Sex Pheromone of the Cranberry Root Grub Lichnanthe vulpina

Paul S. Robbins • Aijun Zhang • Anne L. Averill •
Charles E. Linn, Jr. • Wendell L. Roelofs •
Martha M. Sylvia • ${ }^{*}$ Michael G. Villani

Received: 1 September 2005 / Revised: 14 November 2005 /
Accepted: 26 March 2006 / Published online: 22 July 2006
(C) Springer Science + Business Media, Inc. 2006

Abstract

The cranberry root grub Lichnanthe vulpina (Hentz) (Coleoptera: Glaphyridae) is a pest of cranberries in Massachusetts, reducing yield and vine density. (Z)-7-Hexadecenol and (Z)-7-hexadecenal were identified from the female effluvia collection by gas chromatographic-electroantennographic detection and gas chromatography-mass spectrometry. The double-bond position was confirmed by dimethyl disulfide derivatization. Both compounds were tested in the field, each alone and as blends of the two. Each compound alone captured males; however, (Z)-7-hexadecenol alone captured significantly more males than did (Z)-7-hexadecenal alone. The addition of varying amounts of (Z)-7hexadecenal to (Z)-7-hexadecenol did not statistically affect male capture. Flight activity of the cranberry root grub may be monitored with traps baited with rubber septa containing $300 \mu \mathrm{~g}$ of (Z)-7-hexadecenol. A test of trap vane colors indicated that traps with green or black vanes maximized target male catch while minimizing nontarget catch of important cranberry pollinators.

Keywords (Z)-7-Hexadecenol $\cdot(Z)$-7-Hexadecenal \cdot Gas chromatography-mass spectrometry • Electroantennogram • Scarab beetle • Glaphyridae

[^0]
Introduction

The cranberry root grub (CRG) Lichnanthe vulpina (Hentz) (Coleoptera: Glaphyridae) is a native scarab beetle species whose immature stages have a long history as root-feeding pests of cranberry beds in Massachusetts, first being reported in 1911 (Franklin, 1950). Dunn and Averill (1996) found that of the 38 Massachusetts cranberry beds sampled, 61% were infested with CRG larvae. Currently, the only control strategy for the CRG is renovation. Bog renovation, the removal and disposal of the top $25-30 \mathrm{~cm}$ of the bog (including the cranberry plants and associated CRG larvae), is an extreme and expensive solution for a problem that may eventually recur. The identification and commercial availability of the CRG sex pheromone of this species could provide a useful tool for monitoring or managing this pest.

The objective of this study was to identify the sex pheromone of L. vulpina as well as to determine a trap color that would maximize target capture while minimizing capture of honeybees and bumblebees, important pollinators of cranberries.

For more information on the taxonomy, behavior, and distribution of the Lichnanthe, see Westcott (1976), Carlson (1980), and O’Donnell (1996).

Methods and Materials

Pheromone Collections

Third instar larvae of CRG were collected in mid-April by digging them from the soil in an infested cranberry bog in Carver, MA. Recovered larvae were kept individually in $\sim 30-\mathrm{ml}$ plastic cups in a $3: 1 \mathrm{mix}$ of greenhouse sand and screened peat moss raised to ca. 12% moisture. They were housed in a controlled environment room at $25^{\circ} \mathrm{C}$ during the $16-\mathrm{hr}$ photophase and $20^{\circ} \mathrm{C}$ during the $8-\mathrm{hr}$ scotophase. After pupation and adult emergence, individuals were separated by sex, and up to 15 females were placed together in an all-glass collection vessel during the photophase because the species is diurnal (Zhang et al., 1994; O'Donnell, 1996). Twelve female collections were made during the course of the study. During the photophase, pump-drawn air was filtered through charcoal, bubbled through distilled water, passed over and among the females, and finally through a glass tube filled with adsorbent Super Q polymer material (Alltech, Deerfield, IL, USA). Volatiles were eluted from the Super Q using ca. 2 ml of dichloromethane before condensing under a nitrogen stream to a volume of ca. $20 \mu \mathrm{l}$.

