
Abstract Malignant mixed Müllerian tumours (malignant 
mixed mesodermal tumours, MMMT) of the uterus are 
metaplastic carcinomas with a sarcomatous component 
and thus they are also called carcinosarcomas. It has now 
been accepted that the sarcomatous component is derived 
from epithelial elements that have undergone metaplasia. 
The process that produces this metaplasia is epithelial to 
mesenchymal transition (EMT), which has recently been 
described as a neoplasia-associated programme shared 
with embryonic development and enabling neoplastic cells 
to move and metastasise. The ubiquitin proteasome system 
(UPS) regulates the turnover and functions of hundreds of 
cellular proteins. It plays important roles in EMT by being 
involved in the regulation of several pathways participating 
in the execution of this metastasis-associated programme. 
In this review the specifi c role of UPS in EMT of MMMT 
is discussed and therapeutic opportunities from UPS ma-
nipulations are proposed.
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Introduction: malignant mixed Müllerian tumour
as a metaplastic carcinoma

Malignant mixed Müllerian tumours (MMMTs), also re-
ferred to as endometrial carcinosarcomas or malignant 
mixed mesodermal tumours, are neoplasms with a debated 
histogenesis in the past. Currently evidence from various 
studies points to an epithelial histogenesis with extensive 
metaplasia that is seen histologically as a sarcomatoid ele-
ment. Most commonly the epithelial component is serous 
followed by endometrioid while the most common sarco-
matoid component is stromal and less commonly leiomyo-
sarcoma or heterologous elements such as rhabdomyosar-
coma, osteo-, chondro- or liposarcoma [1].

The presence of two different elements, epithelial and 
sarcomatous, had initially prompted various theories for 
its pathogenesis. The collision theory put forward the pres-
ence of two concomitant distinct malignancies while two 
other non-mutually exclusive theories, the stem cell (also 
called combination theory) and the metaplastic monoclonal 
theory (also called conversion theory), argued for a com-
mon origin of the two components, either from a pluri-
potent endometrial stem cell that can create both or from 
the transformation of part of the epithelial component to 
morphologically sarcomatous areas. The fact that in some 
cases the sarcomatous element is heterologous suggests 
that the metaplastic process is associated with the neoplas-
tic process and is not part of the reactivation of a pluripo-
tent potential in a normal resident stem cell. This may be 
more consistent with the metaplastic theory rather than 
the stem cell theory. Nevertheless it remains possible that 
the initiating lesion takes place in an epithelial stem cell. 
CD133+ stem cells have been identifi ed in MMMTs [2]. In 
view of the role of EMT in MMMT (see next section), it is 

I.A. Voutsadakis (�)
Centre Pluridisciplinaire d’Oncologie
Centre Hospitalier Universitaire Vaudois
Bugnon 46
Lausanne 1011, Switzerland
e-mail: ivoutsadakis@yahoo.com

Clin Transl Oncol (2012) 14:243-253
DOI 10.1007/s12094-012-0792-4

E D U C AT I O N A L  S E R I E S  B l u e  S e r i e s

Epithelial to mesenchymal transition in the pathogenesis of uterine
malignant mixed Müllerian tumours: the role of ubiquitin proteasome 
system and therapeutic opportunities

Ioannis A. Voutsadakis

Received: 24 December 2011 / Accepted: 20 January 2012

ADVANCES IN TRANSLATIONAL ONCOLOGY



244 Clin Transl Oncol (2012) 14:243-253

important to note that the stem cell phenotype is associated 
with EMT [3].

Stem cell and/or metaplastic origin of MMMT are sup-
ported by experimental data arguing for a common initiat-
ing source of the two components. Intuitively this is also 
more probable whereas two neoplasms in the same patient 
and organ would be unlikely. Epidemiologic data show that 
MMMT shares risk factors such as obesity and nulliparity 
with endometrial carcinoma [4], a fact that may imply a 
common pathogenesis. MMMT natural history with initial 
metastases through lymph nodes mimics carcinoma. In 
contrast, uterine sarcomas spread through haematogenous 
metastases, commonly to the lung [5, 6].

The common origin of the two components is supported 
by various experimental studies. An in vitro evaluation of a 
MMMT cell line and clones derived from it showed stable 
expression of epithelial markers as well as vimentin and 
electron microscopy showed that even spindle shaped cells 
retained some epithelial characteristics [7]. In a study of 
epithelial and sarcomatous clones of a MMMT cell line, 
only the epithelial clone could produce both morphologies 
in culture while the sarcomatous clone could give rise to 
only sarcomatous elements [8]. Similarly experiments of 
this epithelial clone of MMMT cells xeno-transplanted to 
mice showed that these cells could give rise to tumours 
with both components in vivo [8]. Metaplastic carcinomas 
of other sites such as the breast are also of monoclonal ori-
gin [9, 10].

Epithelial to mesenchymal transition in MMMT

Epithelial to mesenchymal transition (EMT) is a phenom-
enon that takes place in normal development where cells of 
epithelial layers lose their attachment to their neighbouring 
cells, acquire a fibroblast-like morphology and become 
motile to populate other structures during organogenesis 
and histogenesis in the foetus. In carcinogenesis, a patho-
logic EMT allows cancer cells to become invasive at the 
tissue level and subsequently metastasise [11].

