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Abstract The objective of the present study was to
characterize the metabolism of Clostridium thermolacti-
cum, a thermophilic anaerobic bacterium, growing con-
tinuously on lactose (10 g l�1) and to determine the
enzymes involved in the pathways leading to the for-
mation of the fermentation products. Biomass and
metabolites concentration were measured at steady-state
for different dilution rates, from 0.013 to 0.19 h�1.
Acetate, ethanol, hydrogen and carbon dioxide were
produced at all dilution rates, whereas lactate was de-
tected only for dilution rates below 0.06 h�1. The pres-
ence of several key enzymes involved in lactose
metabolism, including beta-galactosidase, glyceralde-
hyde-3-phosphate dehydrogenase, pyruvate:ferredoxin
oxidoreductase, acetate kinase, ethanol dehydrogenase
and lactate dehydrogenase, was demonstrated. Finally,
the intracellular level of NADH, NAD+, ATP and ADP
was also measured for different dilution rates. The
production of ethanol and lactate appeared to be linked
with the re-oxidation of NADH produced during gly-
colysis, whereas hydrogen produced should come from
reduced ferredoxin generated during pyruvate decar-
boxylation. To produce more hydrogen or more acetate
from lactose, it thus appears that an efficient H2 removal
system should be used, based on a physical (membrane)
or a biological approach, respectively, by cultivating
C. thermolacticum with efficient H2 scavenging and
acetate producing microorganisms.
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Introduction

Lactose, the main milk sugar, is available in large
amounts in milk and whey permeates rejected by dairy
industry. By screening various thermophilic anaerobic
bacteria, Clostridium thermolacticum (DSM 2910) was
found appropriate for the production of acetate from
lactose, to be used eventually as calcium magnesium
acetate, a non-corrosive salt for roadway de-icing (Tal-
abardon et al. 2000a).

However, when grown in batch culture on lactose,
C. thermolacticum produces not only acetate, but also
ethanol, hydrogen and carbon dioxide as by-products
during the exponential phase of growth. Afterwards a
shift of metabolism towards lactate production is
observed (Talabardon et al. 2000a; Collet et al. 2003). It
has also been shown that the overall production of
acetate increases when C. thermolacticum is cultivated in
the presence of hydrogen-scavenging microorganisms
(Talabardon et al. 2000b; Collet et al. 2003, 2005).

At the present time however, very little is known
about the metabolic processes in C. thermolacticum,
especially how lactose is metabolized into the different
end-products. Metabolic studies have been carried out
with other Clostridia, including the mesophilic C. acet-
obutylicum (Girbal et al. 1995), C. cellulolyticum
(Desvaux et al. 2001a), C. butyricum (Saint-Amans et al.
2001) and the thermophilic C. thermohydrosulfuricum
(Lovitt et al. 1988) and C. thermosuccinogenes (Sridhar
et al. 2000). The fermentation of different substrates by
these strains yields similar metabolites, usually acetate,
ethanol, lactate, H2 and CO2. The enzymes involved in
the formation of the end-products have been described
for all these bacteria, but no enzymatic study on
Clostridia able to degrade lactose has been carried out yet.
In contrast, the catabolism of lactose by Lactococcus lactis
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has been reviewed recently (Cocaign-Bousquet et al.
2002). After the cells take up lactose, it is split into
glucose and galactose. Once phosphorylated, the sugars
enter central metabolism via glucose-6-phosphate, which
follows the glycolytic pathway to pyruvate.

The objective of the present study was thus to char-
acterize the metabolism of C. thermolacticum growing
continuously on lactose and to determine the enzymes
involved in the pathways leading to the formation of the
fermentation products. Based on previous results ob-
tained under batch conditions, the bacterium was grown
on 29 mmol lactose l�1 (10 g l�1). The biomass and
metabolic pattern were monitored at steady-state for
different dilution rates. The presence of several key en-
zymes involved in the formation of end-products from
lactose has been shown, whereas the intracellular con-
centrations of several important cofactors have been
quantified under different conditions.

Materials and methods

Microbial species

The heterofermentative anaerobic bacterium Clostridium
stercorarium subsp. thermolacticum (C. thermolacticum)
DSM 2910 (Fardeau et al. 2001), formerly Clostridium
thermolacticum (Le Ruyet et al. 1985), was used in this
study. Stock cultures were maintained in minimal med-
ium containing lactose (Talabardon et al. 2000a). The
cultures were stored at 4�C and sub-cultured once every
month. The purity of the culture was routinely checked
by microscopy.

Culture conditions and analytical techniques

The medium was prepared as described by Collet et al.
(2004). It contained 29 mmol l�1 lactose (Merck), was
sterilized by filtration through a cartridge Opticap 4’’,
0.22 lm pore size (Millipore) into a sterile 50-litre tank
(Blefa), and then stored under nitrogen.

