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Abstract. In this work we find the exact solution for the flow field in a semicircular canal

which is the main sensor for angular motion in the human body. When the head is rotated the
inertia of the fluid in the semicircular canal leads to a deflection of sensory hair cells which are
part of a gelatinous structure called cupula. A modal expansion of the governing equation shows

that the semicircular organ can be understood as a dynamic system governed by duct modes and
a single cupular mode. We use this result to derive an explicit expression for the displacement of

the cupula as a function of the angular motion of the head. This result shows in a mathematically
and physically clean way that the semicircular canal is a transducer for angular velocity.
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1. Introduction

The vestibular organ (Figure 1) located in the inner ear of humans and numerous
animals is the primary sensor for angular and linear motion. The semicircular
canals are part of the vestibular organ. They are specifically responsible for sensing
rotations. In each ear there are three semicircular canals which are oriented in
mutually orthogonal directions. The canals are carved in bone and are filled with
perilymph and endolymph, two fluids with mechanical properties similar to water.
The endolymph and the perilymph are separated by a membranous duct. At one
end of each semicircular canal there is the ampulla which contains the cupula. The
cupula is a gelatinous structure which fills the entire cross-section of the canal such
that the flow of the endolymph is blocked [15]. All three canals connect to the
utricle, a larger chamber which also contains one of the sensors for linear motion.

Under angular motion the inertia of the endolymph in the semicircular canals
leads to a deflection of the cupula. This activates sensory hair cells in the cupula
which send an electrical signal to the central nerve system. For the purpose of our
present investigation it is sufficient to assume that the sensation of angular motion
is roughly proportional to the deflection of the cupula. The relationship between
mechanical effects and afferent nerve discharge in the cupula is discussed in detail
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Figure 1. The human vestibular organ

in [28] and [12].
Clearly, the dynamics of the fluid flow in the semicircular canals is the key to the

proper operation of the sensor for angular motion. Many authors have investigated
this flow problem. The actual discovery of the role of the vestibular organ as the
main source of sensation of motion is due to Ewald in 1892 [9]. Steinhausen [23]
was the first to postulate a mathematical description for the sensation of angular
motion. He modeled the dynamics of semicircular canals as a strongly damped
torsional pendulum. This model describes the main features of the dynamics of
the semicircular canals. The values for the parameters of this simple macroscopic
model, however, remain unclear. Several authors (for instance, [21], [27]) have
tried to model these parameters by assuming Poiseuille flow in the semicircular
canals.

Van Buskirk & Grant [25] and later Van Buskirk, Watts and Liu [26] departed
from the macroscopic Steinhausen model and derived equations for the axisymmet-
ric flow in the slender part of the canals directly from the Navier–Stokes equations.
Oman, Marcus & Curthoys [16] introduced a more complex description of the ge-
ometry of semicircular canals but remained with a one-dimensional model for the



Vol. 59 (2008) Fluidmechanics of semicircular canals – revisited 477

dynamics. Rabbitt & Damiano [17] used an accurate three-dimensional model of
the canal and found an asymptotic solution for the flow field. This work was fol-
lowed by Damiano & Rabbitt [7] who did a detailed analysis of the flow field in the
ampulla. They used the slenderness ratio (ratio between the minor and the major
radius of the torus) as their asymptotic variable ǫ. The flow field in the slender part
is considered the outer solution, whereas the flow in the ampulla is considered the
’boundary layer’ or inner solution. The two solutions are asymptotically matched
by balancing terms with equal powers of ǫ. They found that the flow in the slender
part is barely influenced by the more complicated flow field in the ampulla. Or in
other words, the dynamics of the endolymph is dominated by the viscous flow in
the slender part of the canal. In retrospect, this important result is justification
for the simplifications by Van Buskirk et al. [26] who only looked at the flow in the
slender part of the canal for which a constant circular cross-section was assumed.
Although all these investigations used different models and assumptions they all
agreed with the basic dynamic features of the Steinhausen model.

In this work we will present an exact solution to the equation proposed by Van
Buskirk et al. [26], hereafter referred to as VB. We will show that the solution can
be written in a simple and straightforward form which will allow us to use it for the
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Figure 2. Semicircular canal
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study of several clinical manoeuvres of the head. The result of this work provides
a solid fluidmechanical fundament for research on disorders of semicircular canals.

In §2 we briefly summarize the work of VB and re-derive their equation. In §3
we find the solution of the homogeneous form (without forcing) of VB’s equation.
The reaction to impulsive forcing is derived in §4. We use this result in §5 to find
the full solution to VB’s equation. This is followed by §6 where we use our solution
to study a few simple manoeuvres of the head. Section 7 concludes this paper.

2. The model of Van Buskirk, Watts and Liu

For the purpose of this investigation we neglect the flow of the perilymph and
consider only the endolymph and its surrounding membranous duct. Furthermore
we limit our investigation to a single semicircular canal which is a sensible simpli-
fication as long as we consider only head manoeuvres in the plane of the respective
semicircular canal. With this simplification the membranous duct has the topol-
ogy of a torus. The slender part of the duct spans an angle β and has a constant
circular cross-section of radius a which is much smaller than the main radius R of
the torus (Figure 2). The utricle spans an angle γ. The rotation angle α(t) (the
actual head manoeuvre) is a function of time t.