Evidence that MMMT represents a metaplastic carci-
noma of the endometrium with extensive EMT is comple-
mented by morphologic observations in a sub-set of en-
dometrial carcinomas mainly of low grade, which, at the 
periphery, possess glands of a particular morphology called 
MELF (microcystic, elongated and fragmented) [12, 13]. 
These glands, as their name denotes, are deformed, elon-
gated and fragmented, and display microcystic elements 
probably secondary to fragmentation, which creates non-
communicating lumens resembling small cysts. Immuno-
histochemically they partially lose expression of ß-catenin 
and hormonal receptors for oestrogens and progesterone, 
while they retain cytokeratin AE1/AE3 and CK7 expres-
sion. Their morphology and immunohistochemical profi le 
suggest that MELF represent a form of EMT. It is of inter-
est that some adenocarcinomas of uterine endocervix are 

characterised by a similar phenomenon, with attenuated 
glands, sparse clusters of cells or single cells at the periph-
ery showing decreased ß-catenin and E-cadherin staining 
[14]. 

Endometrial cancer cells extracted from clinical sam-
ples exhibit sub-populations with stem cell-like properties 
that are called side populations and have the ability to 
effl ux the fl uorescent dye Hoechst 33342 due to their ex-
pression of transporter protein ABCG (also called BCRP1, 
breast cancer resistance protein 1) [15, 16]. Sub-popula-
tions with the same properties derived from an endometrial 
cancer cell line have the ability to grow more aggressively, 
are more mobile than the rest of the cells, and form tu-
mours in mice that display both epithelial and sarcomatous 
components staining for mesenchymal markers vimentin 
and -smooth muscle actin and arguing for a potential for 
dual differentiation in neoplastic epithelial endometrial 
stem cells [17]. Mesenchymal cells were confi rmed to be 
derived from the xenograft through an EMT and produce 
their own stroma. Isoforms of the stem cell marker CD44, 
the hyaluronan receptor, are over-expressed already in 
endometrioid carcinomas compared with normal endome-
trium [18].

Thus it appears that EMT is already present in low-
grade endometrioid endometrial carcinomas [19] and be-
comes more prominent in higher grade, where the glands 
of normal morphology disappear, with MMMT represent-
ing the most advanced grade of the spectrum presenting 
frank areas of sarcomatous morphology.

The ubiquitin proteasome system and EMT

Post-translational modifi cations of cellular proteins such 
as phosphorylation, methylation and acetylation play an 
important role in cellular functions. Ubiquitination is a 
post-translational protein modifi cation referring to the at-
tachment of the small protein ubiquitin to a lysine residue 
of a target protein. This modifi cation is more versatile 
than other post-translational modifi cations because sev-
eral ubiquitin molecules can be added to the fi rst, creating 
chains of ubiquitin on the target proteins that modify the 
signal [20]. In addition, the ubiquitin molecule possesses 
seven lysine residues, all of which can serve as attach-
ment sites for this addition of subsequent ubiquitins. 
Resulting chains have different conformations and lead 
to various outcomes [21]. A prominent place among these 
outcomes is occupied by recognition of the ubiquitinated 
protein by the proteasome and degradation. Recognition 
by the proteasome is effectuated after a chain of at least 
four ubiquitins have been attached to the target protein 
through lysine 48. Sometimes chains of lysine 11-at-
tached ubiquitin may also be recognised by the protea-
some [22]. In contrast, ubiquitin attached through lysine 
63 plays roles in other functions such as endocytosis, 
transcription, DNA repair and degradation through the 
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lysosome. Ubiquitination is executed in a well described 
cascade of enzymatic reactions mediated by three types 
of enzymes (Fig. 1): ubiquitin activating enzymes or E1s 
(two known enzymes in humans), ubiquitin conjugat-
ing enzymes or E2s (about 30 in humans) and ubiquitin 
ligases or E3s (several hundred in human cells). Specifi c 
pairs of E2s and E3s decide what type of ubiquitin attach-
ment will be executed [23]. Ubiquitination, similarly to 
other post-translational modifi cations, is reversible and 
there are fi ve families of de-ubiquitinating enzymes that 
perform this function [24].

The proteasome, a barrel-shaped multi-protein structure 
with a lumen residing both in the cytoplasm and the nucle-
us, has two distinct parts: a central part called 20S protea-
some or core particle (CP), where the enzymatic activities 
executing proteolysis reside, and a peripheral part covering 
one or both ends of the CP, called 19S proteasome or regu-
latory particle (RP). RP sub-units function in ubiquitinated 
target protein recognition, denaturing, de-ubiquitination 
and transfer to the CP for degradation. Three enzymatic 
functions (trypsin-like, chymotrypsin-like and caspase-like) 
residing in distinct sub-units of CP result in the production 
of fragments of 4–14 amino acids [25].

The ubiquitin proteasome system (UPS) regulates all 
processes that are involved in carcinogenesis, among them 
invasion and metastasis. EMT, the process that endows 
neoplastic cells with invasive and metastatic potential, is 
intimately interwoven with other neoplastic processes, 
being served by several common pathways, several of 
which are regulated by UPS [26]. In the next section EMT 
pathways pertaining to MMMT pathogenesis will be dis-
cussed.