Instrumentation

The coupled gas chromatograph-electroantennogram detector (GC-EAD) system used was as previously described in Zhang et al. (1997, 1999, 2003). A Hewlett Packard (HP) 5880 gas chromatograph equipped with a $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ ID, $0.25-\mu \mathrm{m}$ film-thickness nonpolar SE-30 capillary column (Alltech Associates) in the splitless mode with nitrogen as carrier was used for GC-EAD analysis $\left(150^{\circ} \mathrm{C}\right.$ for 2 min , then programmed to $250^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$ and held for 25 min) or a $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ ID, $0.25-\mu \mathrm{m}$ film-thickness polar Stabilwax capillary column (Restek Corp., $150^{\circ} \mathrm{C}$ for 2 min , then programmed to $220^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$ and held for 25 min). The capillary column effluent and nitrogen makeup gas ($10 \mathrm{ml} / \mathrm{min}$) were split ($\sim 1: 1$) by a Y GlasSeal capillary column connector (Supelco, Inc.) to the flame ionization detector (FID) and EAD. After removing an antenna from the beetle, one lamella
tip and the scape were positioned between two gold wire electrodes, which were immersed in saline-filled $(0.9 \% \mathrm{NaCl})$ wells in a small acrylic plastic holder. This holder held the antennal club open, exposing the sensilla to the airstream (see photo in Robbins et al., 2003). The output recording electrodes were connected to a high-impedance 1:100 amplifier with automatic baseline drift compensation. The airstream flowing over the antennae (about $500 \mathrm{ml} / \mathrm{min}$) was humidified by bubbling through distilled water before entering the EAD interface. The antennal preparation was cooled to $\sim 5^{\circ} \mathrm{C}$ inside a condenser by circulating near $0^{\circ} \mathrm{C}$ water from a bench-top refrigeration unit (RTE-100, NESLAB instruments, Inc., Portsmouth, NH, USA) through the insulation layer of the modified condenser containing the acrylic plastic holder mounted on top of the GC. An HP 3390A integrator was used for EAD recording.

Electronic impact gas chromatography-mass spectrometry (GC-MS) was conducted on an HP 5890 GC coupled to an HP 5970B mass selective detector using an identical SE-30 capillary column [$150^{\circ} \mathrm{C}$ for 2 min , then programmed to $250^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$ and held for 25 min for regular analysis; $180^{\circ} \mathrm{C}$ for 2 min , then programmed to $230^{\circ} \mathrm{C}$ at $15^{\circ} \mathrm{C} / \mathrm{min}$ and held for 50 min for analysis of dimethyl disulfide (DMDS) adducts] or a DB-5 capillary column ($60 \mathrm{~m} \times 0.25 \mathrm{~mm}$ ID, $0.25-\mu \mathrm{m}$ film thickness, J\&W Scientific Inc.; $50^{\circ} \mathrm{C}$ for 2 min , then programmed to $300^{\circ} \mathrm{C}$ at $15^{\circ} \mathrm{C} / \mathrm{min}$ and held for 50 min) but with helium as carrier gas. A $70-\mathrm{eV}$ electron beam was employed for sample ionization.

Chemicals

Synthetic (Z)-7-hexadecenol (Z7-16:OH) and (Z)-7-hexadecenal (Z7-16:Ald) were purchased from Pheromone Bank, Wageningen, The Netherlands. Purities of the chemicals, as determined on 30-m polar Stabilwax and nonpolar SE-30 GC capillary columns, were > 98\%.

Microderivatization

Dimethyl disulfide derivatives of extracts and synthetic standards were prepared according to standard procedures (Buser et al., 1983; Dunkelblum et al., 1985). Dichloromethane solutions of effluvia extracts or hexane solutions of synthetic monounsaturated standards $(10 \mu \mathrm{l}, 20 \mathrm{ng} / \mu \mathrm{l})$ were treated with $50 \mu \mathrm{l}$ of DMDS (Aldrich Chem. Co., $99+\%$) and one drop of an iodine solution ($60 \mathrm{mg} / \mathrm{ml}$ diethyl ether). The mixtures were kept at $60^{\circ} \mathrm{C}$ for 4 hr . After cooling to room temperature, one drop of 5% aqueous sodium thiosulfate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ was added, and the solutions were shaken vigorously to reduce the iodine. The organic phase was removed, and the aqueous phase was extracted with $100 \mu \mathrm{l}$ hexane. The combined extracts were then dried over anhydrous sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to $\sim 20 \mu 1$ under nitrogen for GC-MS analysis.