An observer moving with the canal perceives an axial fluid motion u relative
to the canal. This fluid motion obeys the Navier–Stokes equations. In the slender
part of the semicircular canal the axial component of the Navier–Stokes equations
takes the simple form

∂u

∂t
+ Rα̈ = −1

ρ

∂p

∂z
+

ν

r

∂

∂r

(

r
∂u

∂r

)

, (1)

where we have neglected the influence of curvature since R ≫ a. In this equation
α̈(t) is the angular acceleration, ρ is the fluid density, p is the pressure and ν is
the kinematic viscosity. The variables r and z are components of a cylindrical
coordinate system with the origin on the canal centerline. The axial velocity u is
a function of r and t and independent of z due to continuity. Table 1 lists the
values for the physical and geometric parameters that are used in this paper.

description value reference

major canal radius R 3.2 × 10−3 m Curthoys & Oman [5]
duct radius a 1.6 × 10−4 m Curthoys & Oman [5]
angle subtended by the canal β 1.4π Van Buskirk et al. [26]
angle subtended by the utricle γ 0.42π Van Buskirk et al. [26]
endolymph density ρ 103 kg/m3 Bronzino [3]
kinematic viscosity of the endolymph ν 10−6 m2/s Bronzino [3]
cupular stiffness K 13GPa/m3 calculated in §6.1

Table 1. Physical and geometrical parameters
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In order to find an appropriate expression for the pressure gradient ∂p/∂z we
differentiate (1) once with respect to z. All terms which contain u drop out since
they are constant in z (the same goes for the term Rα̈). We obtain

∂2p

∂z2
= 0. (2)

Therefore, ∂p/∂z is a constant and the pressure p(z) is a linear function of z. The
pressure difference ∆p between the two ends of the slender part of the semicircular
canal is

∆p = p(βR) − p(0) = βR

(

∂p

∂z

)

. (3)

The pressure difference ∆p is caused by an external force F which exerts a pressure
F/(πa2) to one end of the semicircular canal. This external pressure must be equal
to the pressure difference ∆p which leads us to the following expression for the
pressure gradient,

∂p

∂z
=

F

πa2βR
. (4)

We model the external force F by the sum of the reactive force Fc of the deflected
cupula and the inertial force Fi of the fluid in the utricle (we assume the actual
fluid motion within the utricle to be negligible relative to the magnitude of u [24]).

The reactive force Fc of the cupula is a function of time and is proportional
to the volumetric deflection of the cupula (for a detailed mechanical model of the
cupula refer to [28]),

Fc(t)

πa2
= K 2π

∫ t

0

∫ a

0

u(̺, τ)̺d̺dτ. (5)

The inertial force Fi of the fluid in the utricle is approximated by Newton’s second
law as

Fi = muRα̈. (6)

However, most of the inertial force of the fluid in the utricle is absorbed by the
walls at the end of the utricle. Only the fluid volume which directly pushes onto
the fluid in the slender part of the canal is relevant to Fi. Therefore, we choose the
mass mu to be equal to the mass of the endolymph which is contained in a torus
section of length γR (arc length of the utricle) with cross-section πa2 (cross-section
of the slender canal),

Fi = ρπa2γR2α̈. (7)

Using these expressions we arrive at the linear inhomogeneous equation for
u(r, t) as given by VB [26] on p.92,

∂u

∂t
+

(

1 +
γ

β

)

Rα̈ = −2πK

ρβR

∫ t

0

∫ a

0

u̺d̺dτ +
ν

r

∂

∂r

(

r
∂u

∂r

)

. (8)

(Note that in contrast to VB we have named the angular acceleration α̈ instead
of α.)
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VB suggests the following non-dimensional variables:

r̃ =
r

a
, t̃ =

tν

a2
, ũ =

u

RΩ
, (9)

where Ω is a typical angular velocity of dimension [1/s]. In these variables we
obtain the non-dimensional form of (8),

∂ũ

∂t̃
+

(

a2(1 + γ/β)

νΩ

)

α̈ = −ǫ

∫ t̃

0

∫ 1

0

ũ̺d̺dτ +
1

r̃

∂

∂r̃

(

r̃
∂ũ

∂r̃

)

, (10)

where ǫ = 2πKa6/ρβRν2 ≪ 1. Together with the initial condition ũ(r, 0) = 0 and
the boundary conditions ũ(1, t̃) = ∂ũ(0, t̃)/∂r̃ = 0 we have arrived at a well-posed
problem for ũ(r̃, t̃).

VB now proceeds to an asymptotic solution of (10) making use of ǫ ≪ 1. Much
in contrast to this we will show in the following sections that (10) can be solved
exactly for an arbitrary forcing α̈.