Common molecular lesions in MMMT: role in EMT 
induction and regulation by UPS 

Epithelial endometrial carcinomas are divided into two 
general types, called I and II or endometrioid and non-en-
dometrioid respectively [27]. Type II carcinomas are most 
commonly of papillary serous or clear cell histology and 
some authors argue that poorly differentiated endometrioid 
carcinomas should be included with type II because they 
display similar immunohistochemistry and similar prog-
nosis [28]. Endometrioid or type I endometrial carcinomas 
commonly display activating mutations of ß-catenin and 
disabled PTEN and less commonly K-ras activation (15–
30%), Her2 activation (10–20%) and p53 loss of function 
(10–20%). Type II or non-endometrioid endometrial can-
cers are most commonly of serous or clear cell histology 
and have p53 disabling in 90% of cases. Her2 activation is 
present in a similar percentage of cases compared with type 
I carcinomas but PTEN inactivation and K-ras activation or 
ß-catenin mutations are rare. MMMTs present lesions in 
common with both type I and II endometrial carcinomas, 
with p53 inactivation and ß-catenin pathway activation 
being the most common [29, 30]. In addition, C-myc gene 
amplifi cation or polysomy of chromosome 8q appears to 
be a common lesion in uterine MMMTs and ovarian carci-
nosarcomas [31]. Two other genes frequently amplifi ed in 
MMMTs are transforming growth factor ß1 (TGFß1) and 
kinase Akt2 at chromosome 19 [32]. All these lesions must 
provide, in a sub-set of MMMT cells, the co-operative ac-
tion that allows epithelial cells to undergo an EMT and 
give rise to the sarcomatous component. 

ß-Catenin activation plays a signifi cant role in EMT 
regulation by two mechanisms (Fig. 2). As a transcription 
factor, ß-catenin participates in the induction of transcrip-

Fig. 1 The ubiquitination cascade. E1 or ubiquitin-activating enzyme 
binds ubiquitin (Ub) in an ATP-dependent manner and transfers it to 
E2 or ubiquitin-conjugating enzyme as a thioester. Then E2-linked 
ubiquitin is transferred to the target protein with the aid of E3 ligase. 
There are two E1 enzymes, UBE1 and UBA6, in humans. The lat-
ter also serves as the ligase for the ubiquitin-like molecule FAT10. 
There are 30–40 E2s and more than 500 E3s in the human genome. 
E3s belong to two families, the HECT (Homologous to HPV E6 Car-
boxyterminal domain) and the RING (Really Interesting New Gene) 
family. A third family, the U-box containing ligases, is considered a 
sub-family of RING ligases due to the conformational similarity of 
the U-box and RING domains

Fig. 2 Cytoplasmic β-catenin constitutes the pool for both nuclear 
entry to act as a transcription factor and cytoplasmic membrane 
localisation to act as a component of adherens junctions. If Wnt sig-
nalling is inactive, β-catenin is phosphorylated and ubiquitinated to 
be degraded by the proteasome. Among the target genes of β-catenin-
promoted transcription, Slug suppresses E-cadherin transcription and 
thus promotes junction dissolution and favours β-catenin entry to the 
nucleus in a positive feedback loop that promotes EMT. Arrows de-
note activation and inverse ┬ signs inhibition
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tional modulator Slug (Snail2), which is a repressor of 
E-cadherin. ß-Catenin has another function, as a compo-
nent of adherens junctions together with E-cadherin and 
-catenin. Total cellular ß-catenin amounts are in equilib-
rium between adherens junctions and nuclear transcription 
function while cytoplasmic ß-catenin represents the pool 
that feeds both functions, or alternatively it is phosphory-
lated and ubiquitinated to be degraded by the proteasome. 
In MMMT, immunohistochemistry for nuclear ß-catenin 
has been found to correlate with phosphorylated Akt kinase 
and Slug, and inversely with expression of E-cadherin [30]. 
Phosphorylated Akt is activated and phosphorylates, in its 
turn, multiple substrate proteins, including kinase gluco-
gen synthase kinase 3ß (GSK3ß). The same effect may be 
obtained by activating mutations or amplifi cation of Akt2. 
Phosphorylated GSK3ß is inhibited and prevented from 
phosphorylating ß-catenin, which is then stabilised to either 
enter the nucleus and act as a transcription factor promoting 
the transcription of Slug or move to the plasma membrane 
and stabilise adherens junctions through interaction with E-
cadherin. In this model Akt can regulate the same pool of 
ß-catenin that is activated by signals through the canonical 
Wnt pathway. Of interest in other situations, it appears that 
inhibition of GSK3ß by Akt or Wnt signalling activates dif-
ferent pools of ß-catenin, an Axin-independent pool in the 
former case and an Axin-complexed in the latter [33]. Ac-
tivation of Slug by ß-catenin may provide a feed-forward 
loop for the establishment of EMT, given that Slug-induced 
repression of E-cadherin would dissolve adherens junctions 
and further favour the movement of ß-catenin to the nucle-
us for transcription activity as long as GSK3ß is inhibited. 
Thus, Akt activation in MMMT is a strong stimulus for the 
promotion of EMT. An additional down-stream effector of 
Akt with a role in EMT is kinase IKK. Activation of IKK 
by Akt leads to phosphorylation followed by ubiquitina-
tion of protein IB and fi nally to activation of transcription 
factor NF-B. NF-B is an EMT promoter by induction 
of Snail and ßHLH (basic helix-loop-helix) transcription 
factor Twist. Nevertheless, in histochemical evaluation of 
MMMT specimens, no correlation was found between the 
NF-B family factor p65 and phosphorylated Akt or Slug 
[34], probably refl ecting the fact that these pathways are 
not linear but there is a multiplicity of regulations function-
ing in conjunction.

