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Abstract

The aim of this paper is to propose an algorithm based on the philosophy of the Variable Neighborhood Search
(VNS) to solve Multi Depot Vehicle Routing Problems with Time Windows. The paper has two main contributions.
First, from a technical point of view, it presents the first application of a VNS for this problem and several design
issues of VNS algorithms are discussed. Second, from a problem oriented point of view the computational results
show that the approach is competitive with an existing Tabu Search algorithm with respect to both solution quality
and computation times.
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1. Introduction

Vehicle Routing Problems (VRP) are classical combinatorial optimization problems with
considerable economic significance as pointed out by the following statement.

“The large number of real-world applications, both in North America and in Europe, have
widely shown that the use of computerized procedures for the distribution process planning
produces substantial savings (generally from 5 to 20%) in the global transportation costs. It
is easy to see that the impact of these savings on the global economic system is significant.
Indeed, the transportation process involves all stages of the production and distribution
systems and represents a relevant component (generally from 10 to 20%) of the final cost
of the goods.”1

A brief description of the basic VRP can be given as follows: customers with known
demands are serviced by a homogeneous fleet of vehicles with limited capacity. Routes are
assumed to start and end at exactly one depot, each customer is fully served by exactly
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one vehicle and the primary objective is to minimize the total distance travelled by all
vehicles.

However, to satisfy real-life demands additional constraints are complicating the develop-
ment of appropriate methods. For various applications, like bank deliveries, postal deliveries
or school bus routing, a time interval is also associated with each customer to define the
time of service. Moreover, large companies, as they can be found in the petroleum industry,
have more than just one depot from which service stations are supplied. On account of this,
multiple depots are a reasonable extension to the classical VRP.

The basic VRP and basically all of its variants belong to the class of NP-hard problems
(c.f., Garey and Johnson (1979)) such that exact algorithms, as described in Kohl et al.
(1999) and Laporte and Nobert (1987), become highly time consuming as soon as problem
instances are increasing in size. Thus, for large scale problem instances as typically found in
industrial applications finding an ‘optimal’ solution is not practicable. Therefore different
types of heuristics, ranging from route construction over route improvement heuristics
to sophisticated metaheuristics emerged which quickly produce solutions of reasonable
quality.

The aim of this paper is to propose an algorithm based on the philosophy of the Variable
Neighborhood Search (VNS), a metaheuristic, described in Hansen and Mladenović (1999)
to solve Multi Depot Vehicle Routing Problems with Time Windows. The paper has two
main contributions. First, from a technical point of view, it presents the first application of a
VNS for this problem and several design issues of VNS algorithms are discussed. Second,
from a problem oriented point of view the computational results show that the approach
is competitive with the Tabu Search (TS) algorithm published in Cordeau, Laporte, and
Mercier (2001), with respect to both solution quality and computation times.

The remainder of the paper is organized as follows. In the next section a problem descrip-
tion is given and related work is discussed. Section 3 reviews the main ideas underlying
VNS and provides the details of the implementation and the design choices for the described
problem. Computational results are presented and discussed in Section 4. In Section 5 we
present results for an improved version of the algorithm that takes into account route du-
ration considerations before Section 6 concludes the paper with a résumé of the applied
approach and comments on possible directions for further research.

2. Problem description and related work

The problem tackled in this paper is the Multi Depot Vehicle Routing Problem with Time
Windows (MDVRPTW). It is a generalization of the well known Vehicle Routing Problem
with Time Windows (VRPTW) where instead of one depot, several depots with different
locations and associated fleets have to be considered. Thus, the problem is defined on a
complete graph G = (V, A), where V = {v1, . . . , vm, vm+1, . . . , vm+n} is the vertex set and
A = {(vi , v j ) : vi , v j ∈ V, i �= j} is the arc set. Vertices v1 to vm correspond to the m
depots, while the vertices vm+1 to vm+n represent the n customers. Each vertex vi ∈ V
has several nonnegative weights associated to it, namely, a demand di , a service time si ,
as well as an earliest ei and latest li possible start time for the service, which define a
time window [ei , li ]. For the depots these time windows correspond to the opening hours.
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Further, the depot vertices v1 to vm feature no demands and service times, i.e. di = si = 0,

∀ i ∈ {v1, . . . , vm}. Associated to each arc (vi , v j ) is a nonnegative travel time or cost
ci j . Finally, a fleet of K vehicles is located at the m depots. Each vehicle k has asso-
ciated a nonnegative capacity Dk and a nonnegative maximum route duration Tk . Note,
that the distribution of vehicles over the depots is fixed a-priori and is given as input
data.