A 2-litre bioreactor (Biolafitte) was used for these
studies. It was autoclaved for 100 min at 121�C, prior
filling with fresh medium. To initiate anaerobic condi-
tions in the bioreactor, the medium was shortly sparged
with N2. The bioreactor was stirred at 100 rpm, and the
temperature was maintained at 58�C. Twenty millilitre
of cell suspension in the exponential phase of growth
were added as inoculum. The bacteria were grown in
batch for 24 h before the medium flow was started. For
each dilution rate, the chemostat was allowed to stabilize
until biomass, liquid and gaseous metabolites concen-
tration was constant. The culture volume was kept at
1.0 l by automatic regulation; the pH of the medium was
monitored online (Mettler-Toledo) and maintained at
7.0 by automatic addition of 2 M NaOH. Samples were
withdrawn from the reactor for absorbance readings at

650 nm and HPLC analysis. One unit of A650 was found
to be equivalent to 0.73 g l�1 cell dry weight for C.
thermolacticum.

Studies for glucose/galactose utilization were per-
formed in duplicate batch cultures, in 590 ml screw-
capped serum bottles, with 200 ml of medium and fitted
with gas-proof black butyl rubber septa under N2-CO2

atmosphere (80:20; 150 kPa) and non-controlled pH
conditions, in a constant temperature incubator (58�C,
100 rpm). Twenty millilitre of cell suspension in the
exponential phase of growth were added as inoculum to
each serum bottle.

Lactose, glucose, galactose, lactate, acetate and eth-
anol were identified and quantified by HPLC using an
ORH-801 column (Interaction) at 60�C and a differen-
tial refractometer ERC7517A (ERMA) at 45�C. Elution
was done by 5 mmol l�1 sulphuric acid at a flow rate of
0.6 ml min�1.

The quantity and quality of gas produced was
followed online as described by Collet et al. (2005).

Preparation of cell extracts

Samples for enzyme assays (15 ml) were withdrawn
anaerobically into oxygen-free serum tubes and collected
by centrifugation (9,000 · g, 4�C, 15 min). The pellet
was resuspended in 0.75 ml degassed buffer (0.1 M Tris-
HCl, 5 mM dithiothreitol (DTT, Fluka), 10% glycerol,
pH 7.6). Bacteria were destroyed by an ultrasonic dis-
rupter Vibracell 72434 (Bioblock) at 4�C for four cycles
of 30 s, interspaced by cooling period of 2 min, in an
anaerobic chamber. Cell debris were removed anaero-
bically by centrifugation (13,000 · g, 4�C, 10 min). The
cell-free extract was used for all enzyme assays. Protein
concentration was determined using a modified Lowry
Protein Assay (Pierce).

Enzymatic assays

Assays were carried out on cell-free extracts. Some
enzymatic assays were carried out at 37�C, to preserve
the activity of commercial enzymes used in these tests. In
such a case, they proved the presence of the enzyme but
did not reflect activities that could have been measured
at 58�C and could not be compared to in vivo metabolite
productivities measured. For enzymatic assays carried
out under anaerobic conditions, all reagent solutions
were prepared in distilled water, previously boiled and
sparged with nitrogen, then kept under N2 atmosphere.
All enzyme activities were determined in the physiolog-
ical direction. Each enzyme assay was done in duplicate.
The concentrations of components in the reaction mix-
tures (1 ml total volume) are given below.

Beta-galactosidase, modified from Miller (1972):
0.1 M Tris-HCl (pH 7.0), 2 mM DTT, 10 mM KCl,
5 mM MgCl2, cell extract. Start reaction with 100 ll
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o-nitrophenyl-b-D-galactopyranoside (ONPG; Sigma)
4 mg ml�1.

Glyceraldehyde-3-phosphate dehydrogenase was
coupled with aldolase under anaerobic conditions
(Vasconcelos et al. 1994): 0.1 M Tris-HCl (pH 8.1),
2 mM DTT, 5 mM KH2PO4, 20 mM KH2AsO4,
0.5 mM NAD+, 2 U aldolase (Sigma), cell extract. Start
reaction with 100 ll fructose-1,6-bisphosphate
(100 mM). To assess the effect of NADH/NAD+ ratio,
NAD+ concentration was kept constant.

Pyruvate:ferredoxin oxidoreductase was assayed un-
der anaerobic conditions (Vasconcelos et al. 1994):
0.1 M Tris-acetate (pH 7.8), 4 mM DTT, 5 mM
KH2PO4, 7 mM KH2AsO4, 5 mM sodium pyruvate,
0.1 mM acetyl coenzyme A (Sigma), cell extract. Sparge
carbon monoxide, and then start the reaction with
100 ll methylviologen at 20 mM (Sigma).

