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Abstract Potential of energy extraction from on-
flow inhomogeneity in spanwise direction was in-
vestigated theoretically. Trajectory optimization
was performed for a 5 meter span UAV with
morphing capability as well as without it. Results
show that energy extraction from inhomogeneity
in spanwise direction is of little practical relevance
compared to gust soaring. Morphing can be effec-
tively used for drag reduction and stabilization
while flying in a turbulent windfield.

Keywords Dynamic soaring · Trajectory
optimization · Windfield simulation

1 Introduction

Energy extraction from wind inhomogeneity has
been widely studied from a biological as well as
from an engineering point of view. Cases treated
include orographic wind [1], wind gusts [2] as well
as vertical wind shear [3]. Even extreme cases like
soaring in hurricanes were investigated [4].
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Using the example of the Knoller–Betz effect
it should be noted that the timeline of efforts
dedicated to examination and application of en-
ergy extraction shows gradual sobering as models
became more and more sophisticated. The first
very promising statements based on Lilienthals’
polars [5, 6] had to be corrected after introduction
of wake and instationary effects [7, 8] and exper-
imental investigations [9, 10]. Gust soaring was
found too challenging for a human pilot, but was
applied for a UAV [11]. The resulting gain was
by far not the one predicted originally by Knoller
and Betz. Thus results presented here should be
treated with care.

In this study the gust model will be refined
by adding onflow inhomogeneity in the spanwise
direction. Our goal is to investigate whether this
refinement would allow perceivable gain for a
plane with morphing capability.

2 Optimization Problem Setup

We solve a trajectory optimization problem to
extract energy for a glider flying forward with
negligible lateral shift. It is assumed that the wind
history is known to the optimizer in advance.
Effect of morphing is reduced to dynamic change
of the lifting coefficient distribution along the
wing.
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2.1 Dynamic Model

The following ground-based coordinate system
is employed: x-axis points ahead of the the air-
craft, y-axis points starboard and z is aligned with
the gravity vector. State variables are related to
the plane dynamics and can be described by a
4-component vector (vx(t), vz(t), P(t), φ(t))T . The
first two components are x- and z-components
of the speed vector. The last two components
denote rolling angular speed and roll angle. Effect
of the lateral shift and change of yawing angle
are neglected, whereas the pitching angle is in-
cluded into the control vector (considerable con-
trol authority of the empennage is assumed). In
aerodynamic computations we use body-based co-
ordinate system x′, y′, z′ having same orientation
and placed at the gravity center of the aircraft.

2.2 Target Functional and Constraints

We seek to maximize the target functional

J = 1
T

[
−mg

∫ T

0
vz(t) dt + m

2

(
v2

x(T) + v2
z(T)

)]
(1)

under initial and terminal boundary constraints:

vx(0) = 0 vx(T) ≥ 0

vz(0) = 0 vz(T) ≤ 0

P(0) = 0 P(T) = 0

φ(0) = 0 φ(T) = 0

θ(0) = 0 θ(T) = 0,

(2)

where the maneuver duration T can be selected
between 3.5 and 80 s.

Separate optimizations were done for a plane
that can use dynamic morphing and for an opti-
mized fixed wing plane. The latter case shall be
referred to as “conventional” or “non-morphing”.
Fixed parameters are plane mass, rolling mo-
ment of inertia, wing area S and the viscous drag
coefficient. Wing taper can be varied linearly with
a limitation on the shortest chord. Twist for the
conventional plane is an orthogonal sum of two
components: the first one is elliptically distributed
and the second one takes values between −1◦ and
1◦ at N = 19 equidistantly spaced locations. Of all
environmental parameters only the average wind-

speed U can be chosen by the optimizer between
3.0 m/s and 25 m/s.

Optimizer can define the dynamics of control
variables by choosing them at M = 39 equidis-
tant time instants in (0, T). Morphing dynamics
is controlled at the same N points as the twist
and is reduced to a parameter called morphing
angle of attack measured in grad. We assume
that its sum with the aerodynamic pitch is linearly
related to the lifting coefficient. Rate of change
of the parameter is bounded by 5.0◦/s. For the
non-morphing wing case, ailerons are controlled
to stabilize the roll angle. The pitching angle is
controlled for both cases with the rate of change
|θ ′(t)| bounded by 8◦/s.