Based on this graph, the MDVRPTW consists of building K vehicle routes such that
each vehicle starts and ends at its home depot, each customer is served by one and only one
vehicle, the total load and duration of vehicle k does not exceed Dk and Tk respectively, the
service at each customer i begins within the associated time window [ei , li ] and each vehicle
route starts and ends within the time window of its depot. The objective is to minimize the
total distance travelled by all vehicles.

As stated above, the MDVRPTW is a generalization of the VRPTW and is thus NP-
hard. Hence, exact approaches are bound to be efficient for very small problem instances
only and the use of heuristics should be justified. For the VRPTW this research direction
has been followed intensively as can be seen from an abundant number of papers describ-
ing different approaches for the VRPTW, ranging from simple heuristic methods to very
sophisticated metaheuristics of all kinds. Reviews of these works have been put together
by Braysy and Gendreau (to appear). Also, the MDVRP, i.e. the version of the problem
without time windows has been studied by several authors (c.f. e.g., Chao, Golden, and
Wasil (1993), Cordeau, Gendreau, and Laporte (1997), and Renaud, Boctor, and Laporte
(1996)).

To our best knowledge there is only one paper that addresses (among other problems)
the MDVRPTW, namely the work of Cordeau et al. from 2001 (see Cordeau, Laporte,
and Mercier (2001)) describing the application of an adapted TS algorithm, which had
previously been applied to the MDVRP and the Periodic VRP. The main characteristics of
this approach are the use of a very simple neighborhood, a move of one customer from
one route to another, and the fact that infeasible solutions are allowed during the search.
To ensure that the algorithm is able to move from infeasible to feasible parts of the search
space an adaptive penalty function is used that reacts to the search history. Numerical results
are presented for the Periodic VRPTW, the MDVRPTW and the VRPTW. While for the
former two problems no benchmarks existed, the results for the VRPTW proved the quality
of the approach as illustrated by a comparison with state of the art approaches on the classic
Solomon instances.

3. VNS for the MDVRPTW

VNS is a recent metaheuristic for solving combinatorial and global optimization problems
proposed by Mladenović and Hansen in 1997 (c.f. e.g., Hansen and Mladenović (1999, 2001)
and Mladenović and Hansen (1997)). The basic idea is a systematic change of neighborhood
within a local search. Here, several neighborhood structures are used instead of a single one,
as it is generally the case in many local search implementations. Furthermore, the systematic
change of neighborhood is applied during both a descent phase and an exploration phase,
allowing to get out of local optima.
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Figure 1. Steps of the basic VNS (c.f. Hansen and Mladenović (2001)).

Differing from other local search based metaheuristics, VNS does not follow a trajectory
but rather “explores increasingly distant neighborhoods of the current incumbent solution,
and jumps from this solution to a new one if and only if an improvement has been made. In
this way often favorable characteristics of the incumbent solution, e.g., that many variables
are already at their optimal value, will be kept and used to obtain promising neighboring so-
lutions. Moreover, a local search routine is applied repeatedly to get from these neighboring
solutions to local optima.”2

The steps of the basic VNS are shown in figure 1. Here, Nκ (κ = 1, . . . , κmax) is a finite
set of pre-selected neighborhood structures. The stopping condition may be, e.g., maxi-
mum CPU time allowed, maximum number of iterations or maximum number of iterations
between two improvements.

The basic VNS consists of both a stochastic component, i.e., the randomized selection of
a neighbor in the shaking phase, and a deterministic component, that is the application of a
local search in each iteration. Finally, the solution obtained is compared to the incumbent
one and will be accepted as new starting point if an improvement was made, otherwise it will
be rejected. Thus, the procedure is a descent, first improvement method with randomization.
However, as pointed out in Hansen and Mladenović (2001), it could be transformed into
a descent-ascent method without much additional effort. Thereby x is also set to x ′′ with
some probability, even if the solution is worse than the incumbent.

Below, the implementation of each part of the VNS to solve the MDVRPTW is described.
The description comprehends the building of an initial solution, the shaking phase including
the neighborhood structure definition with the necessary exchange operators, the local search
method, and the acceptance decision in the Move or not phase.