Lactate dehydrogenase (Sridhar et al. 2000): 0.1 M
Tris-HCl (pH 6.5), 1 mM fructose-1,6-bisphosphate
(Sigma), 0.25 mM NADH, cell extract. Start reaction
with 100 ll sodium pyruvate (100 mM). To assess the
effect of the NADH/NAD+ ratio, NADH concentra-
tion was kept constant.

Acetate kinase (Vasconcelos et al. 1994): 0.1 M Tris-
HCl (pH 7.2), 2 mM DTT, 3 mM MgCl2, 2 mM glu-
cose, 0.5 mM NADP+ (ICN), 1 U glucose-6-phosphate
dehydrogenase (ICN), 1 U hexokinase (ICN), 5 mM
acetyl-phosphate (Sigma), cell extract. Start reaction
with 100 ll ADP at 10 mM (ICN).

Ethanol dehydrogenase (Sridhar et al. 2000): 0.1 M
Tris-HCl (pH 6.5), 2 mM DTT, 0.3 mM NADH, cell
extract. Start reaction with 100 ll acetaldehyde
(100 mM).

Pyridine nucleotide reduction or oxidation was
monitored at 340 nm (e 340 nm=6.22 mM�1 cm�1), and
ONPG hydrolysis into galactose and ONP was mea-
sured at 420 nm (e 420 nm=4.5 mM�1 cm�1). For all
enzymes tested, the accuracy was ±5%.

Estimation of cofactors concentration

Samples for NADH and NAD+ determination (4 ml) or
ATP and ADP determination (3 ml) were withdrawn
quickly from continuous cultures by a peristaltic pump
and flash frozen in liquid nitrogen.

NAD+ was extracted with 4 M HCl (NADH de-
graded) and NADH was extracted with 10 M KOH
(NAD+ degraded). Before assay for NADH, this co-
factor was converted to NAD+ with lactate dehydro-
genase (ICN). Levels of NAD+ were determined by
fluorimetric enzyme assay, using ethanol dehydrogenase
(ICN), with a fluorimeter model F-2000 (Hitachi).
Excitation was at 340 nm and emission at 460 nm. ATP
and ADP were extracted with KOH. ADP was con-
verted to ATP by creatine phosphokinase (ICN). ATP
levels were measured by a luminescence assay using
firefly luciferase (Sigma) with a luminometer model 1250
(LKB Wallac, Turku, Finland). A known amount of

NAD+ (ICN), NADH (ICN) or ATP was added to the
assay as internal standard. For all cofactors measured,
the accuracy was ±10%.

Results

Production of biomass, acetate, ethanol and lactate

Lactose specific consumption rate, metabolite specific
productivity and biomass concentration were monitored
as a function of dilution rate (D), from 0.013 to
0.19 h�1. Specific productivity and consumption were
derived from Eqs. 1–4 presented in Table 1.

As shown in Fig. 1, cell dry weight (CDW) was
maximal at low dilution rate: 0.69 g l�1 at
D=0.028 h�1. It slowly decreased with increasing dilu-
tion rate down to 0.27 g l�1 at D=0.19 h�1. The specific
lactose consumption rate increased with dilution rate to
a maximum of 2.52 mmol lactose g�1 (CDW) h�1 at
D=0.13 h�1 and then decreased at higher dilution rate.
Acetate specific productivity followed the same ten-
dency: it peaked at D=0.13 h�1 with 3.16 mmol acetate
g�1 CDW h�1. For dilution rates >0.06 h�1, ethanol
and acetate were the main products, whereas lactate
accumulated significantly at D<0.06 h�1.

The yield coefficient of biomass increased with
increasing dilution rates from 5.4 to 21.1 g CDW per
mol lactose (Table 2). The yield coefficient of acetate
was between 1.0 and 1.3 mol mol�1 lactose. The maxi-
mal acetate volumetric productivity obtained was
1.37 mmol l�1 h�1 at D=0.105 h�1.

From results shown in Table 2, it came out that
ethanol was the main product in the liquid phase for all
dilution rates. The average mass fraction of carbon was
0.43 for acetate and 0.57 for ethanol. For all dilution
rates tested, the ratio Cacetate/Cethanol remained between
0.7 and 0.8. The mass fraction of carbon as lactate in-
creased with the decrease of the dilution rate: at
D=0.013 h�1, 32% of the carbon was recovered as
lactate. Consequently, the mass fraction of carbon as
ethanol and acetate declined, down to 0.40 and 0.28,
respectively. Glucose and galactose were found only at
low dilution rates: respectively 0.1 and 0.01 mmol l�1 at
D=0.028 h�1 and 0.32 and 0.75 mmol l�1 atD=0.013 h�1.