p53, a tumour-suppressing transcription factor and one 
of the most common mutated proteins in cancer, is com-
monly mutated in MMMT. Its function is activated after 
DNA damage and other stress signals and leads to cell 
cycle arrest or apoptosis if damage is too severe to be re-
paired [35]. Post-transcriptional modifi cations, availability 
of co-factors and duration of triggering signal are among 
the factors that infl uence the fi nal outcome of p53 activa-
tion. Due to these functions that allow the cell to repair 
reversible DNA damage or promote cell death if damage 
is irreparable in order to avoid inheritance of mutations in 
progeny, p53 is named the guardian of the genome. In addi-
tion it plays a prime role in counteracting several pathways 

of EMT and thus it can be considered a guardian of metas-
tasis. p53 inactivation, either directly through mutations of 
its gene or indirectly through lesions interfering with its 
regulation, not only inhibits apoptosis, promotes the cell 
cycle and genomic instability, but also promotes invasion 
and metastasis. Mutant p53 protein often acquires gain of 
function properties promoting carcinogenesis in general 
and invasion in particular [36]. EMT is an invasion-pro-
moting process that is inhibited by normal p53 in several 
ways. p53 directly induces microRNAs of the miR-200 
family, miR-200c and miR-141 [37]. As a result, transla-
tion of ZEB1 mRNA, which is a target of miR-200c, is 
suppressed. miR-200c induction concomitantly suppresses 
polycomb group member BMI1 (B lymphoma mouse 
Moloney leukaemia virus Insertion region 1) and transcrip-
tion factor KLF4, both important in the maintenance of 
stem cell phenotype. Thus p53, through miR-200c, sup-
presses stemness. This denotes that the two conditions, 
EMT and stem cell phenotype, may be served by tightly 
interwoven networks, as is evident also in development [3].

E3 ligase mdm2 (mouse double minute 2, also called 
Hdm2 in humans) is a transcriptional target of p53. Besides 
targeting p53 in a negative feedback loop, mdm2 mediates 
ubiquitination of Slug, being an additional effector of p53-
induced EMT suppression (Fig. 3).

p53 down-regulates Slug through promotion of its 
mdm2-mediated ubiquitination and proteasome degrada-
tion, which leads to E-cadherin expression [38]. CDK 
inhibitor p21, a p53 transcription target, has been found to 
decrease EMT of breast cancer cells induced by Ras and 
C-myc [39]. In contrast, cancer-associated mutant p53 pro-
motes Snail, Slug and Twist induction and EMT [40–42].

Fig. 3 Wild-type p53 (upper part of the fi gure) suppresses EMT by 
inducing transcription of cyclin-dependent kinase inhibitor p21 and 
micro-RNAs miR-200c and miR-192. It also induces E3 ligase mdm2 
(also called Hdm2 in humans), which acts as a negative feedback 
loop by ubiquitinating p53 for proteasomal degradation, but also as 
an EMT suppressor by ubiquitinating EMT inducer Slug. In contrast, 
mutant p53 (lower part of the fi gure) promotes EMT by favouring 
transcription of Snail, Slug and Twist. Arrows denote activation and 
inverse ┬ signs inhibition
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A main regulation of p53 is executed by the UPS. Tight 
regulation of its availability and activation is of paramount 
importance as an importunate activation could lead to un-
timely cell demise. Under normal non-stress conditions 
p53 has a short half-life because it is ubiquitinated with the 
help of E3 ligase mdm2 and degraded by the proteasome. 
Other E3 ligases, such as Pirh2, ARF-BP1/Mule, COP1 
and CHIP, are also implicated in p53 regulation in various 
conditions [43–46].

p53 immunohistochemical staining, which is usually 
equivalent with the presence of a mutant form unable to be 
degraded and as a result having a longer half-life, is pres-
ent in both epithelial and sarcomatous components of most 
MMMTs [47–50]. p53 positivity has been reported in the 
in situ epithelial component of MMMTs, suggesting that 
p53 mutations represent an early molecular lesion at least 
in a percentage of cases [51].

C-myc is a basic helix-loop-helix leucine zipper family 
transcription factor with a role in neoplastic transforma-
tion and in stem cell maintenance. It heterodimerises with 
protein Max to bind DNA on specifi c sequences called E-
boxes and trigger recruitment of the transcription machin-
ery [52]. When activated, C-myc promotes both prolifera-
tion and apoptosis by up-regulating p53 activator p14ARF. 
p14ARF activates p53 by binding and inhibiting ligase 
mdm2. As a result, C-myc is an effi cient transformation ef-
fector in cells with a disabled p14ARF/mdm2/p53 pathway. 
In addition, p14ARF inhibits C-myc directly in a negative 
feedback loop. The same relationship may also exist be-
tween ß-catenin and p53 because, at least in some endome-
trial cell lines, p14ARF is a target of ß-catenin transcription 
[53] and thus the p14ARF/mdm2/p53 pathway needs to be 
disabled for effi cient transformation in this instance too. 

C-myc is regulated by the UPS after ubiquitination with 
the aid of two E3 ligases. Ubiquitination by E3 ligase Skp2 
complex promotes both C-myc transcriptional function 
and turnover, although ubiquitination is not required for 
transcription [52]. This is a general theme in transcription 
where ubiquitination of transcription factors promotes the 
process by allowing the recruitment of new transcription 
factor molecules to access the DNA binding site if activat-
ing signals persist, in order for transcription to continue. 
Another ligase, Fbwx7, promotes C-myc degradation in-
dependently of promoter binding but dependent on previ-
ous phosphorylation by kinases ERK and GSK3 [54, 55]. 
Phosphorylation of C-myc at a different site by IKK ki-
nases leads to an opposite outcome protecting C-myc from 
ubiquitination and degradation [56].