3.1. Initial solution

To construct an initial solution for the MDVRPTW, each customer i is first assigned to the
nearest depot. Afterwards, all customers within a depot are ordered by the center of their
time window 1

2 (ei + li ). If this is done, routes are constructed for each depot using the same
simple procedure described in figure 2.
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Figure 2. Generation of an initial solution.

While the objective function value obtained by this method is of rather poor quality, the
approach brings up two important benefits.

• short run times: results are achieved within a fraction of a second
• minor constraint violations, because of the time window ordering of customers and the

fact that each vehicle is assigned approximately the same number of customers.

Since the initial solution is not necessarily feasible the following iterative process of the
VNS needs to overcome this and to come up with a feasible solution. Note however, that
finding a feasible initial solution is NP-complete given a fixed fleet size.

3.2. Shaking

The set of neighborhood structures used for shaking is the core of the VNS. The main
difficulty is to find a balance between effectiveness and the chance to get out of local optima.

To define a neighborhood of the current solution an appropriate function or operator must
be specified. The main issue is that the neighborhood operator should allow to sufficiently
perturb the incumbent solution while still making sure that the new solution keeps important
parts of the incumbent.

One of the best neighborhood structures for the VRPTW was proposed in Taillard et al.
(1997) and is called CROSS-exchange. The main idea of this exchange is to take two
segments of different routes and exchange them as illustrated in figure 3.

First, the two edges (X1, X ′
1), and (Y1, Y ′

1) are removed from the first route while the edges
(X2, X ′

2), and (Y2, Y ′
2) are removed from the second route. Then the segments X ′

1 − Y1 and
X ′

2 − Y2, which may contain an arbitrary number of customers, are swapped by introducing
the new edges (X1, X ′

2), (Y2, Y ′
1), (X2, X ′

1) and (Y1, Y ′
2). The orientation of both routes is

preserved.
An extension to the CROSS-exchange operator is introduced in Braysy (2003). Here the

sequences get inverted, i.e., the orientation of the selected route parts changes. Consequently,
this operator is called inverted CROSS-exchange, iCROSS-exchange for short.

Both, CROSS-exchange and iCROSS-exchange operators are used to define a set of
neighborhood structures for the VNS proposed in this paper. As mentioned above, the
neighborhoods should explore increasingly distant solutions from the incumbent to over-
come local and find global optimality. In this paper, two measures for the ‘distance’ between
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Figure 3. The CROSS-exchange operator.

two solutions are used. The first metric is simply the maximum length of the sequences that
are exchanged. On top of that, the second metric deals with the number of depots involved
in a neighborhood move.

More precisely, the set of neighborhood structures used in the VNS is divided into two
parts. The first half considers only routes belonging to a given depot, whereas the second
half selects routes from different depots. Let Ck denote the number of customers assigned
to route k, then Table 1 shows for each neighborhood κ the number of depots involved, as
well as the maximum sequence length considered. Clearly the maximum sequence length
can not exceed Ck for any given route k.

Note, that the maximum sequence length just acts as an upper bound for the sequence
length removed in a given neighborhood. Thus, a sequence of length 2 can be removed in the
second, third, fourth, fifth and sixth neighborhood (and also in the 8th to 12th neighborhood),
while a sequence of length four can only be removed in the neighborhoods 4–6 and 10–12.
Thus, while in each neighborhood all the possible sequence lengths are equally likely to be
chosen, overall there is a strong bias towards smaller sequence lengths to focus the search
rather close to the incumbent solution. However, large changes may occur.

In addition, in each neighborhood the iCROSS-exchange operator is applied with a
probability 1/κmax to further increase the extent of the perturbation. Finally, note that to
allow for simply moving a set of customers from one route to another, which corresponds
to the Or-opt operator, one of the sequences may have length 0. Without loss of generality
we will assume that this is always the second sequence.
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Table 1. Set of neighborhood structures.

κ Depots Max. sequence length

1 1 min (1, Ck )

2 1 min (2, Ck )

3 1 min (3, Ck )

4 1 min (4, Ck )

5 1 min (5, Ck )

6 1 Ck

7 2 min (1, Ck )

8 2 min (2, Ck )

9 2 min (3, Ck )

10 2 min (4, Ck )

11 2 min (5, Ck )

12 2 Ck

Note that the contribution of the different neighborhoods to the solution quality obtained
by the VNS have also been tested. As was to be expected, the first neighborhoods have a
much stronger success rate (i.e., lead to improved solutions much more often) than the more
distant neighborhoods. In fact, while the first neighborhood has led to an improvement in
solution quality 1 out of 3 times, the last neighborhood ‘succeeds’ with a probability of
slightly more than 1 percent. While this seems to be a small rate, runs with a smaller number
of neighborhoods have shown that the algorithm may easily get stuck in local optima if the
number of neighborhoods is too small. Thus, these distant neighborhoods significantly
improve the stability of the algorithm, in terms of the variance in solution quality observed
over multiple runs.