Table 1 Calculations for analysis of the carbon flow during lactose
fermentation by C. thermolacticum

Eq. Specific metabolic
flux [mmol (g CDW)�1 h�1]

Calculation

1 qlactose (S/X)D
2 qacetate (Cacetate/X)D
3 qethanol (Cethanol/X)D
4 qlactate (Clactate/X)D
5 qATP 2(2)+(3)+(4)
6 qNADH produced (2)+(3)+(4)
7 qNADH consumed 2(3)+(4)
8 qFd produced (2)+(3)
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The productivity of hydrogen was maximal for D values
between 0.04 and 0.10 h�1 (Table 2).

In order to check if the bacterium had any preference
for one of the monomers derived from lactose hydroly-
sis, C. thermolacticum, pre-cultured on 29 mmol l�1

lactose, was grown in batch culture on a mixture of
18 mmol l�1 glucose and 18 mmol l�1 galactose (Fig. 2).
It can be clearly seen that galactose was metabolized
preferentially until it was entirely consumed, whereas
glucose was only poorly degraded. The pattern of
products formed was similar to that obtained previously
for batch culture on lactose (Collet et al. 2003): acetate
and ethanol were produced in the exponential phase of
growth before metabolism was shifted towards lactate
production.

Enzymes involved in lactose catabolism

Clostridium thermolacticum degraded lactose into dif-
ferent end-products: acetate, ethanol, lactate, hydrogen
and carbon dioxide, whereas some glucose and galactose

accumulated at low specific growth rate. Thus, it was
assumed that lactose was transported and hydrolyzed
into glucose and galactose, further metabolized into
pyruvate via Embden-Meyerhof-Parnas (EMP) path-
way. Pyruvate should be the branching point towards
lactate and acetyl-CoA, whereas acetate and ethanol
would be generated from acetyl-CoA (Collet et al. 2003).
In this study, one key enzyme from each branch of the
possible lactose metabolism was measured. Enzymes to
be assayed were selected on the basis of previous studies
with other Clostridia (Jungermann et al. 1973; Church
et al. 1988; Lovitt et al. 1988; Guedon et al. 1999; Sri-
dhar et al. 2000; Saint-Amans et al. 2001).

Most of the tested enzymes had a substantial
activity at 37�C (Table 3). The specific activity of the
enzymes was similar at the three dilution rates tested,
except for lactate dehydrogenase (LDH), whose spe-
cific activity increased when dilution rate was
decreasing.

Additional tests were carried out at 58�C. The opti-
mal pH for both b-galactosidase and pyruvate: ferre-
doxin oxidoreductase was between pH 6.6 and 7.2. No
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Fig. 1 Metabolite specific
productivity, lactose specific
consumption rate and biomass
cell dry weight (CDW)
concentration for continuous
cultures of C. thermolacticum at
steady-state on 29 mmol l�1

lactose concentration in the
feed, pH 7.0: acetate (filled
triangle), ethanol (triangle),
lactate (cross), consumed
lactose (circle), biomass CDW
(filled circle). Results are
presented as mean values from
four independent experiments
(standard deviation < 17%)

Table 2 Fermentation parameters in continuous cultures of C. thermolacticum at steady-state

Parameters D [h�1]

0.013 0.028 0.040 0.058 0.082 0.105 0.130 0.150 0.190

YX/S [g CDW (mol hexose)�1] 10.84 13.51 15.14 17.37 18.95 22.33 25.75 32.50 42.19
w(C) acetate [mol mol�1] 0.28 0.30 0.36 0.43 0.42 0.42 0.43 0.44 0.44
w(C) ethanol [mol mol�1] 0.40 0.41 0.47 0.53 0.53 0.55 0.57 0.56 0.56
w(C) lactate [mol mol�1] 0.32 0.29 0.17 0.04 0.05 0.03 0.00 0.00 0.00
ratio Cacetate / Cethanol 0.68 0.74 0.76 0.81 0.80 0.76 0.77 0.80 0.80
R acetate [mmol l�1 h�1] 0.36 0.74 1.00 1.22 1.31 1.37 1.30 1.20 0.76
Yacetate/lactose [mol mol�1] 1.0 1.0 1.1 1.3 1.3 1.2 1.3 1.3 1.3
Ylactate/lactose [mol mol�1] 0.8 0.7 0.4 0.1 0.1 0.1 0.0 0.0 0.0
R carbon dioxide [mmol l�1 h�1] 1.22 2.60 3.28 3.77 3.94 4.52 4.03 4.05 3.42
R hydrogen [mmol l�1 h�1] 0.85 2.18 2.44 2.55 2.46 2.31 2.21 2.10 1.52
Carbon balance [%] 99 98 97 97 98 100 100 102 103
Redox balance [%] 95 95 93 94 95 97 98 101 101

Results are presented as mean values from four independent experiments (standard deviation <17%)
Mass fraction of carbon in acetate: wðCÞ ¼ 2cðCH3COOHÞ

2cðCH3COOHÞþ2cðC2H5OHÞþ3cðCH3COCOOHÞ
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b-galactosidase activity was detected in the culture
medium.

