig. 1). We
denote by b1(ω) the subset of b(ω)\{b, b′} consisting of vertices lying on ∂�1

n .
Let Cb,b′ be the set of configurations of all open contours �1(σ ) with (both) end-

points in b1(ω) appearing in configurations σ for which �b,b′ ∩��
na �= ∅.

Such a family �1(σ ) partitions �n into a number of connected components, only
one of which contains b and b′ along its boundary; we denote the latter component by
�(�1(σ )), and the corresponding boundary condition by ω(�1(σ )) (see Fig. 1); we
assume, without loss of generality, that the boundary condition along ∂�(�1(σ ))\∂�n

is given by +spins. Using these notations and the DLR equation (1.1), we can write

μω
�n;β

(
�b,b′ ∩��

na �= ∅
)=∑

�1∈Cb,b′

μω
�n;β(�1(σ ) = �1) μ

ω(�1)

�(�1);β
(
�b,b′ ∩��

na �= ∅
)
.

Denote by L̄ the line parallel to bb′ at distance na from the latter, and located on the
same side as �̄2na , and L a discrete approximation in (Z2)� (say, the nearest neighbor

Fig. 1 The procedure in Lemma 3.1. The dots on the boundary represent b(ω), the white ones standing
for b, b′. Left The shaded area is the sub-box �1

n . Right The shaded area is the box �n(�1); observe that
when �b,b′ intersects ��

na , there must be an s-path of −spins starting from ∂�2
n ∩ ∂�n and crossing L̄

(assuming that the b.c. on ∂�n(�1)\∂�n is +).
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A finite-volume version of Aizenman–Higuchi theorem 31

path staying closest to L̄ in Hausdorff distance, with a fixed rule to break possible
ties). On the event �b,b′ ∩��

na �= ∅, there must be a s-path (see the Appendix A) of

−spins connecting ∂�2
n ∩ ∂�n to L, an event we denote by ∂�2

n ∩ ∂�n
−←→ L. The

latter event being decreasing, it follows from the FKG inequality that

μ
ω(�1)

�(�1);β
(
�b,b′ ∩��

na �= ∅
) ≤ μ

ω(�1)

�(�1);β
(
∂�2

n ∩ ∂�n
−←→ L

)
≤ μ

±(b,b′)
�n;β

(
∂�2

n ∩ ∂�n
−←→ L

)
≤ μ

±(b,b′)
�n;β

(
�b,b′ ∩ L �= ∅

)
, (3.1)

where the boundary condition±(b, b′) is given by+1 along ∂�1
n and−1 along ∂�2

n .
The last identity follows from the fact that the contour �b,b′ cannot cross an s-path of
+spins.

To evaluate the probability in the right-hand side of (3.1), first observe that

μ
±(b,b′)
�n;β

(
�b,b′ ∩ L �= ∅

) ≤ Z+
�n;β

Z±(b,b′)
�n;β

∑
z∈L∩��

n

∑
�:b→z→b′

q�n;β(�). (3.2)

On the one hand, applying Lemma A.2 with ρ ∈ (1/2, 2a − 1), we obtain, for some
constant C2(β) that

Z±(b,b′)
�n;β

Z+
�n;β

≥ e−C2nρ

e−τβ (b−b′).

On the other hand, it follows from (A.6) that∑
�:b→z→b′

q�n;β(�) ≤ e−τβ (z−b)−τβ(z−b′).

However, Inequality (A.1) implies that, uniformly in z ∈ L∩��
n and in b, b′ such that

bb′ ∩ �̄2na = ∅,

τβ(z − b)+ τβ(z − b′)− τβ(b′ − b) ≥ κβ

(‖z − b‖2 + ‖z − b′‖2 − ‖b′ − b‖2

) ≥ C3(β)n2a−1.