3.3. Local search

A solution obtained through shaking is afterwards submitted to a local search to come up
with a local optimal solution. In the current implementation this local search is a restricted
version of 3-opt, with two characteristics. First, sequence inversion is not allowed and
second, the length of the sequences to be exchanged is bounded by an upper limit of three.
While the first mechanism is aimed at reducing the risk of infeasibility (which might be
caused by time window violations due to an inversion), the second mechanism improves
runtimes by reducing the size of the neighborhood significantly.

Another important issue related to algorithm effectiveness is that the local search is
applied only on a route basis. Thus, after each shaking only the two routes that have changed
need to be re-optimized.

Finally, as is commonly done, the local search restarts instantly after an improving move
was found. This leads to shorter run times and better results by a constant number of
iterations.
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3.4. Acceptance decision

After the shaking and the local search procedures have been performed, the solution thus
obtained has to be compared to the incumbent solution to be able to decide whether or not
to accept it. In this context two important interrelated issues arise.

First, the evaluation function for solutions has to be specified, particularly if infeasible
solutions are allowed. The evaluation function used in the context of the VNS proposed in
this paper follows the approach proposed in Cordeau, Laporte, and Mercier (2001) which
can be described as follows:

For a solution s ∈ S, let c(s) denote the total travel time of the routes, and let d(s), t(s) and
w(s) denote the total violation of load, duration and time window constraints, respectively.
Further, let ai be the arrival time at customer i . It is assumed that an arrival time ai > li leads
to an infeasible solution, while early arrival ai < ei is allowed but leads to a waiting time.
The total violation of load and duration constraints is computed on a route basis with respect
to the values Dk and Tk , whereas the total violation of time window constraints is equal to∑n

i=1(ai − li )+ where x+ = max{0, x}. Solutions are then evaluated using a cost function
f (s) = c(s) + αq(s) + βd(s) + γw(s), where α, β and γ are positive weights. By dynami-
cally adjusting the values of the three parameters, this relaxation mechanism facilitates the
exploration of the search space and is particularly useful for tightly constrained instances.

Because VNS does not follow a trajectory it is much more difficult to implement an
evaluation function in a reasonable way. Some initial experiments have shown that due to
the shaking phase very little control over the constraint violations can be exerted such that
the weights α, β and γ vary quite rapidly. While the addition of upper and lower bounds for
these parameters alleviated this problem to some extent, the best results were achieved with
fixed weights equal to 100. Thus, in the experiments reported below this setting was chosen.

Moreover, resulting from the strong bias towards feasible solutions induced by the eval-
uation function, many (infeasible) neighborhood moves are rejected and it is difficult to
leave a local optimum. Thus, we use a modified acceptance decision which is based on
Threshold Accepting ideas (c.f. Dueck and Scheuer (1990)). A move yielding an improve-
ment is always accepted, while non-improving moves are accepted up to a fixed threshold.
This threshold depends on the quality of the solution as well as on the number of iterations
needed to reach the first feasible solution in a run.

Another method to overcome local optima is an extension of the basic VNS called Skewed
VNS (c.f. Hansen and Mladenović (2001)). In this approach a solution is not only evaluated
by its objective value but also by its distance to the incumbent solution, favoring more distant
solutions. However, in the MDVRPTW considered in this paper the objective function is
already skewed by the penalty parameters and the use of an additional distance parameter
will impair the objective function even further and is not promising.

4. Computational results

In this section the VNS implementation proposed above will be analyzed and its performance
will be compared to the results of the TS specified in Cordeau, Laporte, and Mercier (2001).
The VNS was implemented in C++ and experiments were performed on a Pentium 3 with
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Table 2. Comparison of instances and results.