The effluvia collection, synthetic Z7-16:OH, and synthetic Z7-16:Ald (30 ng in hexane) were each treated separately in a conical glass vial with $5 \mu \mathrm{l}$ of acetic anhydride-pyridine ($10: 1, \mathrm{v} / \mathrm{v}$), sealed with a Teflon lined screw cap, and heated at $40^{\circ} \mathrm{C}$ in a GC oven for 30 min . After $1 \mu \mathrm{l}$ water was added to destroy the excess anhydride, the organic layer was removed for GC-MS analysis.

Field Evaluation of Synthetic Lures

The following protocol was used for field testing in all years. Lures were formulated by dissolving Z7-16:OH and Z7-16:Ald in hexane, dispensing appropriate amounts into

5-mm rubber stopper septa (Thomas Scientific, Swedesboro, NJ, USA), and allowing the hexane to evaporate in a fume hood. Lures were deployed in the field in cross-vane traps. Traps were placed ca. 20 m apart along the cranberry bog edge and were randomized at deployment. The bottom of the trap was hung ca. 60 cm from the ground. Dates in parentheses at the end of each section indicate the dates that the traps were checked and rerandomized.

Effect of Different Proportions of the Pheromone Constituents on CRG Trap Catches

In 1999, treatments tested in the field included eight blends of Z7-16:OH and Z7-16:Ald at a dose of $1000 \mu \mathrm{~g} / \mathrm{septa}$ in the ratios of 100:0, 90:10, 80:20, 60:40, 40:60, 20:80, 10:90, and $0: 100$ and a solvent-only control treatment. One set of the nine treatments was deployed at each of three Massachusetts cranberry bogs during the flight period in July (July 6-13, 15, 16, and 19).

Effect of Different Doses of a 90:10 Blend of the Alcohol and Aldehyde on Trap Catches
In 2000, a test was deployed to compare doses of a 90:10 blend of $\mathrm{Z7}-16$:OH and $\mathrm{Z} 7-16$: Ald. The doses included $100,300,600$, and $1000 \mu \mathrm{~g} /$ septa and a solvent-only control septa. One set of five treatments was deployed at each of four Massachusetts cranberry bogs during the flight period in July (July 3-9, 14, 18, and 25).

Effect of Trap Vane Color on CRG and Nontarget Insect Catches

A test was deployed in 2000 to test the effect of vane color on CRG adult male catch and honeybee and bumblebee catches. Honeybee and bumblebee catches are of concern to growers because they are essential for crop pollination. This test was conducted to determine a color that would maximize CRG male catches while reducing bee catches. All traps were baited with lures consisting of a 90:10 blend of Z7-16:OH and Z7-16:Ald at a dose of $1000 \mu \mathrm{~g} / \mathrm{septa}$. Vanes for the lab-constructed cross-vane traps were fabricated from 4-mm corrugated plastic of six different colors (white, red, yellow, blue, black, and green) purchased from KIVA Container Corporation, Taylors, SC, USA. One set of six treatments was deployed at each of four Massachusetts cranberry bogs during the flight period in July (July $3-9,14,18$, and 25).

Effect of the Presence of Different Amounts of the Aldehyde on the Optimum Dose of the Alcohol on Male Catches

In 2004, a test was deployed to compare male CRG capture when various amounts of Z716:Ald were added to $1000-\mu \mathrm{g}$ doses of $\mathrm{Z7}-16: \mathrm{OH}$. This test was initiated because the results of the 1999 test (see Fig. 2) did not resolve the role of Z7-16:Ald in male capture. The six treatments tested included $1000 \mu \mathrm{~g}$ of Z7-16:OH alone, $1000 \mu \mathrm{~g}$ of Z7-16:OH + $10 \%(111 \mu \mathrm{~g})$ of Z7-16:Ald, $1000 \mu \mathrm{~g}$ of Z7-16:OH $+20 \%(250 \mu \mathrm{~g})$ of Z7-16:Ald, $1000 \mu \mathrm{~g}$ of Z7-16:OH $+40 \%(666 \mu \mathrm{~g})$ of Z7-16:Ald, $1000 \mu \mathrm{~g}$ of Z7-16:Ald, and a solvent-only control. One set of the six treatments was deployed at each of two Massachusetts cranberry bogs, and two sets were deployed at separate locations on a third bog during the flight period (June 28, July 1, 5, and 8).