Indeed, the triangle bzb′ has a base bb′ of length less than 3n and height at least na .
Since there are at most 4n vertices z ∈ L, we thus conclude that, for n large enough,

μ
±(b,b′)
�n;β

(
�b,b′ ∩ L �= ∅

) ≤ e−C4n2a−1
,

for some constant C4(β) > 0. We thus obtain from (3.1) that, for all n large enough,

μω
�n;β

(
�b,b′ ∩��

na �= ∅
) ≤ e−C4n2a−1

,

and the conclusion follows, since there are at most 64n2 pairs b, b′. ��
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32 L. Coquille, Y. Velenik

Lemma 3.2 Let us denote by Ncr the number of open contours intersecting ��
na (which

we call crossing contours). There exists C5(β) > 0 such that, for all n large enough,

μω
�n;β (Ncr ≥ 2) ≤ e−C5n2a−1

.

Proof Thanks to Lemma 3.1, we can assume that all crossing contours have endpoints
b, b′ satisfying bb′ ∩ �̄2na �= ∅; let us denote by D this event.

Let �b1,b′1(σ ), . . . , �bm ,b′m (σ ) be the family of all crossing contours in a configu-
ration σ ∈ D, assuming that m ≥ 2. Because we suppose that the event D is real-
ized, these endpoints can be naturally split into two “diametrically opposed” families
b1, . . . , bm and b′1, . . . , b′m . The vertices b1, . . . , bm are ordered clockwise (and thus
the corresponding vertices b′1, . . . , b′m counterclockwise). In particular, the crossing
contours �b1,b′1(σ ) and �b2,b′2(σ ) are neighbors (i.e. there are no other crossing con-
tours between them). Notice that, since D is supposed to hold, max{‖b1−b2‖1, ‖b′1−
b′2‖1} ≤ C6na .

The segments b1b′1 and b2b′2 split the box �n into 3 pieces. We denote by �1
n and

�2
n the two non-neighboring ones (see Fig. 2). Let also �1, resp. �2, be the open

contours with both endpoints on ∂�1
n , resp. ∂�2

n . These open contours partition �n

into connected pieces, exactly one of which contains b1, b′1, b2, b′2 along its bound-
ary; we denote this component by �n(�1,�2), and the induced boundary condition on
�n(�1,�2) by ω(�1,�2) (see Fig. 2). For definiteness and without loss of generality,
we can assume that the boundary condition acting along ∂�n(�1,�2)\∂�n is given
by +spins. Using the DLR equation (1.1), we have

μω
�n;β (Ncr ≥ 2,D) ≤

∑
b1,b′1,b2,b′2

∑
�1,�2

μω
�n;β(�1(σ ) = �1,�2(σ ) = �2)

×μ
ω(�1,�2)

�n(�1,�2);β
(
�b1,b′1 and �b2,b′2 are crossing

)
.

Let {k1, . . . , k�} = b(ω(�1,�2))\{b1, b2, b′1, b′2} be the set of all endpoints of open
contours induced by the boundary condition ω(�1,�2), apart from b1, b2, b′1, b′2.

Fig. 2 Illustration of the procedure in the proof of Lemma 3.2.
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A finite-volume version of Aizenman–Higuchi theorem 33

Using (A.7), we obtain

μ
ω(�1,�2)

�n(�1,�2);β
(
�b1,b′1 , �b2,b′2 crossing

)
≤ Z+

�n (�1,�2);β
Zω(�1,�2)

�n (�1,�2);β

∑
�1:b1→b′1
�2:b2→b′2

q�n(�1,�2);β(�1, �2).

On the one hand, using (A.5) and (A.3), we deduce the following upper bound

∑
�1:b1→b′1
�2:b2→b′2

q�n(�1,�2);β(�1, �2) ≤
∑

�1:b1→b′1

q�n(�1,�2);β(�1)
∑

�2:b2→b′2

q�n(�1,�2);β(�2)

≤ e−τβ (b′1−b1)−τβ(b′2−b2) ≤ e−C7(β)n .