No. n m t T D TS VNS RPD (%)

01 48 4 2 500 200 1083.98 1083.98 0.00

02 96 4 3 480 195 1763.07 1762.21 −0.05

03 144 4 4 460 150 2408.42 2374.36 −1.41

04 192 4 5 440 185 2958.23 2858.20 −3.38

05 240 4 6 420 180 3134.04 3040.84 −2.97

06 288 4 7 400 175 3904.07 3758.36 −3.73

07 72 6 2 500 200 1423.35 1422.65 −0.05

08 144 6 3 475 190 2150.22 2103.89 −2.15

09 216 6 4 450 180 2833.80 2783.95 −1.76

10 288 6 5 425 170 3717.22 3577.28 −3.76

11 48 4 1 500 200 1031.49 1005.73 −2.50

12 96 4 2 480 195 1500.48 1487.64 −0.86

13 144 4 3 460 150 2020.58 2014.02 −0.32

14 192 4 4 440 185 2247.72 2221.17 −1.18

15 240 4 5 420 180 2509.75 2494.82 −0.59

16 288 4 6 400 175 2943.90 2939.20 −0.16

17 72 6 1 500 200 1250.09 1239.13 −0.88

18 144 6 2 475 190 1809.35 1796.21 −0.73

19 216 6 3 450 180 2310.92 2318.59 0.33

20 288 6 4 425 170 3131.90 3079.73 −1.67

Avg. 2306.63 2268.10 −1.40

933 MHz using double precision floating point arithmetic. All VNS results presented below
are based on runs over 108 iterations.

The problem instances used for the analysis originate from Cordeau, Laporte, and Mercier
(2001) and are available on the internet at http://www.hec.ca/chairedistributique/data. The
data set consists of 20 instances which differ with respect to their size as well as their time
window tightness. Table 2 provides some information about the problem instances.

More precisely, the columns headed with n, m and t are representing the number of
customers, the number of depots and the number of available vehicles at each depot,
respectively. Instances from 11 to 20 have larger time windows and therefore a smaller
number of vehicles is defined because it is easier for the same vehicle to service several
customers. All instances consider a homogeneous fleet where each vehicle has a maximal
route duration T and a capacity D.

Finally, Table 2 shows a first comparison between the TS and the VNS in the last three
columns. More specifically, the column TS shows the best results reported in Cordeau,
Laporte, and Mercier (2001) to be found during all the experiments. Analogously, the
column VNS provides this information about the algorithm proposed in this paper. The



622 POLACEK ET AL.

Table 3. Comparison of average results for VNS and TS
after equivalent runtimes.

TS VNS
No. Time (min) 1 run avg. 10 runs

01 55 1083.98 1083.98

02 186 1763.84 1768.34

03 277 2408.42 2388.50

04 408 2976.11 2896.25

05 557 3165.69 3075.19∗

06 769 3904.07 3816.14∗

07 101 1423.35 1423.29

08 278 2163.32 2112.45

09 483 2833.80 2799.92∗

10 703 3717.22 3603.18∗

11 91 1031.49 1037.30

12 221 1506.08 1507.79

13 345 2020.58 2030.45

14 500 2247.72 2258.61

15 643 2509.75 2523.42∗

16 829 2948.01 2951.31∗

17 167 1250.09 1291.17

18 354 1823.16 1828.50

19 778 2310.92 2334.51∗

20 824 3137.27 3115.97∗

Avg. 428 2311.24 2292.31

1.63% 1.17%

last column shows the relative percentage deviation (RPD) between the results for each
instance. Finally, the last row shows averages over the 20 instances.

The results in Table 2 clearly show the strong performance of the VNS. For 18 out of
the 20 instances a new best solution was found, for one instance the VNS and TS found
identical solutions. Only for 1 instance does TS find a better solution than VNS.

To better understand these results it is interesting to evaluate the average performance
of the VNS with a particular, good parameter setting. Thus, the VNS was run 10 times on
each instance and all results presented below are averages over these 10 runs.

To get a more fair comparison between the VNS and the TS an analysis of the respective
solution qualities after equivalent runtimes is presented in Table 3. More precisely, these
results were obtained in the following way. First, the results for the runtimes and solution
quality of the TS were taken from Cordeau, Laporte, and Mercier (2001). These results
correspond to a single pass of the TS for 106 iterations for each instance on a Sun Ultra 2
with 300 MHz. According to Dongarra (2003) this machine is approximately 12% slower
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than the Pentium used for the experiments with the VNS, such that the admissible runtimes
for the VNS were computed by using a conversion factor of 0.89.