3. Homogeneous solution

We proceed by examining (10) without forcing (and for the ease of writing we drop
the tilde of the non-dimensionalized variables). To this end we set α(t) = 0 and
differentiate (10) once with respect to t to arrive at the equation

∂2u

∂t2
− 1

r

∂

∂r

(

r
∂2u

∂r ∂t

)

+ ǫ

∫ 1

0

u̺d̺ = 0. (11)

The ansatz u(r, t) = û(r)e−σt reduces the partial integro-differential equa-
tion (11) to an ordinary integro-differential equation,

σ2rû + σû′ + σrû′′ + rǫ

∫ 1

0

û̺d̺ = 0, (12)

where û′ ≡ dû/dr. Together with the boundary conditions û(1) = û′(0) = 0 this
equation is a nonlinear eigenvalue problem for the eigenvalue σ. The solution of
this eigenvalue problem yields modal solutions of the form ûk(r) exp(−σkt). For
eigenvalues σ = σr + iσi with a positive real part σr the modal solution decays in
time. Vice versa we obtain growing solutions for σr < 0. For σi 6= 0 the modal
solutions oscillate in time.

We can recast the nonlinear eigenvalue problem (12) into a linear general eigen-
value problem by defining a new dependent variable v(r) = (û(r), σû(r))T ,

Av = σBv, (13)

A =

(

−ǫ r
∫ 1

0
(·)̺d̺ 0

0 r

)

,

B =

(

r ∂2/∂r2 + ∂/∂r r
r 0

)

.



Vol. 59 (2008) Fluidmechanics of semicircular canals – revisited 481

This technique of expanding the dependent variable is often used in hydrodynamic
stability, where the eigenvalue (in that case a spatial wavenumber α) can appear
up to its fourth power (see, for instance, [22]). In the case of hydrodynamics
the expanded variables αnû have no particular physical meaning. In our case,
however, −σû(r) corresponds to the acceleration ∂u/∂t. Therefore (13) is nothing
more than a reformulation of (11) in phase space (u, ∂u/∂t) which reduces (11)
from a second order to a first order equation in t.

In the form (13) the matrices A and B are matrices of differential and integral
operators, and the vector v is a vector of continuous functions. By applying
an appropriate spatial discretization scheme we can approximate A and B by
matrices with scalar entries and v becomes a vector of function values at discrete
grid points rj . In our case, we use a compact finite difference scheme of fourth
order and equidistant grid spacing to discretize (13). The discretized eigenvalue
problem can be solved numerically with a standard eigenvalue solver. Already less
than 100 grid points give enough accuracy to resolve the first few eigenmodes.

We have listed the locus of the five least stable eigenvalues for different ǫ in
Table 2. All eigenvalues are real and positive and therefore the physical system
described by (11) is asymptotically stable and does not have any oscillating eigen-
modes.

ǫ = 0.01 ǫ = 0.017 ǫ = 0.05 ǫ = 0.09752 ǫ = 0.2

σ0 6.251×10−4 1.063×10−3 3.127×10−3 6.102×10−3 1.253×10−2

σ1 5.783 5.782 5.780 5.777 5.771
σ2 3.047×101 3.047×101 3.047×101 3.047×101 3.047×101

σ3 7.488×101 7.488×101 7.488×101 7.488×101 7.488×101

σ4 1.390×102 1.390×102 1.390×102 1.390×102 1.390×102

|κ0| 0.2500 0.2501 0.2501 0.2503 0.2505
|κ1| 0.2446 0.2446 0.2447 0.2448 0.2451
|κ2| 0.04643 0.04643 0.04643 0.04642 0.04642
|κ3| 0.01890 0.01890 0.01890 0.01890 0.01890
|κ4| 0.01019 0.01019 0.01019 0.01019 0.01019

Table 2. Eigenvalues σk and volume flow κk of the five least stable modes

Although convenient in use the numerical solution of (13) does not provide us
with any profound insight into the true structure of the eigenvalue spectrum. It
merely gives us numerical values for {σk, ûk(r)}. Therefore we put the numerical
solution aside for a while and proceed to solve (12) analytically.

At this point we make the important observation that the integral in (12) is
proportional to the volume flow through the duct. This definite integral yields a
value that is independent of r, i.e., a constant. With the definition

κ ≡
∫ 1

0

û(̺) ̺d̺, (14)
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we can rewrite (12) as an inhomogeneous ordinary differential equation for û,

σrû′′ + σû′ + σ2rû = −rǫκ. (15)

The inhomogeneous solution of (15) is ûi = −ǫκ/σ2. The homogeneous part of
(15) is a Bessel equation of order zero with the solutions J0(

√
σr) and Y0(

√
σr)

[1]. We can discard the solution Y0(
√

σr) because it is singular at r = 0 and does
not satisfy the boundary condition there. Thus, we get

û(r) = AJ0(
√

σ r) − ǫ
κ

σ2
, (16)

where A is an arbitrary constant. Now we can eliminate κ by substituting û in
(14) by (16). This gives us following expression for κ

κ = Aζσ
σ2

σ2 + ǫ/2
, (17)

with

ζσ ≡
∫ 1

0

J0(
√

σ̺) ̺d̺. (18)

It remains to satisfy the boundary condition û(1) = 0. From (16) and (17) we get
the relation

J0(
√

σ) =
ǫζσ

σ2 + ǫ/2
(19)

which determines all eigenvalues σ.
Although there is no explicit solution to (19) we can find the locus of all eigen-

values by simple graphical examination. To this end we draw the graphs of the
left-hand side and the right-hand side of (19) against

√
σ (see Figures 3 and 4).