On the other hand, we evidently have the lower bound

Zω(�1,�2)

�n(�1,�2);β ≥ e−C8na
Z+

�n(�1,�2);β,

for some constant C8(β) <∞, since max{‖b1− b2‖1, ‖b′1− b′2‖1} ≤ C6na . Combin-
ing these estimates, we deduce that

μω
�n;β (Ncr ≥ 2,D) ≤ C9n2+2ae−C10n ≤ e−C11n,

for some constant C11(β) > 0 and for all n large enough. ��

3.2 When present, this interface has large fluctuations

We denote by I1 the event that there is a unique crossing contour. To deal with I1,
we have to exploit the fact that the interface undergoes fluctuations of order

√
n and

will thus “miss”, with high probability, a box of sidelength nξ with ξ < 1/2. The next
lemma implements this idea.

Lemma 3.3 Denoting by � the unique crossing contour on the event I1, we have

μω
�n;β(� ∩��

2nξ �= ∅, I1) ≤ C12nξ−a/2,

for some constant C12(β) and all n large enough.

Proof Let us denote by b and b′ the endpoints of the unique crossing contour �. We
denote by γ and γ ′ the parts of � connecting, respectively, b to ∂��na and b′ to ∂��na

(γ, γ ′ are thus two open contours). Let also �̄ denote the set of all open contours
of the configuration apart from �. The contours �̄, γ, γ ′ partition �n in a number
of connected components, only one of which contains �na ; we denote the latter by
�n(�̄, γ, γ ′) (see Fig. 3). Let d, d ′ be the endpoints of γ and γ ′ on ∂��na . Observe
that the boundary condition acting on �n(�̄, γ, γ ′) takes two different constant values
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34 L. Coquille, Y. Velenik

Fig. 3 The construction in
Lemma 3.3.

along each of the two pieces between d and d ′; we write ±(d, d ′) for this boundary
condition (by symmetry, it does not matter which part is + and which is −). We
consider two cases.
Case 1: dd ′ ∩ �̄na/2 = ∅. In that case, we argue exactly as in the proof of Lemma 3.1
to obtain that

μ
±(d,d ′)
�n(�̄,γ,γ ′);β(�d,d ′ ∩��

2nξ �= ∅) ≤ e−C13(β)na
.

Case 2: dd ′ ∩ �̄na/2 �= ∅. The argument is completely similar to the one used in
the proof of Lemma 3.1 until expression (3.2). However, the sharp triangle inequality
doesn’t provide anymore an exponentially small term uniformly over all �d,d ′ con-
sidered here, since the interface can be straight. We then have to keep track of the
prefactors. On the one hand, Lemma A.1 can be applied in order to get

Z±(d,d ′)
�n(�̄,γ,γ ′);β

Z+
�n(�̄,γ,γ ′);β

≥ C14(β)

na/2 e−τβ(d ′−d).

On the other hand, by (A.6), uniformly in z ∈ ∂��2nξ ,

∑
λ:d→z→d ′

q�n(�̄,γ,γ ′);β(λ) ≤ C15(β)

na
e−τβ(z−d)−τβ(z−d ′) ≤ C15(β)

na
e−τβ(d ′−d).

Summing over z ∈ ∂��2nξ shows that

μ
±(d,d ′)
�n(�̄,γ,γ ′);β(�d,d ′ ∩��

2nξ �= ∅) ≤ C16(β) |∂��2nξ | n−a/2 ≤ C17(β) nξ−a/2.

��

3.3 Proof of Theorem 1.1 and Corollary 1.1.

Proof of Theorem 1.1 Let I0 be the event that there is no crossing interface, and, as
before, I1 the event that there is a unique crossing contour. We know from Lemma 3.2
that, uniformly in f ,
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A finite-volume version of Aizenman–Higuchi theorem 35

Fig. 4 Left: On the event I0, there is a region �(γ ) (shaded) containing �na with constant spin value on
its boundary. Right On the event I1, there is a region �(γ ) (shaded) containing �2nξ with constant spin
value on its boundary

〈 f 〉ω�n;β = 〈 f |I0〉ω�n;β μω
�n;β(I0)+ 〈 f |I1〉ω�n;β μω

�n;β(I1)+ Oβ

(
‖ f ‖∞e−C5(β)n2a−1

)
.