Thus, Table 3 shows for each instance the original TS runtimes in minutes, as well as the
results of the TS (1 run) and the VNS (averages over 10 runs). The last two rows of Table 3
indicate the average results of the two algorithms in absolute numbers and as a percentage
deviation from the best known results.

Finally, note that some of the results for the VNS are marked with an asterisk. For
these instances, which are the largest ones, 108 iterations of the VNS took less time than
would have been admissible related to the TS. For these instances the numbers presented
correspond to the average results at the end of the VNS runs.

Given these remarks, Table 3 clearly shows that the VNS obtains better results than the TS
after equivalent runtimes. Overall, the difference between the results of the two algorithms
is approximately 0.5%. This effect seems to be magnified as the problem instance size
increases.

To get a clearer picture about this effect the problem instances were divided into three
clusters which were built based on the numbers of customers in the instances. More precisely,
problems with at most 100 customers, those with 101 to 200 customers and those with more
than 200 customers were grouped together.

For these clusters Table 4 presents the following information. First, the average relative
percentage deviation from the best known results is given for both the TS and the VNS for
equivalent runtimes (as in Table 3). Second the total time needed for 106 iterations of the
TS and 108 iterations of the VNS is shown.

Table 4 reveals two results. First, for small instances the TS finds good results very fast,
such that for the smallest group of problems it outperforms the VNS after a given runtime.
However, as problem size increases this effect is reversed and particularly for the largest
instances the VNS clearly dominates the TS. Second, looking at the total runtimes it is
obvious that the computational burden for the TS increases very fast as problem size grows.
On the other hand, there is only a very moderate increase in runtimes for the VNS over the
three clusters. Thus, the VNS scales very well with problem size. While for the smallest
instances runtimes are very similar for the TS and the VNS, the VNS is about 4 times faster
for the largest instances. The reason for this difference lies in the structure of the VNS.
More specifically, the complexity of the VNS depends mainly on the number of customers
per route as the embedded Local Search works on a route basis. Looking at the problem
instances, it becomes obvious that for the instances 1 to 10 the average number of customers
per route is 8.5, while for the instances 11 to 20 it is 12, regardless of the actual problem size.

Table 4. VNS and TS computation times for different problem sizes.

RPD Time (min)

Problem size TS (%) VNS (%) TS (106 it.) VNS (108 it.)

1–100 customers 0.80 1.51 137 118

101–200 customers 1.90 1.11 360 152

201–300 customers 2.06 0.97 698 161
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Concluding this comparison, the VNS outperforms the TS with respect to both the best
solutions found and the runtimes but more importantly it shows a much better scaling such
that particularly for large real-world instances it can be expected to perform much better
than the TS.

5. Performance improvements

In the last section we were able to show that our VNS consistently produces solutions
competitive with a well known TS algorithm.

As pointed out in Cordeau, Laporte, and Mercier (2004) the results presented above
could however be improved by taking the route duration constraints into account during
the search. The problem instances for the MDVRPTW are characterized by the fact that
the maximum route duration is significantly shorter than the planning horizon as given by
the depot opening hours. Thus, making sure that the vehicles have little idle times can be
crucial for solution feasibility and as a consequence improving solutions that were deemed
infeasible before may be accepted.

Table 5. Comparison of improved results.

No. TS old VNS old RPD (%) TS new VNS new RPD (%)

