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Abstract Endothelial cells are both the source and target of
factors contributing to atherosclerosis. After the discovery
of the endothelium-derived relaxing factor (EDRF) by
Robert F. Furchgott in 1980 it soon became clear that
endothelial cells also release vasoactive factors distinct
from nitric oxide (NO) namely, endothelium-derived con-
tracting factors (EDCF) as well as hyperpolarizing factors
(EDHF). Vasoactive factors derived from endothelial cells
include NO/EDRF, reactive oxygen species, endothelins
and angiotensins which have either EDRF or EDCF
functions, cyclooxygenase-derived EDCFs and EDRFs,
and EDHFs. Endothelial factors are formed by enzymes
such as NO synthase, cyclooxygenase, converting enyzmes,
NADPH oxidases, and epoxigenases, among others, and
participate in the regulation of vascular homeostasis under
physiological conditions; however, their abnormal regula-
tion due to endothelial cell dysfunction contributes to
disease processes such as atherosclerosis, arterial hyperten-
sion, and renal disease. Because of recent changes in world
demographics and the declining health status of the world’s
population, both aging and obesity as independent risk
factors for atherosclerosis-related diseases such as coronary
artery disease and stroke, will continue to increase in the
years to come. Obesity and associated conditions such as
arterial hypertension and diabetes are now also some of the
primary health concerns among children and adolescents.
The similarities of pathomechanisms activated in obesity and
aging suggest that obesity—at least in the vasculature—can

be considered to have effects consistent with accelerated,
“premature” aging. Pathomechanisms as well as the clinical
issues of obesity- and aging-associated vascular changes
important for atherosclerosis development and prevention are
discussed.
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The discovery of endothelium-dependent control
of vascular function

Endothelial cell research gained particular interest among
physiologists and physicians only in the last 20 years of the
twentieth century [46]. Endothelial cells form the inner
lining of arterial and venous blood vessels and amount to
approximately 1.5 kg, covering an area of approximately
four tennis courts [78]. Under normal conditions, endothe-
lial cells constantly produce a number of vasoactive and
trophic substances that control inflammation, vascular
smooth muscle cell growth, vasomotion, platelet function,
and plasmatic coagulation [8, 129]. In the early 1970s, Ross
and Glomset reported that endothelial cells exert a
protective effect preventing smooth muscle cells to prolif-
erate, which generated the “response-to-injury” theory of
atherosclerosis [110], Since 1980, following the seminal
observation of Robert F. Furchgott that endothelial cells
release vasoactive factors that modulate vascular tone
[47, 98], many advances have been made with regard to
understanding how endothelial cell-derived factors both
contribute to and interfere with the development of a
number of cardiovascular pathologies [16, 129]. These
factors, which are formed not only by endothelial cells but
also by other cells such as vascular smooth muscle cells or
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mesangial cells, are now known to contribute to the
abnormal regulation of vascular tone and cell growth [7].
A selection of the most important factors identified so far
that have been extensively studied in numerous physiolog-
ical and pathophysiological conditions [134] have been
summarized in Table 1. Research of the past three decades
has provided evidence that inhibition of detrimental path-
ways such as blocking reactive oxygen species or receptors
for endothelin or angiotensin, or increasing NO bioactivity
can attenuate inflammation and subsequent disease pro-
gression and will have beneficial effects on disease
outcome and survival [6, 16, 129].

Endothelium-derived vasodilators

The cyclooxygenase product, prostacyclin (prostaglandin
I2), was discovered in the early 1970s by Vane and
associates [132]. Prostacyclin is formed by endothelial
and other cells and has vasodilator and growth inhibitory
activity [40, 90, 134]. The release of the endothelium-
derived relaxing factor (EDRF) in response to acetylcholine
was discovered by Furchgott in 1980, after both Vanhoutte
[133] and Toda [126] in 1974 independently reported
vascular relaxation in response to the muscarinic agonist.