(3.3)

Let us consider first the event I0. When the latter occurs, there must be a circuit
surrounding �na along which spins take a constant value, see Fig. 4. Let us denote
by I+0 (γ ), I−0 (γ ) the events that the largest such circuit is given by γ , and the spins
value along γ is 1, resp. −1. Let us also denote by �(γ ) the interior of the circuit γ .
It then follows from (A.8) that, for some constant C18(β) > 0, and uniformly in all
F�nξ -measurable functions f ,

〈 f | I0〉ω�n;β =
∑
γ

{
μω

�n;β(I+0 (γ ) | I0) 〈 f 〉+�(γ );β + μω
�n;β(I−0 (γ ) | I0) 〈 f 〉−�(γ );β

}

= μω
�n;β(I+0 | I0) 〈 f 〉+β + μω

�n;β(I−0 | I0) 〈 f 〉−β + Oβ

(
‖ f ‖∞e−C18na

)
,

(3.4)

where I±0 �
⋃

γ I±0 (γ ).

Now let us consider the event I1. It follows from Lemma 3.3 that, conditionally
on I1, there is, with high probability, a contour surrounding �2nξ along which spins
take a constant value, see Fig. 4. Denoting as before the largest such contour by γ , its
interior by �(γ ), and introducing the events I+1 (γ ) and I−1 (γ ) similarly as above, we
obtain in the same way that, for any F�nξ -measurable function f ,

〈 f | I1〉ω�n;β = μω
�n;β(I+1 | I1) 〈 f 〉+β + μω

�n;β(I−1 | I1) 〈 f 〉−β + Oβ

(
‖ f ‖∞nξ−a/2

)
,

(3.5)

where I±1 �
⋃

γ I±1 (γ ).
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Let I± � I±0 ∪ I±1 . Observe that μω
�n;β(I+) + μω

�n;β(I−) = 1 + Oβ(nξ−a/2).
Inserting (3.4), (3.5) into (3.3), we obtain finally

〈 f 〉ω�n;β = μω
�n;β(I+) 〈 f 〉+β + μω

�n;β(I−) 〈 f 〉−β + Oβ

(
‖ f ‖∞nξ−a/2

)
,

uniformly in F�nξ -measurable functions f . In particular, we recover the statement of
the theorem,

〈 f 〉ω�n
= αn,ω〈 f 〉+ + (1− αn,ω)〈 f 〉− + Oβ(‖ f ‖∞ nξ−a/2),

by choosing a = 2(b + δ). ��

Proof of Corollary 1.1 Let μ ∈ Gβ be an infinite-volume Gibbs measure and f be a
local function. Let n0 be such that f is F�nξ -measurable for all n ≥ n0.

Now from the DLR equation (1.1), we get that, for all n ≥ 1, and any function g,

μ(g) =
∫
〈g〉ω�n;β dμ(ω).

Theorem 1.1 thus implies that, for some δ > 0 and uniformly in F�nξ -measurable
functions g,

μ(g) = An〈g〉+β + (1− An)〈g〉−β + Oβ

(
n−δ‖g‖∞

)
, (3.6)

with An =
∫

αn,ω dμ(ω). Applying this to the function g = σ0, we deduce that

μ(σ0) = (2An − 1)m�
β + Oβ(n−δ),

where we have introduced the spontaneous magnetization m�
β � 〈σ0〉+β . This shows

that

An =
m�

β + μ(σ0)

2m�
β

+ Oβ(n−δ).