2.3 Turbulence Model

It is assumed that the windspeed vector is always
pointing in the x-direction and depends only on
x and y coordinates. Following [12] its turbulent
component u is modeled by a trigonometric ex-
pression with K = 100 terms:

u(x, y) = U +
K∑

i=1

ûi cos(κi y + ψix + ϕi). (3)

In this section we shall define the expressions
for the (deterministic) numbers κi as well as for
the (independently randomly chosen) numbers ûi,
ψ

(1)

i and ϕi.
We start by choosing points 0 = d0 < . . . di <

di+1 < . . . dK+1 in the wavenumber space. Dif-
ference to the usual modeling procedure is that
in our case one has to model a big portion of
the spectrum and the points have to be placed
accurately. Eddies with lengthscale of a typical
wingspan of a UAV are much smaller than the
integral length scale. Energy spectrum shows the
usual “5/3 behavior” in the inertial subrange [13]
and due to its steepness one has to account
for very large wavenumbers in order that the
UAV would perceive the turbulence as an inho-
mogeneity in the spanwise direction. To achieve
this task with limited amount of modes an inho-
mogeneous mesh was designed empirically with
points {di}K+1

i=0 being divided into three groups.
As in [12] first 5 points are placed equidistantly
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so that
∫ d5

0 E(κ) dκ∫ dK+1
0 E(κ) dκ

= 0.6. The second group con-

tains 50 points which are distributed such that∫ d55
0 E(κ) dκ∫ dK+1

0 E(κ) dκ
= 0.95 and

∫ di+1

di
E(κ) dκ is constant for

each 5 < i < 55. The last 40 points are placed
using the same principle to cover the last 2 % of
the energy spectrum.

The Fourier modes are normally distributed
zero mean random variables with variance defined
by the turbulent energy spectrum E:

〈û2
i 〉 = 2

∫ ∞
0 E(κ) dκ∫ dK+1

0 E(κ) dκ

∫ di+1

di

E(s) ds. (4)

For each 1 ≤ i ≤ K wavenumber κi is the mid-
points of [di, di+1]. Distributions of ψi and ϕi will
be defined by fitting the correlations in two direc-
tions [13]:

〈u(x, y + r)u(x, y)〉 ≈ 〈u2〉g(r)

〈u(x + r, y)u(x, y)〉 ≈ 〈u2〉 f (r), (5)

where g(r) approximates 1
〈u2〉

∫ ∞
0 E(κ)cos(κr) dκ

and f (r) satisfies

g(r) = f (r) + 1
2

r f ′(r). (6)

By solving Eq. 6 we find that ψi should have the
probability density function

P[ψi](s) = 1
κi

[
rect

(
s
κi

)
− tri

(
s
κi

)]
, (7)

where rect and tri are rectangular and triangular
hat-functions, respectively, having support [−1, 1]
and reaching value 1 at zero. To diminish de-
pendence of left-hand side in Eq. 5 on coordi-
nate (x, y), random numbers ϕi are chosen to be
normally distributed with significant variance and
zero mean, such that the characteristic functions
are negligible at one.

2.4 Aerodynamic Model

The aerodynamic model is based on the quasi-
stationary lifting line theory [14] with modifi-
cations to account for weekly inhomogeneous
incompressible onflow. When modeling aerody-
namics for the morphing case, solution of the
Prandtl equation was omitted to save computa-
tional time.

An equidistant mesh {yi}256
i=0 with segment cen-

ters {yi−1/2}i=256
i=1 is introduced along the lifting line.

All calculations are made in the segment cen-
ters, indices are used to discern approximations
from original physical quantities. Model delivers
approximation to aerodynamic force distribution
{F̄i}256

i=1 so that the total aerodynamic force equals∑
i F̄i.
We assume that the wing is affected by lift,

induced drag and the viscous drag. Lift and the
induced drag are essentially defined by the onflow
velocity, attached and trailing vorticity. Vorticity
is spatially organized as a system of horseshoe
vortices assigned to each segment [yi−1, yi], i =
1, . . . , 256 with vorticity lines stretching infinitely
far away parallel to the x′-axis.