In 2005, a test was deployed to compare male CRG capture when various amounts of Z7-16:Ald were added to $300-\mu \mathrm{g}$ doses of $\mathrm{Z7} 7$-16:OH. In this test, the dose of Z7-16:OH was
reduced from $1000 \mu \mathrm{~g} / \mathrm{septa}$ (see 2004 test above) to $300 \mu \mathrm{~g} /$ septa to provide a more sensitive assay of male CRG response to added amounts of the Z7-16:Ald. The three treatments tested included $300 \mu \mathrm{~g}$ of Z7-16:OH alone, $300 \mu \mathrm{~g}$ of Z7-16:OH $+10 \%(33 \mu \mathrm{~g})$ of Z7-16:Ald, and $300 \mu \mathrm{~g}$ of $\mathrm{Z7}-16: \mathrm{OH}+20 \%(75 \mu \mathrm{~g})$ of Z7-16:Ald. Four sets of the three treatments were deployed at separate locations on a large Massachusetts cranberry bog during the flight period (July 3, 5, 8, 11, 16, and 19).

Fig. 1 Simultaneous EAD and FID responses of a male CRG antenna to (A) synthetic Z7-16:Ald and Z7-16:OH (10 ng, 1:3 ratio, v/v); (B) effluvia trapped from 15 virgin female CRG (3-13 days old) on an SE-30 capillary column

B

Statistics

Using the Levene test for homogeneity of variance, data sets were tested for homogeneity of variance and log-transformed $(x+1)$ as necessary. Data were analyzed using a one-way analysis of variance, F at $P<0.05$, with post hoc comparisons using Fisher's least significant difference (LSD) test.

Results and Discussion

Pheromone Identification
Coupled GC-EAD analyses of female effluvia extracts demonstrated that male beetle antenna consistently responded to two compounds (Fig. 1B). Two EAD-active peaks from 12 female effluvia collections were observed at 10.39 and 11.14 min on a $30-\mathrm{m}$ SE-30 capillary column and at 10.82 and 14.27 min on a $30-\mathrm{m}$ Stabilwax column at about a $1: 3$ ratio. The MS of the active component corresponding to the later EAD response in the effluvia extracts exhibited a comparatively strong ion at $m / z 222(5 \%)$ as the highest mass fragment and matched spectra of monounsaturated C_{16} derivatives retrieved from the Wiley 275 mass spectral database. In addition, the MS of the earlier component showed the largest fragment at $m / z 220(3 \%), 2 \mathrm{amu}$ less than the later compound, indicating that it could possess an additional unsaturation.

The identity of the EAD-active compounds was determined by capillary GC-MS analysis of DMDS derivatives of the female effluvia extracts. Pairs of diagnostic sulfide fragments were observed at $m / z 161$ (81%) and 173 (100\%) with the molecular ion at $m / z 334(52 \%)$. Pairs of diagnostic fragments were also observed at $m / z 159(18 \%)$ and 173 (100%) with molecular ion at $m / z 332(44 \%)$. These observations indicated that $\Delta 7-16: \mathrm{OH}$ and $\Delta 7-16$:Ald, respectively, were likely candidates for the natural pheromone. The $\Delta 7-16$: OH was also verified by a pair of diagnostic sulfide fragments observed at $m / z 173$ (94\%)

Fig. 2 Average capture/treatment (mean $\pm \mathrm{SE}$) of male CRG beetles in traps baited with various $1000-\mu \mathrm{g}$ blends of Z7-16:OH and Z7-16:Ald, 1999. Data were transformed using $\log (x+1)$ before analysis. Bars with the same letter are not significantly different ($P<0.05$, Fisher's LSD test)

Fig. 3 Average capture/treatment (mean \pm SE) of male CRG beetles in traps baited with various doses of a 90:10 blend of Z7-16:OH and Z7-16:Ald, 2000. Data were transformed using $\log (x+1)$ before analysis. Bars with the same letter are not significantly different ($P<0.05$, Fisher's LSD test)
and 203 (75\%) with the molecular ion at $m / z 376$ (30\%) from the microacetylation preparation of the female effluvia collection. To confirm the above conclusion, and to determine pheromone geometry, synthetic standards of the (E) and (Z) isomers of $\Delta 7-16$: $\mathrm{OH}, \Delta 7-16$: Ald, and $\Delta 7-16$: Ac were then subjected to the corresponding analysis. The MS spectra and GC retention times of synthetic Z7-16:OH, Z7-16:Ald, Z7-16:Ac, and their DMDS adducts were indistinguishable from those of natural products on both SE-30 and Stabilwax capillary columns. The natural pheromone in each case corresponded to the latereluting isomers (monounsaturated C_{16} derivatives) with an SE-30 capillary column and earlier-eluting isomers (DMDS adducts) on a Stabilwax capillary column, which established