Furchgott provided proof that this vasorelaxation requires
endothelial cells to release an unstable dilator factor [47].
The identity of EDRF as nitric oxide (NO) was
independently demonstrated by Furchgott and by Ignarro
in the mid-1980s [46, 63]. Endothelium-derived NO,
formed by endothelial nitric oxide synthase (isoform 3,
NOS3) by genomic and non-genomic mechanisms, as well
as by a variety of post-translational modifications including
phosphorylation [44], is not only a vasodilator but also
inhibits cell growth and inflammation [49, 109].
Endothelium-dependent NO-independent dilatation is large-
ly mediated by hyperpolarization, and a number of
endothelium-derived hyperpolarizing factors (EDHFs)
have been identified. They include epoxyeicosatrienoic
acids (EETs), which are cytochrome P-450 metabolites,
H2O2, endothelial gap junction communication, and potas-
sium [reviewed in 27, 28]. Different EDHFs may also
interfere with each other [74] (Table 1). Endothelins are
endothelial cell-derived vasoactive peptides. Both ET-1 and
ET-3 (see below) exert vasodilator activity through activation
of endothelial cell ETB receptors [7] and subsequent
formation of NO [60]. Angiotensins are also formed by
endothelial cells. Angiotensin II—through the endothelial
AT2 receptor [78]—and its break-down products, Ang 1-7,
through its receptor MAS [112] and angiotensin IV (Ang 3-8)

Table 1 A selection of known endothelial cell-derived substances with either vasodilator or vasoconstrictor activity

Molecule Source/enzyme Target/receptor

Endothelium-derived vasodilators

NO/EDRF NOS3 VSMC, soluble guanylate cyclase

PGI2/Prostacyclin Cyclooxygenase-1 and 2 Prostacyclin receptor (IP)

EETs/EDHF EDHF synthase/cytochrome P450 expoxygenase VSMC, SK(Ca) and IK(Ca) channels

H2O2/EDHF Catalase VSMC, SK(Ca) and IK(Ca) channels

K+/EDHF VSMC, SK(Ca) and IK(Ca) channels

Gap junctions/EDHF VSMC, TRPV4 and SK(Ca) channels

Endothelin-1 ECE-1, ECE-2 chymase, VSMC chymase NOS3, EC endothelin ETB receptor

Endothelin-3 ECE-1, ECE-3 NOS3, EC endothelin ETB receptor

Angiotensin II ACE NOS3, EC angiotensin AT2 receptor

Angiotensin 1-7 ACE2 NOS3, EC MAS receptor

Endothelium-derived vasoconstrictors

Prostanoids/EDCF Arachidonic acid; cyclooxygenase-1 VSMC; thromboxane receptor (TP)

Thromboxane A2 Thromboxane synthase VSMC; thromboxane receptor (TP)

O2
−/superoxide NADPH oxidase/NOX4 NO inactivation and ONOO− formation

O2
−/superoxide EDHF synthase/cytochrome P450 expoxygenase NO inactivation and ONOO− formation

Endothelin-1 ECE-1, ECE-2 VSMC; endothelin ETA receptor

Angiotensin II ACE VSMC; angiotensin AT1 receptor

ACE angiotensin converting enzyme, ACE2 angiotensin converting enzyme-2, Cyt cytochrome, EC endothelial cell, ECE endothelin converting
enzyme, EDHF endothelium-derived hyperpolarizing factor, EDRF endothelium-derived relaxing factor, EET epoxyeicostrienoic acids, IK(Ca)
intermediate conductance Ca(2+) activated K(+) channel, VSMC vascular smooth muscle cell, NOS NO synthase, ONOO peroxynitrite,.O2

−

superoxide anion, TP thromboxane receptor, TRP transient receptor potential, SK(Ca) small conductance Ca(2+) activated K(+) channel
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through the AT4 receptor [59, 102, 137], cause endothelium-
dependent dilation, involving activation of ecNOS/cGMP.