C-myc over-expression promotes EMT in cancer cells 
in vitro and in vivo [57]. C-myc over-expressing cells dis-
play Snail up-regulation due to both increased transcription 
and decreased ubiquitination and proteasome degradation, 
E-cadherin down-regulation and a fi broblast-like confi gura-
tion [58]. C-myc further destabilises intercellular adhesions 
through induction of micro-RNA miR-9, which suppresses 
translation of both E-cadherin and -catenin [59]. In ad-
dition, it suppresses expression of endometrial differen-

tiation, promoting F box transcription factor FOXO1 [60]. 
Dissolution of adherens junctions promotes ß-catenin 
transcription function as ß-catenin is shifted to the nucleus 
if the GSK3ß/axin/APC destruction complex is inhibited. 
As C-myc is a ß-catenin target gene, a feed-forward EMT-
promoting loop is completed [61]. In a series of MMMTs 
and ovarian carcinosarcomas C-myc amplifi cation by FISH 
was detected in the majority of cases [31].

Oestrogen and TGFß crosstalk in MMMTs

Low-grade endometrioid endometrial carcinomas express 
the  sub-type of oestrogen receptor (ER) and are oestro-
gen responsive. High oestrogen exposure is a risk factor 
for these carcinomas. ERß sub-type is expressed normally 
in uterus together with ER during development where it 
antagonises ER effects, but its expression decreases in 
normal adult endometrium [62]. This minor role of ERß in 
endometrial physiology is supported by studies of knock-
out mice [63]. As grade increases and in serous carcinomas 
and MMMTs, ER expression decreases and expression of 
receptor ERß increases [64–66]. Activation of this sub-type 
is not effi cient in stimulating proliferation in the endome-
trium [67] and thus high-grade carcinomas and MMMTs 
become oestrogen-independent and unresponsive. Alterna-
tively spliced forms of ERß incapable of binding the ligand 
oestradiol are expressed in endometrial carcinomas of all 
grades and in carcinomas of higher grade, where ER is 
not present, and may contribute to oestrogen refractoriness 
[68]. In low-grade ER-positive endometrial cancer cell line, 
Ishikawa, oestrogen stimulation has been found to promote 
EMT [69]. ER expression in low-grade endometrioid en-
dometrial carcinoma may promote EMT independently of 
its genomic/transcription factor action by inhibiting TGFß 
signalling [70]. This action is mediated by facilitation 
of degradation by the proteasome of Smad2 and Smad3, 
which are receptor-type intracellular transducers of TGFß 
signalling cascade [70]. Ubiquitination is executed with the 
aid of E3 ligases Smurf1 and Smurf2. Reciprocally Smad4, 
another transducer in the TGFß cascade, in complex with 
Smad3 may inhibit ERß transcription in breast cancer 
cells [71]. In contrast, in high-grade endometrial cancer 
cells HEC-1-A TGFß signalling is important for survival 
and migration [72]. A dominant negative TGFß receptor 
II inhibited growth and EMT of these cells. Given the well 
known dependence of TGFß signalling on the stage of 
malignancy, with an anti-neoplastic effect predominating 
in early carcinogenesis and a pro-carcinogenic effect in 
more advanced stages where other pathways such as K-ras 
are concomitantly activated [73], it is conceivable that in 
Ishikawa cells representing a low-grade, early carcinogen-
esis step, TGFß signalling is anti-carcinogenic and thus 
its inhibition by ER promotes instead of inhibits EMT. In 
contrast, in most advanced grades, as represented by the 
HEC-1-A cell line, TGFß may promote EMT by interact-
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ing with Snail and suppressing transcription of E-cadherin 
and other junctional components such as Occludin and 
Claudin-3 [74]. In higher-grade histologies and MMMTs 
where ER is down-regulated, TGFß is left unopposed and 
at the same time it becomes pro-carcinogenic and EMT-
promoting (Fig. 4). 

An additional layer of complexity is conferred because 
non-genomic actions of oestrogens in MMMTs can be me-
diated by a membrane-associated ER, G-coupled protein 
receptor GPR30 (also known as GPER, G-coupled protein 
oestrogen receptor), which is expressed in this malignancy 
in parallel with ERß and increases as stage advances [75]. 
GPR30 over-expression detected by immunohistochemis-
try has been proposed as an adverse prognostic factor in 
endometrial carcinomas [76]. GPR30 is a seven transmem-
brane domain receptor and signals through activation of 
MAPK and PI3K pathways [77] and downstream media-
tors and transcription factors [78]. Its physiologic ligand is 
oestradiol and it can also be activated by tamoxifen and 
fulvestrant but has a much lower affi nity for estrone and 
estriol and does not bind progesterone, glucocorticoster-
oids or testosterone. In a breast cancer cell line expressing 
also ER, GPR30 activation by oestradiol resulted in TGFß 
signalling inhibition [79], but in another cell line lacking 
ER and ERß, GPR30 activation by oestradiol promoted 
proliferation and invasion [80]. In clinical breast cancer 
samples, GPR30 expression was associated with tumour 
resistance to tamoxifen [81]. In addition, in endometrial 
cancer, GPR30 activation promoted proliferation and inva-
sion of both ER-positive and -negative cells [82]. A role 
for tamoxifen in promoting MMMT development in some 
breast cancer patients has been reported [83] and may be 
mediated by GPR30. 