Fig. 4 Average capture/treatment (mean \pm SE) of honeybees in traps of various vane colors, 2000. Bars with the same letter are not significantly different ($P<0.05$, Fisher's LSD test)

Fig. 5 Average capture/treatment (mean \pm SE) of bumblebees in traps of various vane colors, 2000. Data were transformed using $\log (x+1)$ before analysis. Bars with the same letter are not significantly different $(P$ <0.05, Fisher's LSD test).
these components to be the (Z) isomers. The strong antennal responses to $\mathrm{Z7} 7$-16:OH and $\mathrm{Z7}$ 16:Ald were confirmed with authentic standards (Fig. 1A).

Effect of Different Proportions of the Pheromone Constituents on CRG Trap Catches
Traps baited with Z7-16:OH only captured significantly more males than did traps baited with Z7-16:Ald. Male captures decreased steadily in response to increasing amounts of Z716:Ald relative to the $\mathrm{Z7}-16: \mathrm{OH}$, but in all cases, baited treatments captured more males than the control ($F_{8,18}=8.18 ; P<0.001$; Fig. 2).

Fig. 6 Average capture/treatment (mean \pm SE) of male CRG beetles in traps baited with blends of Z7-16:OH and Z7-16:Ald, 2004. In treatments containing $\mathrm{Z7}-16: \mathrm{OH}$, the $\mathrm{Z} 7-16: \mathrm{OH}$ was held constant at $1000 \mu \mathrm{~g} /$ septum. Data were transformed using $\log (x+1)$ before analysis. Bars with the same letter are not significantly different ($P<0.05$, Fisher's LSD test).

Effect of Different Doses of a 90:10 Blend of the Alcohol and Aldehyde on Trap Catches
Traps baited with the $100-\mu \mathrm{g}$ dose captured a smaller number of males than did traps baited with the 300,600 , or $1000-\mu \mathrm{g}$ doses $\left(F_{4,15}=13.32 ; P<0.001\right.$; Fig. 3).

Effect of Trap Vane Color on CRG and Nontarget Insect Catches

In the 2000 vane color trial, color of the trap vanes did not affect the number of males captured when traps were baited with lures loaded with $1000 \mu \mathrm{~g}$ of a 90:10 ratio of Z7-16: OH and Z7-16:Ald $\left(F_{5,18}=0.35 ; P=0.87\right.$; data not shown). However, the numbers of honeybees $\left(F_{5,18}=4.67, P<0.05\right.$; Fig. 4) and bumblebees ($F_{5,18}=11.64, P<0.001$; Fig. 5) caught were affected by trap color, being captured most frequently in traps with white or blue vanes. These findings are similar to those reported for Hoplia equina LeConte, another scarab pest of cranberry (Weber et al., 2005). Based on the findings of these two studies, it is recommended that green or black vanes be used, thereby ensuring effective male capture while reducing the negative impact on beneficial insects.

Effect of the Presence of Different Amounts of the Aldehyde on the Optimum Dose of the Alcohol on Male Catches

In 2004, there were no significant differences among baited treatments $\left(F_{5,18}=5.98, P<\right.$ 0.05 ; Fig. 6). The high averages in the treatments testing 10% Z7-16:Ald and $20 \% \mathrm{Z} 7-16$: Ald were caused by two large capture events that grossly inflated the averages in those treatments. In 2005, there were no significant differences among the treatments $\left(F_{2,11}=\right.$ $0.096, P=0.91$; data not shown).

Although the female-produced sex pheromone of the CRG contains both Z7-16:OH and Z7-16:Ald, and each compound alone captures males, the Z7-16:Ald, when combined in various ratios with the $\mathrm{Z} 7-16: \mathrm{OH}$, did not increase male capture. We conclude that although both compounds can be classified as pheromone components, Z7-16:OH alone is sufficient for monitoring or management programs.