Endothelium-derived vasoconstrictors

Arachidonic acid-derived vasoconstrictor prostanoids were
the first endothelium-derived contracting factors (EDCFs)
and identified by DeMey and Vanhoutte, who demonstrated
contractile effects mediated by cyclooxygenase products
shortly after the report of endothelium-dependent dilation
[38]. Superoxide anion, a short-lived by-product of oxidative
metabolism, was also found to have vasoconstrictor activity
again by Vanhoutte's group [111] and also by Moncada and
associates [56]. This effect is largely due to the EDRF/NO-
inactivating properties of the superoxide anion [111]. The
source of reactive oxygen species has been studied since the
early 1990s and Griendling and coworkers have identified a
vascular NADPH oxidase (NOX) as one of the major sources
of vascular reactive oxygen species [55]; the NOX4
isoenyzme is mainly expressed in endothelial cells [24].
Interestingly, EDHF synthase/cytochrome P450 expoxyge-
nase is also a source of superoxide anion [43]. In the mid-
1980s several groups reported the release of a potent
peptidergic vasoconstrictor substance from endothelial cells
[51, 58, 99]. The identity of the gene and peptide sequence of
this substance, which was named endothelin due to its origin,
was ultimately revealed by Masaki's group from Japan and
was published in 1988 [8, 142]. Subsequently, other members
of this peptide family such as endothelin-2 and endothelin-3
were identified [7]. Through the activation of ETA receptors,
endothelin-1 causes sustained and powerful vasoconstriction
and also stimulates cell proliferation [7] and mediates
endothelium-dependent contractions via thromboxane A2

[122]. Most recently, it was shown that endothelial
cell-derived ET-1 is responsible for the majority of the
endothelin tissue expression, as endothelial cell-specific
preproendothelin-1-deficient mice exhibit a reduction of ET-
1 tissue levels in several organs up to 70% compared with
wild-type mice [70]. The hypotension observed in these
animals also indicates that the vasoconstrictor activity out-
weighs the dilator activities of endothelin. Like endothelin,
angiotensin II is also produced by endothelial cells and
through the activation of AT1 receptors has similar vasocon-
strictor and growth-promoting effects if its production
increases abnormally [41].

Oxidative stress and inflammation: brothers in arms

Generally, either increasing cellular antioxidant capacity or
reducing oxidative stress will have similar beneficial effects
on the vasculature (Fig. 1). Due to the fact that NO is

formed by the multi-enzyme complex NO synthase [45],
which concomitantly produces reactive oxygen species
through its NADPH oxidase domain, increasing NO
bioactivity has been complicated by NO synthase uncou-
pling [73]. Since the reaction between NO and superoxide
anion is essentially diffusion limited, substantial amounts of
peroxynitrite (ONOO−) are formed [5] (Fig. 1). ONOO−

causes cell injury through nitrosylation of proteins, which
partially or completely inactivates them [1]. Nitrosylation
of proteins, which will cause relatively stable nitrotyrosine
to be formed, will change the function, structure, and thus,
the accessibility of these proteins to interact with other
proteins [94]. Beneficial effects of interventions to reduce
oxidative stress and inflammation have been shown, among
others, for diseases such as atherosclerosis, myocardial
infarction, stroke, peripheral vascular disease, arterial
hypertension, chronic renal failure, pulmonary arterial
hypertension [134], and for a number of disease conditions
mainly associated with chronic inflammation such as
connective tissue diseases and metabolic conditions such
as insulin resistance and diabetes (Fig. 1).