01 1083.98 1083.98 0.00 1074.12 1074.12 0.00

02 1763.07 1762.21 −0.05 1762.21 1762.21 0.00

03 2408.42 2374.36 −1.41 2373.65 2373.65 0.00

04 2958.23 2858.20 −3.38 2852.29 2815.48 −1.29

05 3134.04 3040.84 −2.97 3029.65 2993.94 −1.18

06 3904.07 3758.36 −3.73 3627.18 3629.72 0.07

07 1423.35 1422.65 −0.05 1418.22 1418.22 0.00

08 2150.22 2103.89 −2.15 2102.61 2096.73 −0.28

09 2833.80 2783.95 −1.76 2737.82 2730.54 −0.27

10 3717.22 3577.28 −3.76 3505.27 3499.56 −0.16

11 1031.49 1005.73 −2.50 1005.73 1005.73 0.00

12 1500.48 1487.64 −0.86 1478.51 1472.76 −0.39

13 2020.58 2014.02 −0.32 2011.24 2001.83 −0.47

14 2247.72 2221.17 −1.18 2202.08 2215.51 0.61

15 2509.75 2494.82 −0.59 2494.57 2465.25 −1.18

16 2943.90 2939.20 −0.16 2901.02 2896.03 −0.17

17 1250.09 1239.13 −0.88 1236.24 1236.24 0.00

18 1809.35 1796.21 −0.73 1792.61 1796.21 0.20

19 2310.92 2318.59 0.33 2285.10 2292.45 0.32

20 3131.90 3079.73 −1.67 3079.16 3076.37 −0.09

Avg. 2306.63 2268.10 −1.40 2248.46 2242.63 −0.21
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Following Savelsbergh (1992) the concept of forward slack times is used in the context
of our VNS to introduce the consideration of route durations in our search. Note, that this
concept is also used in Cordeau, Laporte, and Mercier (2004). The main idea is to keep
track of the waiting times in the schedule and to compute the maximum amount of time by
which service at a customer can be postponed without any time window violations along the
route. Using this forward slack information to evaluate the route durations more accurately
reduces the objective function values for both our VNS and the TS from Cordeau, Laporte,
and Mercier (2004) as shown in Table 5.

Table 5 shows for each problem instance the best solutions obtained by the TS and the
VNS both before and after the inclusion of the forward slack. Additionally the table shows
the percentage difference between the objective values of the two metaheuristics again for
both cases. Finally, the last row provides averages over all 20 instances.

The results presented in Table 5 reveal several things. First, the use of the forward slack
leads to a decrease in the objective value by an average of almost 3% for the TS and slightly
more than 1% for the VNS. Second, the gap between the two metaheuristics has narrowed

Table 6. Average time (in minutes) needed to
reach solutions of pre-specified quality.

RPD (avg. from 10 runs of the VNS)

No. 10% 5% 2.5%

01 0.00 0.00 0.00

02 0.02 0.05 0.46

03 0.08 1.07 10.73

04 0.59 4.46 19.41

05 3.53 7.27 24.51

06 1.43 8.71 52.78

07 0.00 0.00 0.09

08 0.05 0.50 3.38

09 0.12 0.69 6.49

10 1.04 7.48 38.43

11 0.04 0.38 5.67

12 0.33 2.97 45.09

13 0.54 2.59 11.73

14 1.62 9.21 91.14

15 3.41 15.75 219.16

16 3.10 11.69 68.59

17 0.81 7.91 19.01

18 3.23 12.80 160.63

19 0.54 5.32 40.47

20 4.87 18.40 108.33
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to 0.2% on average. Particularly, for the 6 smallest instances with less than 100 customers
both algorithms find the same solutions.

Overall, the results show that the structural improvements of the two algorithms had a
much greater impact on solution quality than the actual choice of the metaheuristic. Having
shown, that the VNS is still competitive with the TS after including the forward slack mech-
anism we want to turn to the evolution of the solution quality obtained by the VNS over
time.

To that end Table 6 shows for each instance the average time (in minutes) needed to obtain
solutions that are 10%, 5% and 2.5% worse than the best known results. Note, that the times
in Table 6 correspond to computation times on a Pentium 4 with 2 GHz. It can be seen from
Table 6 that the VNS finds reasonably good solutions with an average deviation of 5 percent
in less than 20 minutes for the largest instances. High quality solutions may take a VNS
run of several hours with a small chance of getting stuck in a mediocre local optimum.

6. Conclusion

In this paper the MDVRPTW was tackled by an implementation of a VNS based meta-
heuristic. The main features of this algorithm are a simple and flexible Local Search as well
as an acceptance criterion for neighboring solutions inspired by Threshold Accepting.

The results obtained through an extensive numerical analysis showed that the algorithm
is competitive to an existing TS approach. Considering the best solutions found our algo-
rithm outperforms the TS by finding 10 new best solutions and 6 ties, while the TS holds
only 4 best known results. More importantly, the VNS proposed in this paper has shown
a much better scaling than the TS, indicating its superiority for large real-world sized
instances.

Apart from these statements about efficiency and effectiveness, the algorithm also fulfills
two other criteria for a well balanced algorithm applicable in industrial settings, namely
flexibility and simplicity. More precisely, the Local Search procedure is based on routes and
uses only one kind of operator, namely a restricted version of 3-opt. Thus, the algorithm
can be applied without much modification to the VRPTW and the VRP, and it can handle
different complicating constraints like heterogeneous fleets and backhauls.
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Notes

1. See Toth and Vigo (2002), p. 1.
2. See Hansen and Mladenović (2001), p. 450.
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