The eigenvalues σk correspond to the intersections of the two curves (marked by
circles). As expected from the numerical solution all eigenvalues are positive.

The dashed curve in Figure 3, i.e., the right-hand side of (19), drops rapidly
to zero, such that it intersects with the solid line in the vicinity of the first root
of the Bessel function. For larger choices of ǫ the dashed curve drops more slowly.
Theoretically, we can choose ǫ so large that the dashed and the solid curve do not
intersect until around the second root of the Bessel function (or even later). In
that case, we would loose our first few eigenvalues. However, for all physically
sensible choices of ǫ the situation remains qualitatively as shown in Figure 3.

We observe that the least stable eigenvalue σ0 is very close to 0. Numerical
investigation1 shows that σ0 is approximately proportional to ǫ (Figure 5). We can
find an explicit expression for this relation by expanding (19) about σ = 0 (where
we also assume that σ2 ≪ ǫ),

σ + O(σ2) =
ǫ

16 + ǫ/764
. (20)

1 Even though finding eigenvalues by graphical examination is attractive and enlightening (in
an analytical sense), we use the numerical solutions in the following since the solutions from a
numerical eigenvalue solver are usually more robust and accurate (in a numerical sense) than
solutions that are obtained graphically.
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Figure 3. Graphical solution of the eigenvalue relation for ǫ = 0.09752: the intersections of the
left-hand side (——) and the right-hand side (– – –) of (19) correspond to the eigenvalues
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Figure 4. Close-up of the graphical solution of the eigenvalue relation (see also Figure 3)
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This result is consistent with the result of VB who arrived at σ0 = ǫ/16 through
asymptotics for ǫ ≪ 1. All other eigenvalues σ1, σ2, . . . (there are infinitely many)

σ

ǫ

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0
0

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Figure 5. Numerically computed least stable eigenvalues σ0 as a function of ǫ

correspond approximately to the roots of J0(
√

σ) since the right-hand side of (19)
is almost zero for σ > 1,

σj ≈ λ2
j , j = 1, 2, . . . ,

where λj is the j-th root of the Bessel function J0. We see that there is a funda-
mental difference between the least stable eigenvalue σ0 and all other eigenvalues.

To illustrate this difference we briefly re-consider our problem for a semicircular
canal without a cupula. We can eliminate the cupula from our equations by setting
ǫ = 0. In that case, the right-hand side of (19) is zero. Obviously, the least stable
eigenvalue σ0 is no longer a solution. The other eigenvalues, however, remain
approximately at the same locations. Apparently, these modes are independent of
the presence of the cupula. They are directly related to the modes of a pipe flow.
Therefore, we call them duct modes. The least stable mode exists only because of
the cupula. Therefore, we call it the cupular mode.

To conclude our discussion of the eigenvalue spectrum we note that although
σ = 0 satisfies (19) it is not an eigenvalue, since its corresponding eigenfunction is
the trivial solution û = 0.

Apart from the eigenvalues σ we can also extract the shape of the eigenfunctions
û(r) from Figure 3. According to (16) the eigenfunctions û(r) have the form of
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√
σ

1
r

û2(r)

0 2 4 6 8 10

Figure 6. Construction of eigenfunctions from the graphical solution of (19) on the example of
the eigenfunction û2(r) (note that this plot uses two different sets of axes: one with

√
σ on the

abscissa for plotting (19) and one with the abscissa r for the eigenfunction û2(r))

Bessel functions of order zero that are shifted by a constant such that û(r = 1) = 0.
Therefore, we can find the shape of the j-th eigenfunction by setting the abscissa
r such that r = 1 cuts the Bessel function at J0(

√
σj). Figure 6 demonstrates

the graphical construction of the eigenfunctions on the example of û2 which is the
eigenfunction associated with σ2. The higher eigenfunctions consist of increasingly
larger sections of the Bessel function.

Furthermore it is interesting to see that the eigenfunctions corresponding to
σ0 and σ1 resemble the Poiseuille profile 1 − r2 (Figure 7). The similar shape of
these two eigenfunctions together with the large difference in their temporal rate
of decay makes this pair of eigenmodes good candidates for transient effects [11].

This concludes our discussion of the homogeneous problem (11). We have found
the complete spectrum with its corresponding eigenfunctions. In its general form
the solution to (11) is

u(r, t) =

∞
∑

k=0

Akûk(r)e−σkt, (21)

where the coefficients Ak are determined through the initial conditions.
We should note that the duct modes have also been found by Rabbitt & Dami-

ano [17]. However, they were missing the cupular mode which they introduced
only later by asymptotic matching of the flow field in the ampulla [7]. Also we
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Figure 7. The two least stable eigenfunctions û0(r) and û1(r) (the dotted line is the parabolic
profile 1 − r2)

find that the two asymptotic solutions of VB correspond to the cupular mode and
the first duct mode, respectively. Whereas VB have arrived at this result through
multiple-scale analysis in t and ǫt, we have reproduced their results and revealed
the complete modal structure by straightforward analytical reasoning. One might
argue now that the higher modes are physically irrelevant since they are so heavily
damped that they cannot be observed in nature. However, we will show in the
following section that the knowledge of the complete set of modal solutions is a
useful asset for the computation of the inhomogeneous solution of (10).