Current and future world demographics of aging
and obesity

Over the past centuries, scientists have developed hundreds
of theories to explain the aging phenomenon, many of
which are based on the notion that age-dependent changes
accumulate with time [4]. Due to last century's economic
and scientific advances, aging is not the most frequent
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Fig. 1 Comparable and potentiating effects of the risk factors obesity
and aging on antioxidant capacity (left) and oxidative stress (right).
Both, obesity and aging, lead to a reduction in formation of bioactive
NO and prostacyclin. This is further aggravated by increased levels of
glucose, endothelin-1, peroxynitrite (formed from the diffusion-
limited reaction between superoxide anion and NO), and angiotensin
II. As indicated in the figure, this imbalance favors inflammation as a
“common denominator” and thus the development of cardiovascular,
renal, and metabolic diseases
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cause of death after age 28 [5] as we have managed to live
much longer than our ancestors with an average age of
currently around 80 years [5]. The physiological aging
process is associated with changes in cellular function,
metabolic rearrangements, and structural changes in many
organs such as the vasculature, the kidney, the brain, and
the heart just to name a few. Ten years from now, the
majority of deaths worldwide will have a cardiovascular
cause, and within the next 40 years, substantial increases in
the aged populations are to be expected [5]. Moreover, by
2050 the world's population are expected to increase by
50% to approximately nine billion [5]. This increase, which
will be predominately due to the increased longevity [5],
will result in aging of the overall world population [5, 52],
and include more than one billion postmenopausal women
[12] with a high percentage of obese individuals [5, 12]. It
will, therefore, be important to control diseases that occur at
an increased incidence with aging. Aging not only
promotes the development of atherosclerotic vascular
disease, but is also associated with significant metabolic
changes, resulting in age-dependent increases of body
weight, changes of insulin sensitivity, as well as changes
in lipid metabolism [4, 5]. Moreover, the prevalence and
incidence of hypertension increases in the elderly [12], which
is in part due to arterial stiffening [72, 85, 86] and the arterial
calcification associated with it [61]. In this regard,
arginase—possibly through interactions with BH4—has been
recently proposed as a new therapeutic target to counteract
arterial stiffening associated with aging [69, 113]. Since the
above changes directly contribute to atherosclerotic burden, it
would be possible to explain the increase in vascular disease
seen with aging at least in part by these disturbances. That
aging is indeed an independent risk factor for coronary artery
disease and stroke is perhaps best evident from patients
suffering from Werner syndrome or Hutchinson–Gilford
progeria. These patients experience much accelerated aging
[84, 89, 135] and usually die within 20 years due to
myocardial infarction or stroke [68, 108]. A causal link
between defective lamin genes and accelerated vascular aging
in these conditions has been recently demonstrated [91, 103].

Aging-associated vascular changes: role of endothelial
factors

Aging affects many pathways involved in cardiovascular
homeostasis and particularly the function of endothelial
cells. In fact, endothelial aging is associated with abnor-
malities in endothelial cell size and shape [57], susceptibil-
ity to apoptosis [62], angiogenesis [106], changes in ploidy
and telemore length [2], and abnormal release of vasoactive
factors [42, 78]. Overall, the balanced released of factors is
tipped towards inflammatory activation and cell growth

(Fig. 1). In addition, a number of physiological cardiovas-
cular functions change with increasing age [23, 45].

Mechanisms of endothelial cell dysfunction in aging

Nitric oxide

With age, a number of changes occur in the cardiovascular
system that can be considered pro-atherogenic. For
instance, the bioactivity of NO decreases and has been
considered to be one of the factors contributing to the
higher incidence of arterial hypertension, atherosclerosis,
and renal disease in aged individuals [4, 83]. Age-related
reductions in endothelium-dependent dilation and in NO
bioactivity have been shown by Zeiher and coworkers as
well as Taddei et al. [123, 144]. We have previously
measured, using porphyrinic microsensors, the release of
NO from the aortic endothelium of aged rats. We observed
that with advanced age in rats—that do not develop
atherosclerosis—the stimulated release of NO was reduced
by almost 70% [131] (Fig. 2a). This was associated with an
attenuation of endothelial dependent relaxation in the same
arterial vessel [13, 131]. In contrast to the aorta of rats,
endothelium-dependent relaxation to acetylcholine remains
unaffected by aging in the femoral artery [13]. We not only
studied stimulated NO release [13, 131], but we also found
that basal NO release was reduced [13]. Interestingly, the
expression of endothelial NO synthase (NOS3) increases
with age [54], as does the constitutively expressed
inflammatory NO synthase (NOS2) [54] (Fig. 2b). Aortic
protein expression of NOS2 and NOS3 also increases with
age [31]. The sources of increased O2

− production in aging
arteries are not only enzymes such as NADPH oxidase [65],
but also uncoupled NO synthase, which lead to increased
formation of O2

− through its NADPH oxidase domain and
possibly involves changes in BH4 availability [143]. An
interesting study in the longest living rodent, which has a
life expectancy of up to 26 years compared with 3 to
4 years in other rodents, found that the vasculature of this
particular animal expresses much higher amounts of
antioxidant enzymes such as SOD [36], suggesting that
cellular (but not dietary) antioxidant capacity may indeed
be a line of defense against aging-associated cumulative
oxidative injury [23, 24]. Finally, other mechanisms such as
EDHF appear to take over functions normally attributed to
NO with aging in certain vascular beds [50]. Interestingly,
in Klotho mice, which show an aging phenotype, only the
bioactivity of NO but not prostacyclin is reduced [96].