To obtain the vorticities {�i}256
i=1 associated with

the horseshoe vortices, we need to know onflow
speed, profile depth and lifting coefficient at the
segment centers. Onflow speeds ū∞

i are obtained
by using frozen turbulence approximation [13]. As
it turned out that vx have small variations for the
resulting trajectory, one can simplify further:

ū∞
i = −

⎛
⎝vx(t)

0
vz(t)

⎞
⎠ −

⎛
⎝u(Ut, y)

0
0

⎞
⎠ . (8)

Profile depths di depend on the taper determined
by the optimizer. Lifting coefficient is assumed to
be linearly dependent on total onflow angle αaero.
The latter is assumed to be sum of the onflow pitch
and the morphing angle. Morphing angle at each
segment center is defined by interpolation from
the N points where it is controlled. The vorticity
is approximated as

�i = 0.5di|ū∞
i |c′

aα
aero
i , (9)

where c′
a is the inclination of the linear part of

the lifting polar. By means of the Kutta-Joukowski
theorem [14] lift distribution can be defined using
a vector product:

F̄ lift
i = ρ�i[ū∞

i, j, (0, 1, 0)T ]. (10)

Viscous drag force distribution acting on a wing
segment is approximated by

F̄visc
i = 0.5ρdi(yi − yi−1)cvd|ū∞

i, j|ū∞
i, j, (11)
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where the viscous drag coefficient cvd = cvd(Rei,

αaero
i ) depends on the chord-based Reynolds num-

ber Rei = |ū∞
i |di

ν
and on the total onflow angle

αaero
i . This dependence is modeled using the data

for airfoils optimized in course of the CHIRP
project [15] and can be seen in Fig. 1. Here, viscous
drag coefficients are presented depending on two
variables: lifting coefficient and angle of attack
of the onflow. Two colored lines on the argu-
ment plane are the boundaries where stall is very
likely to occur. The data is presented for Re =
7 · 105. For smaller Reynolds numbers the viscous
drag is additionally amplified: cvd(Rei, α

morph
i ) =

c(Rei)cvd(7 · 105, α
morph
i ) where coefficient c is

presented in the Fig. 2.
It is assumed that the tail is not affecting the

aerodynamics of the plane and the fuselage con-
tributes only via viscous drag:

F̄fus
visc. drag. = ρ

2

(
cfus

vd (Re) + c̃fus
vd (Re)|αfus|3

)
S|ū∞

i, j|ū∞
i, j, (12)

where αfus is the fuselage angle of attack. Viscous
drag coefficients are additionally increased for
decreasing chord-based Reynolds numbers in the
same way as for the wing.

Modeling of stall is reduced to specification of
conditions where it is likely to occur and to avoid-
ance of those for the resulting trajectory. Viscous
drag coefficient is increased dramatically if strong
separation is assumed so that such state becomes

Fig. 1 Viscous drag coefficient

Fig. 2 Reynolds dependence of cvd(Rei, α
morph
i )

unattractive for the optimizer. Occurrence of stall
is related solely to total onflow angle αaero and to
the aerodynamic pitch with boundaries presented
in Fig. 1.

Influence of the inhomogeneity is accounted
for by eventually making these boundaries more
stringent. For the morphing case we use the ap-
proach of Vandrey [16]. If one compares Prandtl
equation cited in [16] with its pendant for the
homogeneous case, it follows, that the extremi-
ties for the angle of attack should be multiplied
with the coefficient (1 + 2(ū∞

i − < ū∞ >))−1. Here
< ū∞ > is the onflow average over the wingspan.
This might lead to very pessimistic estimates and
is assumed to give correct results only when (ū∞

i −
< ū∞ >) is small. Another treatment of onflow
inhomogeneity is due to Bausch [17] and it results
in a model which would not make changes to the
bounds and is applied when modeling conven-
tional aircraft. Comparison made in [18] indicates,
that no model is convincingly better, than another.

Induced drag originates from downwash ūdw

calculated at yi, j−1/2 using the Biot–Savart law:

F̄ ind. drag
i = ρ�i

[
ūdw

i , (0, 1, 0)T
]
. (13)

Practically calculation of the induced drag is made
by multiplication of the vorticity vector by a down-
wash matrix. The latter has the Toeplitz property
which allows to do matrix-vector multiplications
by Fast Fourier Transform and save computa-
tional time [19, 20]. To make optimization faster
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we abstain from calculation of the induced angle
for the morphing case: estimation of the real an-
gles of attack needed to obtain the desired values
of �i can be done aposteriorily. Of course, it can
than happen that the resulting angle will be in
the stall region, but this situation did not happen
on practice. Besides, the evidence in [21] advises
that the presence of downwash can broaden the
region of allowed angles of attack. In case of con-
ventional airplane the Prandtl equation is solved;
inverse of the downwash matrix is stored before
the start of the optimizations with its bisymmetric
structure being taken into account. Experiments
have shown, that for the matrix dimensions in
question this is faster, than to use specialized al-
gorithms for Toeplitz matrix inversion. Wake roll-
up is not modeled: analysis in [22] suggests that it
would have only minor effect.