4. Impulse response

In this section we find the solution of (10) for an impulsive acceleration α̈ = Bδ(t)
of the semicircular canal. Clinically this corresponds to a sudden acceleration of
the head at rest to a constant velocity α̇ = Ba2/ν (the factor a2/ν arises because
the dots in α̇ and α̈ stand for the derivative with respect to the dimensional time
variable).

We solve this inhomogeneous problem by recasting it into a homogeneous initial
value problem. To this end we integrate (10) with respect to t from −T to +T
and let T → 0. The left-hand side gives us values for u immediately before and
after t = 0 as well as a constant term from the integration of δ(t). The right-hand
side vanishes due to the boundedness of u, (1/r)∂u/∂r and ∂2u/∂r2 (these values
are bounded since there cannot be infinite velocities or infinite viscous forces),

u(r, t = 0+) − u(r, t = 0−) +

(

a2(1 + γ/β)

νΩ

)

B = 0. (22)

Causality tells us that u(r, t = 0−) must be 0. Therefore we obtain the initial
condition

u(r, t = 0+) = u0 = −
(

a2(1 + γ/β)

νΩ

)

B. (23)
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Since (10) is a second order equation in t we need a second initial condition. We
obtain this second condition by differentiating (10) once with respect to t. Then
we integrate this equation as before from −T to T with T → 0. In this case the
forcing term on the left-hand side is zero due to the symmetry of δ(t). We obtain

∂u

∂t

∣

∣

∣

∣

t=0+

− ∂u

∂t

∣

∣

∣

∣

t=0−

= − ǫ lim
T→0

∫ T

−T

∫ 1

0

u̺d̺ds

+
1

r

∂

∂r

(

r
∂

∂r
u(r, t = 0+)

)

− 1

r

∂

∂r

(

r
∂

∂r
u(r, t = 0−)

)

.

The integral on the right-hand side goes to zero due to the boundedness of u. For
the remaining two terms on the right-hand side we use the causality argument
and (23). This gives us the second initial condition

∂u

∂t

∣

∣

∣

∣

t=0+

= 0. (24)

With this we have shown that the homogeneous problem (11) together with the
initial conditions (23) and (24) is equivalent to the inhomogeneous problem (10)
with impulsive forcing α̈ = Bδ(t) [13]. Or in other words, the impulsive forcing
at t = 0 leads to a non-zero state at t = 0+ which is given by (23) and (24).
This allows us to use the general solution (21) for the homogeneous problem that
we have derived in the previous section. The unknown coefficients Ak are now
determined through the initial conditions,

u(r, t = 0) = u0 =

∞
∑

k=0

Akûk(r), (25)

∂

∂t
u(r, t = 0) = 0 =

∞
∑

k=0

Akσkûk(r). (26)

In order to get explicit expressions for Ak we need an orthogonality relation for
the eigenfunctions ûk. We obtain such an orthogonality relation by the theory of
adjoint eigenvalue problems (see, for example, § 3.3.1 in Schmid & Henningson [22]
for a brief introduction to adjoint problems). The adjoint problem to (13) is defined
as

A+v+ = ηB+v+.

The vector v+ is called the adjoint eigenvector and η is the adjoint eigenvalue.
The adjoint operators A+ and B+ are defined as

(p,Aq) = (A+p,q),

(p,Bq) = (B+p,q),

where p and q are arbitrary vectors and (·, ·) is the inner product defined as

(p,q) ≡
∫ 1

0

p∗qdr. (27)
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Following the definition of the adjoint operators we find trough integration by
parts that

A+ =

(

−ǫ r
∫ 1

0
(·) rdr 0

0 r

)

= A,

B+ =

(

r ∂2/∂r2 + ∂/∂r r
r 0

)

= B.

Therefore (13) is self-adjoint and {η,v+} = {σ,v}.
From the theory of adjoint eigenvalue problems we know that (σ−η∗)(v+,Bv) =

0. In the case of self-adjoint operators this orthogonality relation reduces to

(vk,Bvl) = ±δkl, (28)

where we assume appropriate scaling of v.
Note that (vk,Bvk) may be negative for certain eigenfunctions vk. Thus, B is

indefinite2. It is worthwhile to take a closer look at this peculiar situation. To this
end we write the left-hand side of (28) in a more explicit form,

(vk,Bvk) =

∫ 1

0

(û∗

k, σ∗

kû∗

k)

(

(r ∂2/∂r2 + ∂/∂r + σkr)ûk

rûk

)

dr

= − ǫκk

σk

∫ 1

0

û∗

k rdr + σk

∫ 1

0

|ûk|2r dr (29)

=
1

σk

[

|σk|2
∫ 1

0

|ûk|2r dr − ǫ|κk|2
]