Endothelin

We found that with aging preproendothelin-1 mRNA
expression increases in the vasculature (Fig. 2b) and also
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in the kidney [54, 75]. Interestingly, endothelin-1 peptide
expression markedly differed between the aorta, renal, and
carotid artery, in all of which an increase of endothelin-1
peptide expression was found with aging (Fig. 2c)
[54, 75]. To determine whether endogenous endothelin
plays a role for cellular aging and functional injury
(proteinuria) in the kidney in vivo, we investigated the

effects of the blockade of endothelin ETA receptors in the
model of established focal segmental glomerulosclerosis
[101]. Although it was previously thought that glomerulo-
sclerosis due to aging is an irreversible process, we
unexpectedly found that endothelin inhibition not only
reversed proteinuria but that it actually induced partial
healing of the previously sclerotic glomerulus [101].

Fig. 2 a Effects of aging on
vascular NO bioactivity as
measured by amperometry in
aortic endothelium of rats aged
6 and 33 months of age. Aging
was associated with a dramatic
decrease in endothelial NO
bioactivity. b Effects of aging on
the vascular expression of
preproendothelin-1 gene and
genes of NOS3 (endothelial cell
NOS) and NOS2 (inflammatory
NOS). In the endothelium-intact
vascular preparations of rat aorta
an up-regulation of all three
genes investigated was ob-
served, *p<0.05 vs. young.
c Anatomic heterogeneity of
endothelin-1 peptide expression
between the aorta, renal artery,
and the carotid artery in young
rats (3 months of age, “young”).
At 24 months of age, “old”
endothelin-peptide levels as
measured by RIA and HPLC
increased in all three vascular
beds investigated, †p<0.05 vs.
aorta, p<0.05 vs. renal artery,
*p<0.05 vs. young. Figure in
part reproduced from Tschudi et
al. [131] (Panel a) and Goettsch
et al. [54] (Panels b and c), with
permission from the American
Society of Clinical Investigation
and the publishers
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These changes were completely independent of blood
pressure and renal hemodynamics and indicated that,
indeed, endothelin plays a causal role for the structural
and functional changes in the aging cardiovascular system,
most likely through its trophic effects [6]. Recent evidence
further supports a role for endothelin participating in
aging-associated vascular functional injury [39] and
enhanced vasoconstriction seen with aging [17, 53].

Obesity as a cause of abnormal production and function
of endothelial factors

Within a decade, obesity has become one of the most
relevant health issues in many countries around the world
[9, 88], with the associated health costs exploding [32]. In
2005, 1.6 billion adults worldwide were overweight and
400 million were obese. By 2015, the numbers are expected
to increase even further to 2.3 billion adults being
overweight and 700 million obese [79, 98, 115, 119, 120].
In both cases, these numbers do not include children and
adolescents, in which obesity also has become a world-
wide problem [77]. The reasons for this development are
economic growth in developing countries as well and as
changes in nutritional patterns combined with the availabil-
ity of inexpensive and unbalanced diets rich in carbohy-
drates and fat [25, 79, 88, 98, 115, 119, 120]. Frequently,
this is combined with unfavorable lifestyles that particularly
include lack of physical exercise and consumption of high-
caloric beverages and soft drinks [9, 79, 98, 115, 119,
120]. It has been even proposed that because of the
continuing increase of obesity that life expectancy might
decline by the middle of this century [100, 119]. One of
the most worrisome developments is that obesity now
increasingly affects school children [67] who, at a young
age, present with diseases normally found only in adults of
higher age namely, arterial hypertension and diabetes
mellitus [9]. In fact, overweight children already prema-
turely develop abnormal endothelial cell dysfunction and
arterial intima-media thickening [141] normally found in
obese adults [118]. This already illustrates that obesity
may actually mimic aging in certain aspects. The mech-
anisms involved in the pathophysiology of obesity are
numerous [138]. Mechanisms include, abnormal changes
in insulin sensitivity, dyslipidemia, increased vasomotor
tone, structural abnormalities in the liver (non-alcoholic
steatohepatitis), increased sympathetic drive, structural
changes in the kidney, and perhaps most importantly,
inflammation [138]. Excessive visceral fat is one of the
major contributors of these abnormalities, and studies in
rodents and in monkeys indicate that either removal of
visceral fat or caloric restriction can extend the lifespan in
mammals [34, 95].