The effect of the ratio NADH/NAD+ on the glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH)
activity was tested. Maximum specific activity was
9.02 nkat mg�1 (100%), with 0.25 mM NAD+ and no
NADH in the assay. GAPDH specific activity decreased
with increasing ratio NADH/NAD+ down to
3.33 nkat mg�1 (37%) at a ratio NADH/NAD+ =0.5.

The optimal pH for lactate dehydrogenase was found
between pH 6.0 and 6.7. The effect of fructose-1,6-bis-
phosphate (FBP) on the activity of LDH was also
studied at 58�C. When 1 mM FBP was added, the spe-
cific activity was 3.98 nkat mg�1 (100%). The specific
activity of the enzyme decreased with decreasing
amounts of FBP: 1.51 nkat mg�1 (38%) at 0.05 mM
FBP and 0.68 nkat mg�1 (17%) in the absence of FBP.
The effect of the ratio NADH/NAD+ was also studied
on LDH at 58�C. Maximum specific activity was
4.14 nkat mg�1 (100%), with 0.25 mM NADH, and no
NAD+. The specific activity of LDH decreased with
decreasing ratio NADH/NAD+: 2.56 nkat mg�1 (62%)
for ratio NADH/NAD+ =0.5 down to 1.24 nkat mg�1

(30%) for NADH/NAD+ =0.05.

Energetic (ATP) and redox (NADH) balance

Two ATP are produced during hexose metabolism
through EMP pathway into 2 pyruvate, and one more
ATP is generated per acetate produced (Thauer and
Kroeger 1984). Given that acetate, ethanol and lactate
originated from pyruvate, it was possible to determine
the specific pyruvate formation rate (qpyruvate) and the
associated ATP specific production rate (qATP), calcu-
lated from acetate, ethanol and lactate specific produc-
tivities, as shown in Table 1, Eq. 5.

The stoichiometry of ATP generated per hexose
equivalent consumed (ATP/hexose) remained stable at
2.1 mol for all dilution rates tested (Table 4). As dilution
rate increased, the specific ATP production rate (qATP)
increased from 2.6 to approximately 10 mmol g�1

(CDW) h�1. The apparent energetic yield (YATP) rose
with increasing dilution rate. The pool of ATP and ADP
measured in the cells also increased with dilution rate
and the ratio ATP/ADP was more than doubled from
D=0.01 h�1 to D=0.08 h�1 (Table 5).

One NADH was generated for each pyruvate pro-
duced, one NADH oxidized for each lactate formed and
2 NADH oxidized for each ethanol generated. Ferre-
doxin was reduced during pyruvate decarboxylation into
acetyl-CoA and it could be reoxidised by hydrogen
production. Thus, the redox mediators’ balance could be
estimated from acetate, ethanol and lactate specific
productivity as shown in Table 1, Eqs. 6–8.

Both the NADH specific production rate (qNADH

produced) and consumption rate (qNADH consumed) in-
creased with dilution rate (Table 4). The difference
qNADH produced�qNADH consumed was always negative,
indicating that the NADH produced during lactose
catabolism was completely reoxidized during ethanol
and lactate formation. In order to compensate the deficit
in NADH, it is likely that some redox mediators were
rerouted from H2 formation towards NADH produc-
tion via ferredoxin:oxidoreductases.

The intracellular NAD+ and NADH concentrations
were determined: NADH concentration was very low
compared to NAD+ (Table 5). Even if the ratio
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Fig. 2 Biomass and metabolite
concentration for batch culture
of C. thermolacticum on a
mixture of 18 mmol l�1 glucose
and 18 mmol l�1 galactose
initial concentration, pH non-
controlled: glucose (square),
galactose (filled square), acetate
(filled triangle), ethanol
(triangle), lactate (cross),
biomass (filled circle). Results
are presented as mean values
from two independent
experiments (error < 15%)

Table 3 Specific enzymatic activities measured at 37�C in C. ther-
molacticum cell extract at steady-state