Let us set α � (m�
β + μ(σ0))/2m�

β . Applying now (3.6) to the function g = f , we
see that, for all n > n0,

μ( f ) = α〈 f 〉+β + (1− α)〈 f 〉−β + Oβ(‖ f ‖∞n−δ).

Letting n tend to infinity, we conclude that μ( f ) = α〈 f 〉+β + (1− α)〈 f 〉−β . Since this

holds for any local function f , it follows that μ = αμ+β + (1− α)μ−β . ��
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3.4 Proof of Proposition 1.1

Let us consider the box �n = {−n, . . . , n}2 and the boundary condition ωi = +1 if
and only if i = (i1, i2) with i2 > 0 (Dobrushin boundary condition). We denote the
corresponding expectation by 〈·〉±

�;β .

The trick is to consider a local function f for which the expectation 〈 f 〉+β = 〈 f 〉−β =
0, since this trivializes the optimization over α.

Let fi (ω) = ω(0,i) − ω(0,i−1), and

F(ω) =
�C19n1/2∑

i=−�C19n1/2+1

fi (ω) = ω(0,�C19n1/2) − ω(0,−�C19n1/2),

with C19 a large constant, to be chosen below. Thanks to translation invariance of μ+
and μ−, 〈 fi 〉+β = 〈 fi 〉−β = 0, for all i , and thus 〈F〉+β = 〈F〉−β = 0. Let us denote the
only open contour by γ and its endpoints a and b. Let also

S =
{(

1
2 , j

)
∈ ��: | j | > �C19n1/2

}
,

We then have

〈F〉±�,β ≥ 〈F | γ ∩ S = ∅〉±�,β μ±�,β(γ ∩ S = ∅)− 2μ±�,β(γ ∩ S �= ∅).

Now, FKG inequality implies that

〈F | γ ∩ S = ∅〉±�,β ≥ 2m�
β,

while, using (A.1), (A.6) and Lemma A.1, we get

μ±�,β(γ ∩ S �= ∅) ≤ C20

∑
z∈S

√|a − b|√|a − z|√|z − b|e
−(τβ (a−z)+τβ(z−b)−τβ(a−b))

≤ C21√
n

∑
k≥�C19

√
n

e−κβk2/2n ≤ C22e−κβC2
19/2.

Since |F | ≤ 2, we deduce from the above, choosing C19 large enough, that

〈F〉±�,β ≥ 2m�
β(1− C22e−κβC2

19/2)− 2C22e−κβC2
19/2 > C23 > 0,

Now, F being a sum of 2�C19n1/2 terms, there exists an index j0 = j0(n) such that

〈 f j0〉±�,β >
C23

2�C19n1/2 > C24n−1/2,

for some constant C24 > 0.
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At this point, we have very little control on the location of the support of f j0 inside

�. To remedy this, let �
j0
n = (0, j0)+ {−�n/2, . . . , �n/2}2. Using DLR equation,

we can write (the averaging being over ω)

〈 f j0〉±�,β = 〈 〈 f j0〉ω
�

j0
n ,β
〉±�,β > C24n−1/2,

so that there exists an ω̃ = ω̃(n) for which

〈 f j0〉ω̃
�

j0
n ,β

> C24n−1/2.

This proves, albeit non-constructively, the existence of a constant C25 > 0 and a
sequence of boundary conditions (ωm)m≥1 such that, for all m large enough,

inf
α∈[0,1]

|〈 f 〉ωm
�m ,β − α〈 f 〉+β − (1− α)〈 f 〉−β | > C25m−1/2, (3.7)

where f (ω) = ω(0,1) − ω(0,0) and �m = {−m, . . . , m}2. ��
Remark 3.1 We actually expect that (3.7) is satisfied, for the same function f , with ω

given by Dobrushin boundary condition.

Appendix A: Some tools

In this appendix, we state, mostly without proof, properties and results that are used
in our analysis.