Acknowledgments Financial support was provided by the Cape Cod Cranberry Growers Association, the Cranberry Institute, and Ocean Spray Cranberries, Inc. We thank Pam Connor, Jessica Dunn, Revel Gilmore, and Jay O'Donnell of the UMASS Cranberry Experiment Station, East Wareham, MA, and Harald Abrahamsen of SUNY Cobleskill, Cobleskill, NY, for field assistance, and several cranberry growers for providing access to their premises.

References

Buser, H., Arn, H., Guerin, P., and Rauscher, S. 1983. Determination of double bond position in monounsaturated acetates by mass spectrometry of dimethyl disulfide adducts. Anal. Chem. 55:818-822.
CARLSON, D. C. 1980. Taxonomic revision of Lichnanthe Burmeister (Coleoptera: Scarabaeidae). Coleopt. Bull. 34:177-208.
Dunkelblum, E., Tan, S., and Silk, P. 1985. Double bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four Lepidoptera. J. Chem. Ecol. 11:265-277.
Dunn, J. B. and Averill, A. L. 1996. Survey of soil scarab insects in Massachusetts. Cranberries 60:9-12, 22-23.
Franklin, H. J. 1950. Cranberry insects of Massachusetts. Bulletin 445. Parts II-VII. Massachusetts Agricultural Experiment Station.

O’DonNELL, J. E. 1996. Larval distribution and adult activity of the cranberry root grub, Lichnanthe vulpina (Hentz) (Coleoptera: Scarabaeidae). Unpublished MS thesis. Dept. of Entomology, University of Massachusetts, Amherst.
Robbins, P. S., Crocker, R. L., Nojima, S., Morris, B. D., Roelofs, W. L., and Villani, M. G. 2003. Methyl 2-(methylthio)benzoate: the unique sulfur-containing sex pheromone of Phyllophaga crinita. Naturwissenschaften 90:517-520.
Weber, D. C., Robbins, P. S., and Averill, A. L. 2005. Hoplia equina (Coleoptera: Scarabaeidae) and nontarget capture using 2-tetradecanone-baited traps. Environment. Entomol. 34:158-163.
Westcott, R. L. 1976. Observations on the biology and ethology of Lichnanthe rathvoni LeConte (Coleoptera: Scarabaeidae) with emphasis on mating. Dept. Entomol. Anniv. Pub. No. 11: University of Idaho.
Zhang, A., Facundo, H., Robbins, P. S., Linn Jr., C. E., Villani, M. G., Hanula, J. L., and Roelofs, W. L. 1994. Identification and synthesis of the female sex pheromone of the oriental beetle, Anomala orientalis (Coleoptera: Scarabaeidae). J. Chem. Ecol. 20:2415-2427.
Zhang, A., Robbins, P. S., Leal, W. S., Linn Jr., C. E., Villani, M. G., and Roelofs, W. L. 1997. Essential amino acid methyl esters: major sex pheromone components of the cranberry white grub, Phyllophaga anxia (Coleoptera: Scarabaeidae). J. Chem. Ecol. 23:231-245.
Zhang, A., Linn Jr., C. E., Wright, S., Prokopy, R., Reissig, W., and Roelofs, W. 1999. Identification of a new blend of apple volatiles attractive to the apple maggot, Rhagoletis pomonella. J. Chem. Ecol. 25:1221-1232.
Zhang, A., Robbins, P. S., Averill, A. L., Weber, D. C., Linn Jr., C. E., Roelofs, W. L., and Villani, M. G. 2003. Identification of the female-produced sex pheromone of the scarab beetle, Hoplia equina. J. Chem. Ecol. 29:1635-1642.

[^0]: *Deceased May 15, 2001. He is dearly missed by his family, friends, and colleagues.
 P. S. Robbins (\triangle) • C. E. Linn Jr. • W. L. Roelofs • M. G. Villani

 Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
 e-mail: psr1@cornell.edu
 A. Zhang

 Chemicals Affecting Insect Behavior Laboratory, USDA-ARS, BARC-W, Beltsville, MD 20705, USA
 A. L. Averill

 Department of Entomology, University of Massachusetts, Amherst, MA 01003, USA
 M. M. Sylvia

 Cranberry Experiment Station, University of Massachusetts, East Wareham, MA 02538, USA