, (30)

where we have used the definition of κ (14) and the original eigenvalue prob-
lem (15). We see that this expression may become negative (independent of the
scaling of ûk) if |σk|2 ≪ ǫ. In the previous section we have seen that this is indeed
the case for the first mode. For all other modes (vk,Bvk) is positive. So, we can
write our orthogonality relation in the more precise form,

(vk,Bvl) =

{

−δkl k, l = 0,

δkl k, l 6= 0.
(31)

With this result at hand we can return to (25) and (26). We apply (vl,B ·) to
both sides of these equations and obtain following simple expression for An

Al = ±
(

(ûl, σlûl)
T ,B(u0, 0)T

)

,

Al = ±
∫ 1

0

u0σlû
∗

l r dr,

Al = ±u0σlκ
∗

l .

2 We can make B positive definite by multiplying the first row of A and B by −1. However,
the problem is then no longer self-adjoint (B+ = BT ) and the adjoint eigenfunctions turn out

as v+

k
= (ûk,−σûk). And, again, the orthogonality relation (v+

k
,Bvl) = ±δkl has an indefinite

sign. Here we have chosen the self-adjoint form of the problem over the positive definite form
of B.
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Therefore, the response u(r, t) to the impulsive forcing α̈ = Bδ(t) is

u(r, t ≥ 0) = B
a2(1 + γ/β)

νΩ

[

σ0κ
∗

0û0(r)e
−σ0t −

∞
∑

k=1

σkκ∗

kûk(r)e−σkt

]

. (32)

For the clinical application it is more interesting to look at the volume displacement
V (t) of the cupula,

V (t) =

∫ t

0

∫ 1

0

2πu(̺, τ) ̺d̺dτ, (33)

which is indicative of the perception of angular motion. We find,

V (t ≥ 0) = B
2πa2(1 + γ/β)

νΩ

[

|κ0|2
(

1 − e−σ0t
)

−
∞
∑

k=1

|κk|2
(

1 − e−σkt
)

]

. (34)

Note that we do not need any explicit knowledge of the shape of the eigenfunctions
to compute V (t). It is sufficient to know the eigenvalues σk and the absolute values
of the coefficients κk. In practice it is sufficient to use the first five modes due to
the fast convergence of the infinite sum in (34). In Table 2 we have listed σk and
|κk| of the five least stable modes for different values of ǫ.

Before we conclude this section let us make an interesting observation which
will be of good use in the following section. From a physical point of view it is
clear that V (t) → 0 as t → ∞ (the cupula must return to its relaxed state in the
absence of external forcing) at the same time (34) tells us that

V (t → ∞) = B
2πa2(1 + γ/β)

νΩ

[

|κ0|2 −
∞
∑

k=1

|κk|2
]

.

Therefore, the following relation between the factors κk must hold

|κ0|2 =

∞
∑

k=1

|κk|2. (35)

5. Arbitrary forcing

In this section we find the solution to (10) for arbitrary forcing α̈(t). The theory
of Green’s functions [2] provides us with a simple and efficient way to find this
solution. Green’s function G(t, τ) is the response of the dynamic system to an
impulsive forcing α̈(t) = δ(t − τ). The volume displacement for arbitrary forcing
can then be computed with the integral

V (t) =

∫

∞

−∞

α̈(τ)G(t, τ)dτ. (36)
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We can easily find G(t, τ) by using our result for impulsive forcing (34) with B = 1
and t replaced by t − τ ,

G(t, τ) =

{

2πa2(1+γ/β)
νΩ

∑

∞

k=0 ∓|κk|2
(

1 − e−σk(t−τ)
)

t ≥ τ,

0 t < τ,
(37)

where we use the plus sign for k = 0 and the minus sign for all other modes.
Therefore, the volume displacement V (t) is given by the integral expression

V (t) =
2πa2(1 + γ/β)

νΩ

∞
∑

k=0

∓|κk|2
[
∫ t

−∞

α̈(τ)
(

1 − e−σk(t−τ)
)

dτ

]

. (38)

With this result we have already completed the main task of this section. However,
we can still greatly simplify the integral in (38).

We use integration by parts and the fact that α̈ = (ν/a2) · (∂α̇/∂t) (due to the
definition of the non-dimensional variable t) to find

∫ t

−∞

α̈(τ)
(

1 − e−σk(t−τ)
)

dτ =
νσk

a2

∫

∞

0

α̇(t − τ)e−σkτdτ, (39)

where we assume that α̇ → 0 for t → −∞. In order to make further progress we
need to make use of the particular structure of the eigenvalue spectrum. In §3 we
have found that all eigenvalues except σ0 have a large positive value3. This allows
us to replace the integral for k ≥ 1 by its asymptotic expansion [2]

νσk

a2

∫

∞

0

α̇(t − τ)e−σkτdτ ≃ ν

a2
α̇(t). (40)

Introducing this result into (38) and using relation (35) we get our final expression
for the volume displacement,

V (t) ≃ −2π(1 + γ/β)

Ω
|κ0|2

[

α̇(t) − σ0

∫

∞

0

α̇(t − τ)e−σ0τdτ

]

. (41)

This is a remarkable result. First, it allows us to compute easily the volume
displacement V (t) requiring only knowledge of σ0 and |κ0|. Second, and more
importantly, it reveals in mathematical terms how the fluid dynamics of the semi-
circular canal translates the angular velocity α̇(t) directly to a volume displacement
V (t) of the cupula.