Aerodynamic force distribution F̄i = F̄ lift
i +

F̄ ind. drag
i + F̄visc

i , i=1, . . . , 256 defines the moments
acting on the plane M̄ = ∑

i[(0, yi−1/2, 0)T , F̄i].

3 Results

Optimization was done with CAMTOS algorithm
from GESOP package developed by ASTOS So-
lutions. Collocation method was used with mesh
dividing [0, T] into M + 1 = 40 equidistant seg-
ments. Temporary change of control between
mesh points was approximated by a piecewise lin-
ear function. For the state variables cubic splines
were used. The state is thus not a solution to
the governing ODE, but an approximation to
it. Making it precise at a number of collocation
points is one of the goals of the optimization. Col-
location methods have an advantage in speed over
shooting methods, but may deliver an inaccurate

Table 1 Model parameters

Parameter Value

Wingspan 5 m
Mass m 5 kg
Rolling moment of inertia 10 kg · m2

Wing area 1.875 m2

Smallest allowed chord 0.2 m
cfus

vd 0.002 for large Re
c̃fus

vd 0.0004 for large Re

Table 2 Trajectory parameters, wing morphing case

J U T Smallest
chord

−15.21 W 5.13 m/s 5.69 s 0.26 m
−13.97 W 8.68 m/s 7.55 s 0.27 m
−16.56 W 7.57 m/s 8.30 s 0.27 m

solution. It was observed, for instance, that if for
the speed at which the plane flies through the
frozen turbulence in Eq. 8 the real speed of the
plane would be taken into account, the accuracy
with mesh chosen would not be sufficient.

We have done optimizations for wind approxi-
mated by Eq. 3 for two different sets of parame-
ters. The plane model is the same in both cases;
the parameters are shown in Table 1. First, we
modeled wind with E defined by Solari in [23]
with surface roughness of 1.5 and shear velocity
of 3.4 m/s (Table 2). Optimizations were done for
three turbulent wind realizations, their statistics
for mean and 68.2 %-confidence interval over the
wingspan are plotted in Figs. 3, 4 and 5.

To show the main dependencies without aber-
rations caused by problems with optimization, we
have chosen an atmospheric model with smaller
amount of modes (Table 3); results are listed in
Table 4. Those show that for the wing morph-
ing case spacial inhomogeneity does not reduce
the energy loss. Comparison of the two columns
suggests that morphing can be effectively used

Fig. 3 Turbulent wind component the first experiment



88 J Intell Robot Syst (2013) 69:83–89

Fig. 4 Turbulent wind component for the second experiment

Fig. 5 Turbulent wind component for the third experiment

Table 3 Wind
parameters

Parameter Value

K 1 or 2
{u1, u2} {2.0, 0.5}
{κ1, κ2} {0.0, 0.63}
{φ1, φ2} {0.0, 0.0}
ψ1 0.021
ψ2 0.05 or 0.1

Table 4 Results artificial wind model

Parameters J, morphing J, non-morphing

K = 1 −13.27 W –
K = 2, ψ2 = 0.05 −13.46 W −16.55 W
K = 2, ψ2 = 0.1 −13.43 W −18.07 W

for drag minimization. But if we consider wider
palette of wing planforms and broaden the bound-
aries for non-elliptic twist, the gap between results
for two plane configurations will further de-
crease, this is especially true for the homogeneous
atmosphere.

4 Conclusions and Further Work

As integral lengthscales of the atmospheric turbu-
lence exceed 50 m, the energy extraction process
does not benefit much from the inhomogeneity in
the spanwise direction. Moreover, the timescales
might not allow the plane to react even under
the assumption that the whole wind history is
known in advance. Additional complication is that
the maneuvers leads to larger drag losses than
for the optimal gliding case; not least because
we impose boundary conditions 2 and consider
small durations; it was shown in [24] that under
such conditions the trajectory is not dictated by
the point of optimal lift to drag ration. Though
comparison with fixed-wing aircraft for turbulent
atmosphere gives reasons to assert that morphing
can effectively reduce drag losses. Our next goal is
to further study condition granting energy gain by
quantifying wind inhomogeneity for artificial at-
mospheric model and simplified plane dynamics.
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