Enzyme Specific activity [nkat (mg protein)�1]a

D=0.013 h�1 D=0.028 h�1 D=0.082 h�1

Beta-galactosidase 1.7±0.2 1.2±0.2 1.7±0.3
Glyceraldehyde-3P
dehydrogenase

8.3±1.3 6.9±1.1 7.4±1.1

Pyruvate:ferredoxin
oxidoreductase

7.3±2.5 9.9±1.5 7.8±1.7

Lactate dehydrogenase 1.5±0.0 0.6±0.1 0.4±0.1
Acetate kinase 3.1±0.2 3.5±0.2 3.6±0.3
Ethanol dehydrogenase 0.6±0.1 1.0±0.3 0.7±0.2

Results are the mean of two independent experiments ± error
ankat=1 nmol s�1
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NADH/NAD+ increased somewhat with D, it remained
small. Therefore, it seemed that NADH was completely
reoxidised only by ethanol and lactate formation, and
that hydrogen formation was therefore not associated
with NADH reoxidation. As a consequence, hydrogen
should be formed exclusively during ferredoxin reoxi-
dation.

Discussion

The productivity of acetate and ethanol was directly
dependent on bacterial specific growth rate and lactose
consumption rate. In contrast, lactate appeared only at
dilution rates below 0.06 h�1, when lactose consumption
rate was low. This confirmed the results obtained pre-
viously in batch cultures (Talabardon et al. 2000a; Collet
et al. 2003). The shift of metabolism was however not
due to low remaining lactose: when C. thermolacticum is
growing on low lactose concentration in batch culture,
acetate and ethanol are produced, but almost no lactate
is formed. Therefore, a growth rate above 0.06 h�1

should be maintained to allow acetate production and
avoid lactate formation. The metabolism of C. ther-
molacticum was thus linked to the growth rate or phase:
acetate and ethanol were strictly growth-dependent,
whereas lactate was not. Similar results have been re-
ported for C. cellulolyticum growing on cellobiose

(Payot et al. 1999) and for C. thermohydrosulfuricum on
starch (Heitmann et al. 1996).

The presence of substantial b-galactosidase activity in
cell extracts, but not in the culture medium, indicates
that lactose was hydrolysed inside the cells. Except at
low dilution rate, none of the lactose moieties were re-
leased into the medium, suggesting that both were rap-
idly phosphorylated and metabolized. In other bacteria,
it has been observed that one of the monomers, generally
galactose, is excreted and thus promotes lactose uptake
(Hickey et al. 1986; Hutkins and Ponne 1991; Benthin
et al. 1994). C. thermolacticum is able to use either glu-
cose or galactose as sole carbon source for growth.
However in the presence of a mixture of both substrates,
in batch culture, diauxic growth was observed and
galactose was preferentially consumed. This observation
is uncommon although it has already been reported that
Azotobacter vinelandii consumes galactose at a higher
rate than glucose during the first phase of growth (Wong
et al. 1995). In general, bacteria consume glucose pref-
erentially over galactose, e.g. Klebsiella oxytoca
(Champluvier et al. 1989).

A high activity of GAPDH indicates that EMP
pathway with the associated NADH formation was used
for both sugars, for galactose probably after its con-
version to glucose-6-P via the Leloir pathway. The
activity of the enzyme was strongly affected by an in-
crease of the ratio NADH/NAD+, as reported for
C. thermohydrosulfuricum (Lovitt et al. 1988), C. acet-
obutylicum (Girbal and Soucaille 1994), C. cellulolyticum
(Payot et al. 1998) and L. lactis (Even et al. 1999). Thus
NADH could act as an inhibitor of glycolysis at the level
of GAPDH. Intracellular accumulation of NADH, due
to inefficient reoxidation, did slow down the metabolic
flux through glycolysis. As a consequence, substrate
metabolization decreased until NADH was reoxidised
via ethanol, lactate or H2 production.

Lactate was formed from pyruvate by lactate dehy-
drogenase and associated NADH reoxidation to
NAD+, even if the activity was low when tested at 37�C.
It has been reported that this enzyme looses 2/3 of
activity when measured at 37�C instead of 58�C for
C. thermosuccinogenes (Sridhar et al. 2000). LDH in
C. thermolacticum was also sensitive towards NADH/
NAD+ ratio, as reported for L. lactis (Garrigues et al.