Ubiquitination and the UPS have essential and complex 
roles in transcription, as also discussed in the section on 

c-myc, and nuclear receptors and ER in particular are no 
exception. The complexity of the regulation is outlined 
by the fact that proteasome inhibition enhances some but 
suppresses the expression of other ER target genes [84]. 
Proteasome function is required for ER transcriptional 
activity by promoting mono-ubiquitination of histone H2B 
and facilitating transcription elongation in breast cancer 
cells [85]. Interestingly, knocking-down of the E3 ligase 
involved in histone H2B ubiquitination, RNF40, led to 
oestrogen-independent cell proliferation and activation 
of the PI3K/Akt and MAPK pathways, providing an ad-
ditional link between ER and K-ras-initiated signalling. 
Deubiquitination also plays a role in ER transcription. The 
deubiquitinating enzyme of the OTU (ovarian tumour) 
family OTUB1 is part of the ER transcription complex and 
acts in this deubiquitination of the receptor, which results 
in modulating transcription of target genes and the stability 
of ER itself [86]. In addition, ubiquitination is involved in 
endocytosis of G-protein coupled receptors that may lead 
either to lysosomal degradation or re-cycling to the surface 
[87] and this has been shown specifi cally for GPR30 [88].

TGFß signalling is also regulated by the UPS in mul-
tiple levels [89]. Several E3 ligases such as Smurf1 and 2 
and NEDD4 of the HECT domain family, and ßTrCP and 
Fbwx1 of the RING family, among others, regulate the sta-
bility of proteins participating in TGFß signalling [90–92].

In conclusion, and despite unresolved issues in an 
evolving fi eld, oestrogen signalling, which may promote 
proliferation and EMT in lower-grade endometrial carcino-
ma through inhibition of TGFß anti-neoplastic signalling, 
becomes down-regulated in higher-grade carcinomas and 
MMMTs where ER is not expressed and ERß is probably 
less effective in counteracting TGFß signalling. In these 
cases TGFß signalling is transformed to a pro-invasion pro-
gramme due to concomitant MAPK and Akt activation by 
GPR30 and other receptors, and promotes EMT (Fig. 4).

EMT inducing transcription factors ZEB, Snail
and Twist in MMMT

EMT is promoted by a set of core transcription factors such 
as ZEB (Zinc fi nger E-box Binding homeodomain), Snail, 
Slug and Twist that result in down-regulation of key com-
ponents of intercellular adhesions, which is a prerequisite 
for the acquisition of motility.  

The zinc fi nger homeodomain factor ZEB1 is an EMT 
inducer. It has been reported to be expressed in the nor-
mal adult endometrium and its expression is oestrogen-
dependent [93]. ZEB1 is over-expressed in the stroma 
of low-grade endometrial carcinomas [94] but its gene is 
deleted in the low-grade epithelial cancer component [93]. 
In grade 3 endometrioid endometrial carcinomas, papillary 
serous endometrial carcinomas and MMMTs, ZEB1 is of-
ten expressed in the epithelial neoplastic cells and becomes 
oestrogen-independent [93]. Moreover, forced expression 

Fig. 4 In low-grade endometrial carcinomas (upper part of the fi gure) 
ERα is expressed and promotes EMT by inhibiting TGFβ, which 
on this occasion is an EMT inhibitor. In higher-grade endometrioid 
carcinomas, carcinomas of other histologies and MMMTs, ERα is not 
expressed, replaced by ERβ (including alternatively spliced forms) 
and GPR30 (lower part of the fi gure). GPR30 activates K-ras, which 
transforms TGFβ to an EMT promoting signaling. Arrows denote ac-
tivation and inverse ┬ signs inhibition
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of ZEB1 in endometrial cancer cell lines representative of 
low-grade carcinomas promotes their migratory potential in 
an in vitro wound healing assay and reduces the expression 
of E-cadherin [95]. Conversely, partial silencing of ZEB1 
by shRNA in a high-grade endometrial cancer cell line re-
duced its in vitro migratory potential although no increase 
in E-cadherin expression was noticed [95].

High expression of ßHLH transcription factor Twist 
has been associated with decreased E-cadherin expres-
sion and deeper myometrial invasion and with decreased 
survival in endometrioid endometrial carcinomas [96]. An 
endometrial cell line undergoing irradiation showed Twist 
up-regulation and EMT morphologic changes in parallel 
with an increased migratory potential [97]. Knock-down 
of Twist with siRNA reversed the increased irradiation-
induced migration. Another endometrial cell line did not 
show prominent EMT changes under the same experi-
mental conditions. These fi ndings support the role of an 
additional EMT inducer, Twist, in the aggressiveness of 
endometrial carcinoma. Although no histologic features of 
MMMT were observed in the cases with high Twist expres-
sion in vivo, the in vitro study suggests that, in some cases, 
mesenchymal morphologic changes are present.

The homeobox gene HoxA10 is a specific differen-
tiation gene for the endometrium and is induced in the 
secretory phase of the endometrial cycle by progesterone. 
HoxA10 is down-regulated as the grade of endometrioid 
endometrial cancer increases, being most suppressed in 
grade 3 endometrioid as well as in papillary serous cancers 
[98]. HoxA10 is a suppressor of Snail and thus its down-
regulation through promoter methylation in high-grade 
endometrial cancers leads to E-cadherin down-regulation, 
providing a link between increasing grade and EMT/inva-
sion [98]. An association of Snail with higher grade and 
reduced E-cadherin expression was observed in metastatic 
lesions of endometrial carcinomas [99]. The related tran-
scription factor Slug (also called Snail2) is up-regulated by 
ß-catenin signalling and suppressed E-cadherin in MMMT, 
as already discussed [30].