Mechanisms of endothelial cell dysfunction in obesity

Nitric oxide

Several studies in experimental animals and humans have
shown that in obesity the bioactivity of NO is reduced [18,
22, 37, 104]. The mechanistic concept that has been mostly
propagated is the inactivation of NO by superoxide anion
(O2

−), leading to the formation of peroxynitrite (Fig. 1).
The source of increased O2

− production is not only
enzymes such as NADPH oxidase, but also uncoupled
NO synthase [44, 82]. Increased nitrotyrosine formation as
a consequence of peroxynitrite production has been
described in obese animal models [22, 26, 48]. More
recently, other pathways such as guanylate cyclase, the
intracellular target of NO (Table 1), have also been shown
to be affected by obesity and have been directly linked to
inflammation [107].

Endothelin

Experimental studies suggest that animal models exhibit
many of the changes seen with obesity in humans,
including inflammation, dyslipidemia, and abnormal vaso-
motor tone [33, 121, 130].

One of the most important factors responsible for the
high prevalence of obesity is an increased intake of high-
calorie food rich in carbohydrates and fat [37]. There are a
number of excellent experimental models of diet-induced
obesity in which changes in the vasculature and kidney
have been studied [33, 121, 130]. One of our first efforts
in the field was to study the effects of high-calorie, high-
fat-diet-induced obesity on the renin–angiotensin system
and the mouse kidney [14]. We found that obesity
increases activity of the angiotensin converting enzyme
(ACE) in the kidney and that this regulation is dependent
on endothelin ETA receptors (Fig. 3). These data suggested
that—under certain conditions such as obesity—endothelin
receptor antagonists also have ACE-inhibitor functions.
We also demonstrated that vascular contractility to
endothelin increases both in models of diet-induced
obesity and in monogenetic leptin deficient obesity with
differences between vascular beds [20, 92, 93, 127, 128].
In addition to being a vasoconstrictor, endothelin-1 is a
potent pro-atherogenic peptide [11, 16]. As seen in aging
arteries—vascular expression of endothelin at the mRNA
level and that of ETA receptors increases in diet-induced
obesity [93, 128] (Fig. 4c, d). Experimental studies
provide evidence that diet-induced obesity exerts spe-
cific changes promoting enhanced vasoconstriction and
arterial hypertension as can be seen in obese humans
with regard to an activated endothelin pathway [29].
Clinical studies support this notion and suggest possible
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therapeutic potential for endothelin receptor antagonists
in patients with obesity and related complications such as
arterial hypertension [16]. In fact, two clinical studies in
obese patients (suffering either from arterial hypertension

or diabetic nephropathy) have been most recently pub-
lished, both showing the beneficial effects of endothelin
receptor blockade on renal function and blood pressure
[80, 139].

Fig. 3 Effects of obesity on the interactions between tissue RAS and the
ET system. Obesity activates components of the RAS in adipose tissue,
thereby increasing formation of Ang II. Obesity also increases
expression/activity of prepro-ET-1 (ppET-1). Endothelin-converting
enzyme (ECE) and endothelin-1 is stimulated by Ang II in vivo,
thereby increasing production of ET-1. As shown (shaded boxes), ET-1

also stimulates tissue ACE activity, via activation of ETA receptors.
Expression of ppET-1 mRNA is further regulated by ET-1 in an
autocrine manner and by NO. Aogen indicates angiotensinogen, (−)
inhibition, (+) stimulation. Figure reproduced from Barton et al. [8] with
permission from the American Heart Association and the publisher