A.1 Surface tension

Let �n = (cos θ, sin θ) ∈ S
1. The surface tension τβ in direction �n is defined by

τβ(�n) � − lim
N→∞

cos θ

(2N + 1)
log

Zω�n
�N ;β

Z+
�N ;β

,

where the boundary condition ω�n is defined by ω�ni = 1 if (i, �n) ≥ 0, and ω�ni = −1
otherwise.

This limit is known to exist for all values of β. τβ is positive for all β > βc [20]
and is continuous (actually real analytic) as a function of �n [6].

It is useful to extend τβ to a function on R
2 by positive homogeneity, setting

τβ(x) � τβ(�nx )‖x‖2, where �nx � x/‖x‖2. When β > βc, the extended function is
a norm on R

2. Moreover, it satisfies the following sharp triangle inequality, which
follows from a combination of [23, Theorem 2.1] and [6, Theorem B]: for any β > βc,
there exists a constant κβ > 0 such that

τβ(x)+ τβ(y)− τβ(x + y) ≥ κβ (‖x‖2 + ‖y‖2 − ‖x + y‖2), ∀x, y ∈ R
2.

(A.1)
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A.2 Random-line representation

A subset A ⊂ Z
2 is said to be (simply) connected if

⋃
i∈A

(
i + [− 1

2 , 1
2 ]2

)
is (simply)

connected. Let � � Z
2 be simply connected. Let ω ∈ {−1, 1}Z2

be some boundary
condition. To a configuration σ compatible with this boundary condition, we associate
the set E(σ ) of all edges of the dual lattice (Z2)� � ( 1

2 , 1
2 ) + Z

2 separating a pair
i, j of nearest-neighbor vertices such that {i, j} ∩ � �= ∅ and σi �= σ j . The set of
edges E(σ ) can be decomposed into a families of self-avoiding lines by applying the
following deformation rules at each vertex of the dual lattice at which more than two
edges of E meet:

Each of these lines is called a contour of σ . Of particular interest to us are the
open contours �(σ ) = (�1(σ ), . . . , �M (σ )) of the configuration σ , i.e., the open
lines. Observe that each of those has its two endpoints on ∂��, the set of all ver-
tices of (Z2)� that are at Euclidean distance 1/

√
2 from both � and �c. The set

b(ω) ≡ {b1, . . . , b2M } of all endpoints of open contours is completely determined by
the boundary condition ω. The notation � ∼ b(ω) means that the set of open contours
� is compatible with b(ω) (i.e., the set of endpoints of � is b(ω)). We also say that
a family of open contours � is (ω,�)-compatible if there exists a configuration σ

in �, compatible with the boundary condition ω, such that � is the family of open
contours of σ . We also sometimes use the notation � : b→ b′ in place of � ∼ {b, b′}.

As a consequence of this particular choice of deformation rules, there is a natural
notion of path of vertices of Z

2: a sequence x1, x2, . . . , xm of vertices of Z
2 is an

s-path if, for all 1 ≤ i < m, either xi and xi+1 are nearest-neighbors, or they are
second-nearest-neighbors (i.e. at Euclidean distance

√
2 from each other) and oriented

NW–SE.
One can define [23, (2.10) and Lemma 6.2] nonnegative weights q�;β on families

of open contours in the box � in such a way that

Zω
�;β

Z+
�;β
=

∑
�∼b(ω)

q�;β(�) = 〈σb1 · · · σb2M 〉��;β�, (A.2)

where the dual box �� � {t ∈ (Z2)� : d(t,�) = 1/
√

2}, β� is defined through
tanh β� = e−2β , and 〈·〉��;β� denotes expectation with respect to the finite-volume
Gibbs measure in �� at inverse temperature β� with free boundary condition,

μ��;β�(σ ) = 1

Z��;β�
exp

⎛
⎜⎜⎝−β�

∑
{i, j}⊂��

‖ j−i‖1=1

σiσ j

⎞
⎟⎟⎠.
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The last identity in (A.2) is a manifestation of the self-duality of the 2d n.n.f. Ising
model.