microRNAs constitute physiologic important post-
transcriptional regulators of protein expression and play 
a role in carcinogenesis. In MMMT a specifi c microRNA 
signature has been revealed in the mesenchymal compo-
nent compared with the epithelial part of the tumour [100]. 
Prominent in this signature is the miR-200 family of miR-
NAs, which is down-regulated in the mesenchymal compo-
nent. The miR-200 family is composed of fi ve members, 
miR-200a, miR-200b, miR-200c, miR-141 and miR-429, 
which are post-transcriptional repressors of ZEBs and, as 
a result, their down-regulation allows ZEBs to suppress E-
cadherin transcription. Indeed, E-cadherin expression was 
completely lost and p120 cadherin decreased in the mesen-
chymal component of MMMTs, while mesenchymal mark-
ers vimentin, SPARC (secreted protein acidic and rich in 
cysteine) and fascin were up-regulated. Also up-regulated 
were EMT inducers TGFß1 and TGFß2. TGFß1 induces 
EMT in endometrial cell lines and up-regulates Slug, ad-

hesion molecule L1CAM and vimentin [101]. L1CAM is 
associated in histochemical evaluation of endometrial car-
cinomas with ER and progesterone receptor (PR) negativ-
ity and E-cadherin negativity and is sometimes observed in 
the invasive front of tumours. Other relevant EMT targets 
of miR-200c which are suppressed in aggressive endome-
trial cancer cell lines include fi bronectin, moesin, an actin 
cytoskeleton connector to the plasma membrane, and the 
receptor tyrosine kinase TrkB [102]. In addition, when 
compared with endometrioid endometrial cancers, the epi-
thelial component of MMMTs displays higher expression 
of several mesenchymal markers and lower expression of 
E-cadherin [100], arguing for the presence of a predispo-
sition or early stages of EMT already in this component. 
Another miRNA, miR-194, which did not sort out in the 
above signature, was found to down-regulate the polycomb 
group protein BMI-1 and to reduce EMT and invasion po-
tential in vitro in endometrial cell lines [103]. BMI-1 is a 
promoter of invasion and metastasis from various primaries 
and also a target of miR-200c, as previously discussed.

Collectively these data paint a picture in which tran-
scription factors of the core EMT circuitry are up-regulated 
in MMMT while differentiation promoting factor HoxA10 
and miRNAs normally counter-acting them are down-reg-
ulated with increasing grade as the balance shifts towards 
the EMT/metastatic phenotype (Fig. 5). The UPS modu-
lates the stability of all core EMT transcription factors 
sometimes in a co-ordinated manner. This is the example 
of core EMT transcription factors Snail, Slug, Twist and 
Zeb2, which are all regulated by ubiquitination with the 
aid of a Skp ligase complex having the F-box protein Ppa 

Fig. 5 Schematic representation of key EMT transcription factor con-
centrations in relationship to important regulators. When β-catenin 
shifts from membrane localisation as an adherens junction compo-
nent to the nucleus, it promotes transcription of Slug. Suppression 
of HoxA10 due to promoter methylation de-represses transcription 
of Snail. Down-regulation of miR-200 family members promotes 
translation of ZEB transcription factors. Co-ordinate increase in the 
concentrations of these transcription factors triggers EMT. The UPS 
is involved in the regulation of these factors at multiple points and 
may tip the balance in either direction, as discussed in the text
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(Partner of paired or FBXL14 in humans) as the substrate 
recognising sub-unit [104–106]. 

Intercellular adhesions and cell-matrix adhesions

Intercellular adhesions are important defining elements 
of epitheliums and need to be dissolved during EMT in 
order for cells to move. Adherens junctions are made of 
E-cadherin molecules that span the cytoplasmic membrane 
and have both extracellular and intracellular domains [107, 
108]. With their extracellular domains, E-cadherins make 
homotypic contacts with E-cadherin molecules of neigh-
bouring cells. The intracellular domain associates together 
with -catenin and ß-catenin to the actin cytoskeleton. 
Other proteins such as p120 catenin, EPLIN (epithelial 
protein lost in neoplasm), ZO1 (Zonula Occludens 1), Afa-
din, Vinculin, Paxillin and -actinin may participate in ini-
tiating and strengthening the interactions of catenins with 
the actin cytoskeleton. Adherens junctions are dynamic and 
E-cadherin molecules are continuously incorporated in cell 
membranes and removed by clathrin-mediated endocytosis. 
Endocytosis of E-cadherin is triggered after phosphoryla-
tion by c-src kinase, which is followed by ubiquitination 
with the aid of c-cbl family E3 ligase Hakai [109]. p120 
catenin prevents E-cadherin endocytosis by masking Hakai 
interaction sites in the juxta-membrane area of its mol-
ecule. Hakai over-expression in epithelial cells results in 
Paxillin down-regulation and decreased cell-matrix adhe-
sion [110].

E-cadherin is a central target of EMT-inducing tran-
scription regulators and is down-regulated by ZEB and 
Snail transcription factors as well as ß-catenin in high-
grade uterine carcinomas and MMMTs [111, 112]. In addi-
tion ß-catenin, as mentioned, participates in a feed-forward 
loop by becoming available to act as a transcription factor 
when adherens junctions are resolved.

Adherens junction components P-cadherin, E-cadherin, 
p120 and ß-catenin have been investigated as prognostic 
markers in a histochemical study of all endometrial carci-
nomas diagnosed in a Norwegian region between 1981 and 
1990 [113]. Decreased expression of E-cadherin and p120 
was more commonly seen in higher-grade and clear cell 
carcinomas while mesenchymal P-cadherin high expres-
sion was more commonly seen in these types [113]. High 
E-cadherin and low P-cadherin expression were associated 
with a better prognosis in endometrial carcinomas.