Fig. 4 a Promoting effect of
diet-induced obesity (o) on
angiotensin II-induced contrac-
tions in the aorta (left panel),
but not the carotid artery (right
panel) in mice. Obesity-induced
increases in contractility were
completely prevented by in vivo
treatment with an orally active
endothelin antagonist (darusen-
tan, LU135252, LU) despite
continued obesity (O+LU).
*p<0.05 vs. lean control (C),
†p<0.05 vs. obese (o).
b Diet-induced obesity in mice
(filled circles) enhances
endothelium-dependent contrac-
tions in carotid artery (left
panel) and aorta (right panel).
*p<0.05 vs. C57 control
c Up-regulation of diet-induced
obesity of the preproendothelin
gene in mice following diet-
induced obesity. d Effect of
increasing dietary fat content on
vascular expression of the an-
giotensin AT1 receptor and the
endothelin ETA receptor in a
mouse model of diet-induced
obesity. Figure panels in part
reproduced from Barton et al.
[8] (Panel a), Traupe et al. [129]
(Panels b and c), and Mundy
et al. [93] (Panel d). Repro-
duced with permission from the
American Heart Association and
the publishers
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Angiotensin

Similar to what can be seen during aging [17] obesity does
not equally affect all vascular beds to the same degree.
Using the C57 mouse model of diet-induced obesity [121],
we found that contractions to angiotensin II markedly
increased only in the aorta, but not in the carotid artery [14]
(Fig. 4a). Most surprisingly, we found that the increased
contractility was completely prevented if animals were
concomitantly treated with an endothelin ETA receptor
antagonist [14]. These effects were independent of body
weight and arterial blood-pressure, suggesting that endog-
enous endothelin is activated during obesity and that it
contributes to angiotensin-mediated vasoconstriction in
selected vascular beds. Contractions to angiotensin and this
model were also blocked by cyclooxygenase inhibition in
vitro to a large degree, suggesting that in the mouse
vasculature endothelial EDCFs formed from vasoconstric-
tor prostanoids contribute to the contractility of other
vasoconstrictors [14], an effect that may be age-dependent
[71]. Interestingly, the amount of dietary fat content affects
aortic protein expression of the AT1 receptor, which was
found to be up-regulated only if the diet contained very
high amounts of fat [93] (Fig. 4d).

Vasoconstrictor prostanoids

Enhanced vasoconstriction has been observed in patients
with obesity [117] and both cyclooxygenase and endothelin
has been implicated in these responses. In obese mice
endothelial vasoconstrictor prostanoids are increasingly
formed in both aorta and carotid artery (Fig. 4b) [128].
Contractions are sensitive to blockade with nonselective
COX inhibition, but not COX-2 selective inhibitors [128].
In a simple and elegant study it was subsequently shown by
Vanhoutte's group using COX-1 and COX-2 deficient mice
that COX-1 is indeed the enzyme responsible for
prostanoid-mediated EDCF production in mice [124]. Our
results suggest that with obesity, COX-1 dependent vaso-
constrictor pathways become activated and that they
contribute to enhanced vasoconstriction as can be seen in
obese humans [104]. Again, a similar activation of COX-
dependent pathways has been reported to occur with aging
[125], which is yet another similarity between the two
conditions. Indeed, our recent work comparing functional
vascular injury due to obesity in youth and adulthood
suggests that obesity indeed causes changes compatible
with accelerated, “premature” functional vascular aging
[19]. Aside from COX-derived EDCFs, another
endothelium-derived arachidonic acid product, prostacy-
clin, has recently been directly implicated in obesity, by
determining the fate for the development of fat cells from
progenitor cells [64, 136].

Hydroxyl radical

The role of hydroxyl radical in vascular biology has not
been investigated much. We have analyzed the production
of hydroxyl radical in normal mice and in monogenetic
obesity [92]. We found that endothelin-1 stimulates
hydroxyl radical formation and that obesity, more or less,
abolishes the stimulating effect of endothelin on hydroxyl
radical formation [92]. On the other hand, the relaxant
response to hydroxyl radical was enhanced in animals with
monogenetic obesity [92]. Similar observations were made
in models of diet-induced obesity, where vascular
responses to hydroxyl radical changed from contractions
in lean animals into relaxations upon treatment with high-
fat diet, again effects being specific to a certain vascular
beds [20].