The weights q�;β have a number of remarkable properties that make them very
useful in the analysis of contours. Here is a list of properties we use in this paper, with
precise references to where a proof can be found.

• Let i, j ∈ ∂��. Then [23, Lemma 6.6 and Prop. 2.4]

∑
�:i→ j

q�;β(�) ≤ e−τβ ( j−i). (A.3)

• We associate to an (ω,�)-compatible family of open contours the setF(�1, . . . , �n)

of all vertices of � whose spin value is completely determined by ω and these open
contours, i.e., the maximal set such that, if σ ′ is another configuration compatible
with ω such that �1, . . . , �n ⊂ �(σ ′), then σ ′i = σi , for all i ∈ F(�1, . . . , �n).
We set �(�1, . . . , �n) � �\F(�1, . . . , �n), and say that �1, . . . , �n partition
the box � into the connected components of �(�1, . . . , �n). We then have [23,
Lemma 6.4]

q�;β(�1, . . . , �n, �n+1, . . . , �m) = q�;β(�1, . . . , �n) q�(�1,...,�n);β(�n+1, . . . , �m),

(A.4)

for all (ω,�)-compatible family �1, . . . , �m ⊂ �(σ ) of open contours.
• Let b1, b2 be two disjoint subsets of even cardinality of ∂��. The weights satisfy

the following BK-type inequality [23, Lemma 6.5],

∑
�1∼b1,�2∼b2
(�1,�2)∼b1∪b2

q�;β(�1,�2) ≤
∑

�1∼b1

q�;β(�1)
∑

�2∼b2

q�;β(�2). (A.5)

• Let z ∈ ��; we write � : b → z → b′ when � : b → b′ and � � z. Then, as
follows from [23, Lemma 6.5] and [6, Theorem A],

∑
�:b→z→b′

q�;β(�) ≤ 〈σbσz〉��;β� 〈σzσb′ 〉��;β� ≤ C26(β)√‖z − b‖2‖z − b′‖2

e−τβ (z−b)−τβ (z−b′).

(A.6)

• Let b be a subset of even cardinality of ∂��, and b1, b′1, b2, b′2 four distinct vertices
of b. Let also A1 ⊂

{
� : b1 → b′1

}
and A2 ⊂

{
� : b2 → b′2

}
. It follows easily

from (A.2) and (A.4) that

∑
�1∈A1,�2∈A2,�

(�1,�2,�)∼b

q�;β(�1, �2,�) ≤
∑

�1∈A1,�2∈A2
(�1,�2)∼{b1,b′1,b2,b′2}

q�;β(�1, �2). (A.7)
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A.3 Spatial relaxation in pure phases

Another result that plays an important role in our analysis is the following exponential
relaxation result: let � ⊂ Z

2. Then [4,8], for any β > βc, there exists C27(β) > 0
such that, uniformly for any local function f with support S( f ) inside �,

∣∣∣〈 f 〉+�;β − 〈 f 〉+β ∣∣∣ ≤ ‖ f ‖∞ |S( f )| e−C27d(S( f ),�c). (A.8)

Notice that even though the authors of [4,8] rely on the exact solution to guarantee,
respectively, exponential decay of the truncated 2-point function for β > βc or expo-
nential decay of the 2-point function for β < βc, one can instead, in both cases, use
the positivity of surface tension for β > βc proved in [20] (in the first case, by proving
that the truncated 2-point function 〈σ0; σx 〉+β is bounded above by the probability that
0 and x are surrounded by a contour; in the second case, by using the fact that the rate
of exponential decay of 〈σ0σx 〉β is equal to the surface tension τβ(�nx ), by duality).

A.4 Finite-volume corrections to τβ

The next two lemmas provide informations on the finite-volume corrections to the
surface tension τβ and play a crucial role in our analysis.