Apart from the second term on the right-hand side of (41) the cupula displace-
ment V is proportional to the angular velocity α̇. We can interpret the second
term as the difference between the perceived and the actual angular velocity α̇.
We define this difference as the velocity error α̇e,

α̇e = −σ0

∫

∞

0

α̇(t − τ)e−σ0τdτ. (42)

3 In this context large means that these modes are heavily damped. In physical time scales the
mode σ1 ≈ 5.78, for instance, has decayed to about 1% of its initial value after only 0.02 s.
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The perceived velocity is then α̇ + α̇e. For a velocity profile α̇(t) which changes
rapidly with respect to the time scale t = 1/σ0 (as it is the case for most natural
movements of the head) the relative velocity error α̇e/α̇ is only of order σ0. For a
velocity α̇(t) that changes very slowly or remains constant (like when sitting on a
rotating office chair) the error term α̇e grows steadily until it nearly cancels α̇.

It has been postulated many times in literature that semicircular canals are
transducers of angular motion. Equation (41) is mathematical evidence for this
postulate and relates it directly and explicitly to fluidmechanics. This result has
been derived from the fundamental law of conservation of momentum (1) and not
from a macroscopic model that already implies the above postulate.

We conclude this section by giving an approximate value for the proportionality
factor (or gain) between α̇ and the dimensional volume displacement V ∗(t),

V ⋆(t) ≈ −1.07 × 10−12 ·
[

α̇(t) − σ0

∫

∞

0

α̇(t − τ)e−σ0τdτ

]

[m3]. (43)

This formula is accurate up to a factor 1 + O(ǫ).

6. Clinical manoeuvres

In this section we apply our results to manoeuvres of the head as they are per-
formed in clinical experiments.

6.1. Constant velocity

It is well known that the sensation of angular motion decreases over time even if
the angular velocity is kept constant. This phenomenon is governed by different
mechanisms. On the one hand, we have several adaptation and storage mechanisms
in the nerve system and, on the other hand, there is loss in the mechanical system.
The mechanical loss corresponds to the velocity error α̇e of (41).

Clinical tests show that the overall adaptation process has a time constant4 of
approximately 21 s [14]. We must not use this value, however, since it includes
mechanisms of the central nerve system which are not part of our model (see, e.g.,
[20], [4], [19]). Rather we must look at the time constant of the mechanical system
alone. It corresponds to the relaxation time of the cupula which has been found
to be approximately Tc = 4.2 s [6].

From (41) and (20) we can derive that the appropriate time constant is attained
for

ǫ ≃ 16σ0 =
16a2

νTc
= 0.09752. (44)

4 The time constant is defined as the time after which the amplitude has decayed to 1/e of its
initial value.
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From this value of ǫ we can find a value for the cupular stiffness K ≈ 13GPa/m3.
Note that this value is much larger than the value given by VB. This is due to the
fact that VB used a larger time constant Tc.

6.2. Sensation threshold

There is a threshold value for the angular velocity α̇t [10]. Below this threshold
value angular motion cannot be sensed with the vestibular organ. Oman et al. [16]
report the threshold value α̇c = 2◦/s.

From (41) we know that the volume displacement of the cupula is linearly
dependent on the amplitude of α̇. Neglecting the velocity error α̇e we find from (43)
that the threshold value for the volume displacement V ⋆

t is approximately

|V ⋆
t | ≈ 3.74 × 10−14m3. (45)

The value V ⋆
t is important for the investigation of canalithiasis (a form of

benign paroxysmal positional vertigo or BPPV). In canalithiasis the endolymph
flow is disturbed by small particles falling through the duct. This disturbed flow
may lead to a secondary and pathological deflection of the cupula which causes the
vertigo. A symptomatic feature of canalithiasis is the latency between the head
manoeuvre and the onset of vertigo. This latency period (typically a few seconds)
may be interpreted as the time during which the cupular displacement |V ⋆(t)| is
smaller than the threshold value V ⋆

t .
Apart from the threshold value, we assume that also the cupular mode plays

an important role in canalithiasis. It is the only mode that decays slow enough
to be relevant in the pathological deflection of the cupula which typically lasts
for several seconds. Therefore, we may conjecture that the parameter ǫ has an
influence of the duration of the vertigo, i.e., the smaller ǫ is, the slower is the
decay of the cupular mode, and the longer lasts the vertigo.

6.3. Standardized manoeuvres

Clinical experiments use standardized manoeuvres to diagnose pathological con-
ditions of the semicircular canals. The most common manoeuvre is due to Dix
& Hallpike. The Dix–Hallpike manoeuvre is used for the diagnosis of BPPV [8].
First, the head is yawed by 45◦ toward the side of the ear to be tested. This aligns
the plane of the posterior semicircular canal (this is the canal which is oriented
like the rim of the pinna) with the sagittal direction of the body. The body is
then tilted backward and the head extended so as to reach a rotation of 120◦ in
the plane of the posterior semicircular canal. The tilt from 0◦ to 120◦ shall be
completed in 3s which is consistent with the scheme used by Rajguru et al. [18].