Table 4 Calculations of energetic and redox balance for C. thermolacticum at steady state

Parameters D [h�1]

0.013 0.028 0.040 0.058 0.082 0.105 0.130 0.150 0.190

qATP [mmol (g CDW)�1 h-1] 2.6 4.3 5.5 6.9 9.0 9.8 10.4 10.0 9.1
ATP / hexose [mol mol�1] 2.13 2.07 2.07 2.08 2.08 2.07 2.06 2.17 2.03
YATP [g CDW mol-1] 5.1 6.5 7.3 8.4 9.1 10.8 12.5 15.0 20.8
qNADH prod [mmol (g CDW)-1 h-1] 1.96 3.23 3.97 4.84 6.28 6.84 7.26 6.92 6.33
qNADH cons [mmol (g CDW)-1 h-1] 2.24 3.61 4.45 5.34 6.96 7.74 8.20 7.69 7.04
qNADH prod�qNADH cons �0.28 �0.38 �0.48 �0.50 �0.68 �0.90 �0.94 �0.77 �0.71
qFd prod [mmol (g CDW)�1 h�1] 1.49 2.53 3.48 4.70 6.09 6.72 7.26 6.92 6.33

Values were calculated from the mean of three independent measurements

Table 5 Adenylate and pyridine nucleotide content measured in
cells of C. thermolacticum in continuous cultures at steady-state

D=0.013 h�1 D=0.028 h�1 D=0.082 h�1

NAD+ [lmol
(g CDW)�1]

17±2 32±1 23±4

NADH [lmol
(g CDW)�1]

0.5±0.4 3.0±0 3.8±1.6

Ratio NADH/NAD+ 0.03 0.09 0.17
ATP [lmol
(g CDW)�1]

0.64±0.07 1.22±0.06 2.19±0.22

ADP [lmol
(g CDW)�1]

5.41±2.35 6.85±1.68 8.14±1.88

Ratio ATP/ADP 0.12 0.18 0.27

Results are the mean of three independent measurements, with
standard deviation
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1997; Even et al. 1999). Fructose-1,6-bisphosphate, a
glycolytic metabolite, did act as an activator of LDH in
C. thermolacticum, like in other Clostridia (Germain
et al. 1986; Freier and Gottschalk 1987; Vancanneyt
et al. 1990; Sridhar et al. 2000). The accumulation of
fructose-1,6-bisphosphate, caused by a metabolic inhi-
bition, an increased intracellular NADH level, or a de-
creased intracellular pH, should thus promote LDH
activation.

The presence of pyruvate:ferredoxin oxidoreductase
indicates that pyruvate was decarboxylated into acetyl-
CoA, using ferredoxin as a cofactor, like reported for
other Clostridia (Uyeda and Rabinowitz 1971; Meinecke
et al. 1989; Vasconcelos et al. 1994; Sridhar et al. 2000;
Desvaux et al. 2001b). The maximal activity was found
at neutral pH, like for C. acetobutylicum (Meinecke et al.
1989). Thus a decrease in intracellular pH below 7.0
would decrease the activity of this enzyme and cause a
decreased metabolic flux to acetate and ethanol routes.

Furthermore, an efficient reoxidation of reduced
ferredoxin by H2 production is necessary for maximum
activity of pyruvate:ferredoxin oxidoreductase. Clos-

tridial hydrogenases are generally reduced in vivo by
ferredoxin transferring electrons from pyruvate:ferre-
doxin oxidoreductase (Church et al. 1988; Saint-Amans
et al. 2001; Vignais et al. 2001). Even if not determined
in the present study, we could assume that it would also
be the case for C. thermolacticum, since it has been
previously reported that 2 to 3 H2 are produced per
lactose consumed (Collet et al. 2004).

The detection of acetate kinase activity in C. ther-
molacticum confirmed the presence of the acetate branch
from acetyl-CoA and the supplementary ATP formation
associated to this pathway (Winzer et al. 1997; Lin et al.
1998; Sridhar et al. 2000; Desvaux et al. 2001a and b;
Saint-Amans et al. 2001).

Based on results from enzymatic tests and metabo-
lites analysis, a scheme for lactose metabolism was
proposed (Fig. 3), assuming the use of the Leloir path-
way for galactose conversion to glucose-6-P (Chen et al.
2002).

It has been previously suggested that H2 itself inhibits
its production and induces the production of ethanol
(Collet et al. 2003). In the present study, the ratio

Lactose

GAP

F16BP

BPG

PyruvateLactate

Acetyl-CoA

Acetaldehyde

Ethanol

Acetyl-P

Acetate

NADH

NAD+

ATP

ADP

Fd ox

Fd red

NADHNAD+

NADH

NAD+

ADP

ATP

CoA-SH

CO2

CoA-SH

CoA-SH

Pi

NADH

NAD+

11

12

14

13

15 16

+

G6P 

FdoxFdred

H+ H2

17

NADHNAD+

GlucoseGalactose

Fig. 3 Proposed metabolic
pathways of C. thermolacticum
with the following enzymes:
1 beta-galactosidase,
2 glyceraldehyde-3P
dehydrogenase,
3 pyruvate:ferredoxin
oxidoreductase, 4 lactate
dehydrogenase, 5 acetate
kinase, 6 ethanol
dehydrogenase, 7 hydrogenase

337



Cacetate/Cethanol remained constant, close to 0.8, for all
dilution rates. Hydrogen inhibition could also be
responsible for the low yield coefficient of acetate on
lactose. This value was about four times lower than the
theoretical yield: two acetate per hexose in other Clo-
stridia (Jungermann et al. 1973), thus corresponding to
four acetate per lactose. Ethanol formation, responsible
for the decrease in acetate formation was a consequence
of the inhibition of H2 production from NADH arising
from glycolysis (Thauer and Kroeger 1984).