The first lemma provides a lower bound for the ratio of partition functions in a
square box, when the endpoints are not both simultaneously close to one side of the
box (in which case, the prefactor would change). With slightly more work, this lower
bound can be replaced by full Ornstein–Zernike asymptotics, using a variant of [6]
similarly to what is done in [17].

Lemma A.1 Let β > βc. Then there exists a constant C28 > 0 such that, uniformly
as n→∞,

Z±(i, j)
�n;β

Z+
�n;β

≥ C28n−1/2 e−τβ( j−i),

uniformly in vertices i, j ∈ ∂��n such that the segment i j intersects the box
[−n/2, n/2]2.

Proof Using [23, Lemma 6.3], we can replace the weights q�n;β by their infinite-
volume counterparts qβ ,

Z±(i, j)
�n;β

Z+
�n;β

=
∑

γ :i→ j
γ⊂�n

q�n;β(γ ) ≥
∑

γ :i→ j
γ⊂�n

qβ(γ ),

where the condition γ ⊂ �n means that all edges of γ must have their endpoints in
��

n . We consider two cases.
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Case 1: the angle between the segment i j and each diagonal of the square �n is
greater than π/5.

In that case, i and j must be on opposite sides of �n and at a distance at least
n/4 from the two other sides. For definiteness, let us assume that i, j are on the two
vertical sides of the box. Let �n = {−n, . . . , n} × Z be the vertical strip of width
2n + 1 centered at 0. It follows from [23, Lemma 6.10] that∑

γ :i→ j
γ⊂�n

qβ(γ ) ≥ (1− o(1))
∑

γ :i→ j
γ⊂�n

qβ(γ ).

Now, the required bound follows from the Ornstein–Zernike asymptotics derived
in [17].
Case 2: the angle between the segment i j and one of the diagonals of the square �n

is smaller than π/5.
In this case, one can easily adapt the proof of Ornstein–Zernike asymptotics given

in [6]: taking a forward-cone (see the latter paper for definition) of sufficiently small
opening to ensure that it is contained in the cone {x = (x1, x2) ∈ R

2 : x1 ≥ 0, x2 ≥
0}, we see that the constraint that γ be �n-compatible only affects the left-most and
right-most irreducible pieces. This has no impact on the derivation in [6]. ��

When the endpoints i and j both lie too close to one of the sides of �n , the above
result does not apply (and is actually incorrect in general). It turns out that, for our
purposes in this paper, the following rough lower bound is sufficient.

Lemma A.2 Let β > βc. Then, for any 1/2 < ρ < 1, there exists a constant C29 =
C29(β) such that, for all i, j ∈ ∂��n,

Z±(i, j)
�n;β

Z+
�n;β

≥ e−C29nρ

e−τβ ( j−i).

Proof First, by (A.2),

Z±(i, j)
�n;β

Z+
�n;β

= 〈σiσ j 〉��
n;β� .

Let i ′, j ′ ∈ �n−nρ be the two vertices closest to i and j . Then, by the GKS inequality,

〈σiσ j 〉��
n;β� ≥ 〈σiσi ′ 〉��

n;β�〈σi ′σ j ′ 〉��
n;β�〈σ j ′σ j 〉��

n;β� .

On the one hand, it follows from the GKS inequality that

〈σiσi ′ 〉��
n;β�〈σ j ′σ j 〉��

n;β� ≥ e−C30(β)nρ

.

On the other hand, it follows from [23, Lemma 6.10] and our choice of ρ that

〈σi ′σ j ′ 〉��
n;β� = (1+ o(1)) 〈σi ′σ j ′ 〉β� ≥ C31‖ j ′ − i ′‖−1/2

2 e−τβ ( j ′−i ′),

123



A finite-volume version of Aizenman–Higuchi theorem 43

since the infinite-volume 2-point function admits Ornstein–Zernike asymptotics
[6, Theorem A]. It then follows from the continuity of τβ as a function of the direction
that

〈σi ′σ j ′ 〉��
n;β� ≥ e−C32(β)nρ

e−τβ ( j−i).

��
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