We are interested in the 120◦-rotation since our model accounts only for angular
movements in the plane of the semicircular canal. To this end we study three
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different acceleration patterns α̈(0 ≤ a2t/ν ≤ 3s):

α̈I(t) =
2
√

π

9 · 0.004

[

e
−

(

a2t/ν−0.02
0.004

)

2

− e
−

(

a2t/ν−3.02
0.004

)

2]

,

α̈II(t) =
8
√

π

27 · 0.004

∫ a2t/ν

0

[

e−( τ−0.01
0.004 )

2

− 2e−( τ−1.51
0.004 )

2

+ e−( τ−3.01
0.004 )

2
]

dτ,

α̈III(t) =
80π

243

[

(a2t/ν)3 − 9

2
(a2t/ν)2 +

9

2
(a2t/ν)

]

.

The first pattern α̈I consists of two impulsive accelerations with opposite sign
which lead to a constant angular velocity of 40◦/s. This pattern cannot be re-
alized in a clinical test since the peak accelerations are far too high. However,
its mathematical treatment is straightforward and it provides a good reference
for the other patterns. The second pattern α̈II prescribes a piecewise constant
acceleration/deceleration of 53.3◦/s2 which causes a linear velocity increase up to
80◦/s. It is a realistic pattern in the sense that such patterns can be tested in
clinical experiments using computer-controlled three-dimensional rotating chairs.
The third pattern α̈III follows a simple polynomial function. It leads to smooth
velocity changes and comes closest to natural movements. Figure 8 shows the
three patterns as functions of time.

Figure 9 shows the cupular volume displacement V ⋆(t) according to (41) for
the three different acceleration patterns. For small t we see that the cupular
volume displacement V ⋆ is approximately proportional to the respective angular
velocity α̇ from Figure 8. As time progresses the velocity error α̇e increasingly
distorts the curves in Figure 9 and V ⋆ is now far from proportional to α̇. In
particular, the velocity error (42) leads to an overshoot of V ⋆ such that the cupula
is deflected to the opposite side during the deceleration phase (for patterns II and
III the overshoot starts at a2t/ν ≈ 2.5s). Moreover, after the head has come to
a complete stop the cupula has not yet returned to its initial state. It returns
only slowly with a fluid motion that is solely governed by the least stable mode
σ0. Note that the magnitude of the overshoot is approximately independent of the
acceleration pattern.

One might expect that the overshooting of V ⋆ would create a sensation of
negative angular velocity since the value of V ⋆ is beyond the threshold value V ⋆

t

that we have derived in §6.2. And indeed, such a sensation can be observed in
clinical tests after a sudden deceleration following a long period of constant veloc-
ity. However, we do not see it for the short Dix–Hallpike manoeuvre considered
here. This apparent discrepancy between clinical experiments and our model can
be explained by mechanisms of the central nerve system (see, e.g., [19]).
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Figure 8. Acceleration patterns I, II & III (—— angle α, – – – angular velocity α̇, · · · angular
acceleration α̈)

7. Conclusion

We have shown how VB’s equation (8) for the flow field in a semicircular canal
can be solved analytically. We have put special emphasis on a detailed analysis of
the temporal spectrum of this equation. Based on this analysis we were able to
derive simple but exact expressions for the cupular volume displacement.

The simplicity of results like (41) lets us easily forget that we have not started
off to our venture with a macroscopic model like Steinhausen’s torsion pendulum
but rather with a partial differential equation in r and t describing the conservation
of momentum in the endolymph. Only later in our work we have been able to get
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Figure 9. Cupular volume displacement V ⋆ for the Dix-Hallpike manoeuvre (—— acceleration
pattern I,– – – acceleration pattern II, · · · acceleration pattern III)

rid of explicit references to the radial coordinate r. Under this light we can split
our work in three separate steps. First, we have extracted the full information
on the system dynamics by finding the temporal spectrum and its corresponding
eigenfunctions (§3). Second, we have condensed the modal information (§4) into
the sequence {σk, κk}. With this compact information on the system dynamics
at hand we were able to forget about the particular shape of u(r, t). In a third
step, we have derived the expression for the cupular volume displacement (§5) only
using {σk, κk}.

It should be stressed again that the existence of both the cupular mode as
well as the duct modes is required to obtain an operational semicircular canal.
The fundamental difference between these modes can not only be seen from their
different dependence on ǫ but also from their different behavior under the inner
product (vk,Bvk). The orthogonality relation (31) shows us dramatically that
the cupular mode has a special role in the dynamics of the semicircular canal.

Finally, we note that we have arrived at these results by using standard tech-
niques that have been widely used in linear stability theory in general and hydro-
dynamic stability in particular [22]. This work is a good example for the usefulness
of these techniques not only for flows with critical stability conditions but also for
highly damped flows such as the one considered in this work.
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