“Endothelial therapy” for and aging obesity

Atherosclerosis is a systemic, age-dependent inflammatory
vascular process that still accounts for half of the morbidity
and mortality in industrialized countries [15]. Atheroscle-
rosis is associated with age-dependent coronary vascular
calcification, which shows a gender difference affecting
women much less than men [61, 114]. In atherogenesis,
inflammation—most likely due to and further augmenting
oxidative stress—is one of the main pathophysiological
mechanisms propagating disease progression [10] and has
been directly implicated in vascular calcification [116].
Early lesions of the atherosclerotic plaque (fatty streaks)
consisting of endothelial deposits of lipid-laden macro-
phages, can be detected in the fetal aorta, and their
progression is aggravated by maternal hypercholesterolemia
[97] and age. This suggests that lipids are required for
disease onset and progression of atherosclerosis already early
in life. Importantly, already in children, obesity promotes the
development of fatty streaks and coronary atheromata,
pathological changes from which surprisingly, girls appear
to be protected due to endogenous estrogen production [87].

Despite the lack of scientific evidence, the pharmaceu-
tical and cosmetics industry continues to devote much
activity to the economically rewarding field of aging
“prevention” (rejuvenation), often also called “anti-aging”.
There are now even scientific journals dedicating their
efforts exclusively towards “rejuvenation” [35]. Despite a
general desire for “rejuvenations” that is largely fueled by
psychological and social factors, efforts should not be
focused on finding potions and remedies [4, 5]. Instead of
trying to “turn back time”, aging can and should be
accepted as a physiological process that does not require
intervention but allows a life very worthwhile if the right
steps are taken in due time [4, 5]. Not surprisingly, in
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elderly humans endothelium-dependent vasoreactivity can
be preserved by exercise even at an older age [66].
However, aged individuals frequently exhibit conditions
favoring the development of hypertension, dyslipidemia,
and atherosclerosis, including a high prevalence of
obesity, lack of exercise, and unfavorable dietary regimens
[9]. Unfortunately, these conditions are no longer limited
to aged individuals, but already present to a considerable
degree in children [9, 77]. It will thus require timely and
powerful interventions if we want to avoid future disease
in adulthood and even later in life. In fact, childhood
obesity—even if normal body weight is maintained in
later life—increases the likelihood of adult coronary artery
disease [3, 21, 77].

A decade ago we proposed the concept of “endothelial
therapy” as a means to preserve and/or improve function
and reduce production of deleterious endothelium-derived
mediators to interfere with atherosclerosis progression [8].
A number of modalities are available to interfere with age-
related changes in endothelial cell function [66]. Preven-
tive measures, which apply to children and adolescents as
well, include cessation of smoking, normalization of
increased body weight, and avoiding unbalanced diets
rich in fat and sugars and low in fibers [30]. Interestingly,
nutritional additives such as vitamins appear to be largely
ineffective to interfere with age-dependent functional
changes [4, 5]. As aging is frequently associated with a
reduction of physical activity and fitness, it is even more
important to emphasize the “therapeutic” role of regular
physical activity, which also helps reduce the incidence
and improve the severity of related co-morbidities such as
diabetes, high blood pressure, dyslipidemia, and obesity
[4, 5]. In fact, it has been demonstrated that lack of
exercise accelerates most diseases known to show an
increased prevalence with aging [76]. Most recent work
from Lauf's group suggests that exercise can actually slow
down vascular aging [140]. It can be anticipated that
maintaining or even improving cardiovascular health with
age is not only likely to result in improved general health,
but can also be expected to have a positive impact on
cardiovascular and renal morbidity and mortality [15,
129], and that it would result in enormous economic benefits
for health systems worldwide. Indeed, regular intense
exercise has beneficial effects on cardiovascular health
showing a dramatic risk reduction [81] that appears to be
equally effective in obese individuals. Similarly, weight loss
has been shown to improve the vascular risk profile by
reducing aortic pulse wave velocity [105].

Changes aiming to achieve normal body weight and
improved fitness of the world population will require timely
implementation and it also will provide us with a chance to
further study endothelial cell biology in the clinical setting
more closely in the context of obesity and aging. However,

we must not wait too long to make these changes work.
Should we fail to reach the required goals it is well possible
that we might—for the first time—experience a decline in
the longevity that we have achieved over hundreds of years
[100, 119].
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