It thus appears that the production of ethanol in
C. thermolacticum was the consequence of H2 accumu-
lation, enabling NADH to be reoxidised without the
involvement of NADH-ferredoxin oxidoreductase plus
hydrogenase system, which is inhibited by high H2

partial pressure (Stams 1994). Indeed experiments with
C. thermolacticum growing on lactose in continuous
culture, under efficient continuous removal of H2,
demonstrated that the production of ethanol can be
efficiently decreased and acetate productivity signifi-
cantly increased (Collet et al. 2005).

After pyruvate decarboxylation, the reduction of one
acetyl-CoA to one ethanol enabled the re-oxidation of 2
NADH, while one acetate was formed, thus allowing
generation of one extra ATP (Fig. 3). The results indi-
cate that the calculated specific NADH production
during glycolysis was lower than the specific NADH
consumption for ethanol or lactate production, at all
dilution rates tested. Intracellular NADH concentration
was always at least 5 times lower than NAD+ concen-
tration. This shows that NADH was fully re-oxidized
during ethanol and lactate formation. Apparently no H2

was formed from NADH, whereas all H2 produced
should come from reduced ferredoxin generated during
pyruvate decarboxylation. Therefore, it could be as-
sumed that some reducing equivalents were transferred
from ferredoxin to NAD+ and re-oxidized during eth-
anol and lactate formation, since this reaction is ther-
modynamically possible, but not used for H2

production.
The ATP and ADP pool increased with dilution rate

as did the ATP/ADP ratio and the ATP specific pro-
duction rate. More ATP was formed at higher dilution
rates, probably to sustain growth. The average value for
YATP was 10.6 g CDW per mol ATP and the average
value for ATP yield was 2.1 mol ATP per mol hexose
equivalent. Similar results have been reported for
Streptococcus faecalis grown anaerobically in a complex
medium containing glucose as energy source (Bauchop
and Elsden 1960). Besides, it was observed that the yield
coefficient for biomass CDW on hexose equivalents (YX/

S) increased with increasing dilution rate. These results
were in the same range as results from a continuous
culture of C. cellulolyticum degrading cellulose (Desvaux
et al. 2001a).

A metabolic shift, like the high lactate production
observed in this study, has been reported for L. lactis
(Russel et al. 1996; Garrigues et al. 1997; Cocaign-
Bousquet et al. 2002; Melchiorsen et al. 2002), C. cel-

lulolyticum (Desvaux et al. 2001a), C. acetobutulicum
(Girbal et al. 1995) and C. thermosuccinogenes (Sridhar
and Eiteman 2001). This shift is caused by a decreased
intracellular pH, high NADH levels, an inhibition of
acetate production or an activation of lactate produc-
tion.

An acetate accumulation in themediumat low dilution
rates would lead to its intracellular accumulation, causing
a decreased intracellular pH. It was shown, in this study,
that the pH optimum for pyruvate:ferredoxin oxidore-
ductase was around pH 7.0, whereas it was around pH
6.0–6.5 for lactate dehydrogenase. A decrease of the
intracellular pH would thus decrease the activity of
pyruvate:ferredoxin oxidoreductase. As a consequence,
an accumulation of glycolytic intermediates would occur:
among them, fructose-1,6-bisphosphate, an activator of
lactate dehydrogenase. A decreased pyruvate:ferredoxin
oxidoreductase activity would also decrease acetyl-CoA
production, thus lowering acetate and ethanol formation.
As a result, NADH reoxidation by acetaldehyde and
ethanol dehydrogenase should decrease and lead to
NADH accumulation; ATP formation by acetate kinase
was also lowered, causing a slow growth rate. NADHand
fructose-1,6-bisphosphate accumulation as well as a de-
crease of intracellular pH would result in the rerouting of
the carbon flow from acetate-ethanol fermentation to-
wards the production of lactate.

To produce more hydrogen or more acetate from lac-
tose, it thus appears that an efficient H2 removal system
should be used, based on a physical (membrane) or a
biological approach, respectively, by cultivating C. ther-
molacticum with efficient H2 scavenging and acetate pro-
ducing microorganisms (Talabardon et al. 2000b; Collet
et al. 2005). Alternatively, a genetic improvement would
be required to optimize acetate production from lactose.
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