EMT is promoted by up-regulation of matrix metallo-
proteinase MMP-3 (Stromelysin 1) in endometrial cancer, 
which results in E-cadherin degradation and is associated 
with vascular invasion and more aggressive tumours [114]. 
MMP-7 (matrilysin), another matrix metalloproteinase, is 
expressed in the epithelial component of 70% of cases of 
MMMTs examined, while expression is lost in correspond-
ing sarcomatous components [115]. Thus, it appears that, 
after intercellular adhesion dissolution, motion of epithelial 

cells acquiring EMT phenotype and properties is accompa-
nied by changes in the profi le of expressed matrix-modifying 
enzymes with up-regulation of some MMP-3 and down-reg-
ulation of others. MMP-3 and MMP-7 production is stimu-
lated by MAPK cascade activation and may, as a result, be 
modulated by the UPS given that several proteins taking part 
in this cascade are regulated by the UPS [116, 117]. 

Therapeutic opportunities

MMMT can be considered a high-grade epithelial endome-
trial cancer with extensive metaplasia due to lesions acti-
vating EMT pathways. UPS plays a key role in regulating 
these pathways as discussed in the previous sections. This 
patho-physiological insight offers opportunities to reverse 
or counteract EMT by modulating UPS function. Given 
that EMT is served in many instances by overlapping path-
ways with other carcinogenesis-enabling properties, re-
versal of EMT through UPS modifying interventions may 
have more global anti-neoplastic effects.

Inhibition of the proteasome is already used in can-
cer therapy. Bortezomib, a specifi c inhibitor of the chy-
motrypsin-like proteasome activity, constitutes a well 
established treatment for multiple myeloma and sub-types 
of non-Hodgkin lymphoma [118]. Newer inhibitors of the 
enzymatic cleavage activity of proteasome such as carfi l-
zomib and NPI-0052 are under development [119, 120]. 
Inhibition of the deubiquitinising activity of 19S RP is an-
other way of inhibiting the proteasome and such inhibitors 
are in earlier study [121]. Proteasome inhibition, despite 
the specifi city of the enzymatic molecular reaction that 
is involved, has broad effects in cellular homeostasis and 
fi nally produces non-specifi c cytotoxicity due to perturba-
tions of hundreds of proteins regulated by the proteasome. 
Nevertheless malignancies with specifi c molecular lesions 
could be particularly sensitive to this broad inhibition due 
to dependence of the lesions on proteasome function or to 
triggering of different down-stream pathways. For exam-
ple, cells defi cient in p130Cas, an adaptor protein of cel-
lular adhesions, are resistant to apoptosis after bortezomib 
treatment and trigger autophagy, while cells expressing this 
protein are sensitive to proteasome inhibition [122]. Thus 
p130Cas expression may serve as a marker of bortezomib 
sensitivity. On the other hand, given that p130Cas-defi cient 
cells are concomitantly resistant to doxorubicin, it remains 
possible that this resistance is generalised and related to 
adhesion destabilisation and EMT and may not represent a 
marker of resistance to particular treatments. Indeed EMT 
is associated with drug resistance related to the aforemen-
tioned intertwining of its pathways, with pathways involved 
in apoptosis prevention and self-sufficiency of survival 
signals in neoplastic cells [123]. Nevertheless a sub-set of 
cancer patients could remain sensitive to particular strate-
gies such as proteasome inhibition even in the presence of 
EMT. In the case of MMMT, a particular patient could be 
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sensitive to proteasome inhibition if it possesses a mutant 
C-myc with gain of function but still able to be degraded 
by the proteasome and concomitantly a wild-type p53 that 
is functionally inhibited due to instability from increased 
degradation, e.g., secondary to mdm2 amplification or 
stabilisation. In this example EMT related to C-myc hyper-
activity and p53 disabling could be reversed by proteasome 
inhibition, which would inhibit C-myc transcription func-
tion, producing c-myc turnover stalling on DNA and p53 
activity promotion through reversal of its instability.

An alternative to proteasome inhibition strategy is to in-
terfere with other points of the UPS that would offer great-
er specifi city. An example of such an alternative strategy is 
inhibition of NEDDylation, which refers to the ligation of a 
target protein with the ubiquitin-like small protein NEDD8 
(Neural precursor cells-Expressed Developmentally Down-
regulated 8). This is a post-translational modifi cation that 
often takes plays in the Cullin component of the SCF type 
RING ligases and helps the E2 enzyme binding to the li-
gase complex in the ubiquitination cascade. MLN4924, a 
small molecule inhibitor of the NEDD8 activating enzyme 
(NAE, the E1 for NEDD8) is in early clinical development 
[124]. Nevertheless, the SCF ligase family is extensive and 
many proteins involved in EMT of MMMT (ß-catenin, 

C-myc, NF-B, Snail) are regulated by ligases of this fam-
ily. In addition, NEDDylation has other targets, such as 
p53 and the core apoptosis effectors caspases [125, 126]. 
Thus NEDDylation inhibition could interfere with multiple 
points in EMT progression and the net result of the inhibi-
tion, and whether there are sub-sets of MMMT patients 
that could benefi t from it remains to be investigated.

Inhibiting E3 ligases could offer greater specifi city. For 
example, inhibition of mdm2 could be a strategy to explore 
[127, 128], although in MMMT it would be expected to be 
effective only in the sub-set with wild-type p53. In patients 
with mutant p53 these inhibitors may not only be inac-
tive but could have deleterious effects due to inhibition of 
degradation of Slug. This fact underlines the importance of 
correctly delineating the sub-set of patients that could ben-
efi t from a certain drug.

Defi ning sub-sets of neoplasms that, due to particular 
pathogenic lesions, are sensitive to particular drugs is a 
major challenge in oncology but one that would provide 
signifi cant advancement in personalised treatment of can-
cer patients.
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