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Abstract We study the welfare-theoretic consequences of diverging social and private
time-preference rates and time-to-build for the transition to a low-carbon energy industry.
We show that time-to-build, a prevalent characteristic of capital accumulation in the energy
sector, amplifies the distortion induced by the split discount rates. Thus, these two character-
istics create in a mutually reinforcing way less favorable circumstances for the introduction
of new clean energy technologies as compared to the social optimum, even if welfare losses
from emissions are internalized. We discuss resulting policy implications with particular
emphasis on the energy sector.
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218 C. Heinzel, R. Winkler

1 Introduction

How to accomplish the transition to a low-carbon energy industry in a socially optimal way
is the subject of an ongoing debate. Typically, investments in the energy sector concern
long-lived and cost-intensive capital goods associated, moreover, with particularly long con-
struction times. At the same time, due to their environmental impact, such investments have
long-term consequences for society as a whole. Another distinctive feature of the energy sec-
tor is its recent liberalization in most industrialized countries. Investment decisions are now
mainly governed by private actors. As a consequence, not only environmental preferences,
but also time preferences, both on social and on private levels, are likely to play a key role
in the transition to a low-emission energy industry.

We investigate the transition from an established to a new energy technology in a stylized
general equilibrium framework, which incorporates the distinctive features of the energy sec-
tor as outlined above. The established technology gives rise to an environmentally harmful
pollutant, which can partly be disarmed by abatement effort. The new technology is clean, but
its specific capital needs a positive time span to be built. That is, there is a time lag between
the cost of investment and the new capital to become productive. We assume that in the status
quo the established production technique is fully developed, while the new technology is
only to be produced and, thus, may eventually replace the established one. In addition, we
account for the recent liberalization of energy markets by assuming that investments in capital
are governed by private actors who exhibit a private time preference rate which exceeds the
social rate. We show that these two characteristics, the time-to-build feature and the split in
time preference rates, create, in a mutually reinforcing way, less favorable circumstances for
the introduction of the new and the replacement of the old energy technology compared to
the social optimum, even if the welfare losses from emissions are fully internalized. We show
how the social optimum can be achieved in a decentralized market economy by a combination
of environmental and technology policies.

As an outcome of the discounting debate, it is well recognized in economics and finance
that, in general, social and private time-preference rates differ for several reasons (e.g.,
Arrow and Lind 1970; Blanchard 1985; Drèze and Stern 1990; Frederick et al. 2002; Groom
et al. 2005; Mehra and Prescott 2003; Portney and Weyant 1999; Stiglitz 1982; Tirole 1981;
Yaari 1965). Traditional categories include distortionary taxation, distortionary public poli-
cies, imperfect competition and production externalities, the regulation of which is generally
clear, at least in theory. More recent contributions stress agency issues, for example in form
of the ‘short-termism’ to which managers are urged by their contracts (e.g., DeMarzo et al.
2009). Moreover, the de-facto unavailability of private bonds with arbitrary maturities may
be welfare-deteriorating when bond yield curves decline for long maturities (Gollier 2002,
2010).

In view of the ongoing discussion with respect to the causes of split time preferences, we
omit an endogenous explanation of the time-preference distortion. For analytical tractability,
we stick to the most simple case of a world where outcomes are certain and preferences
are separable in time and in consumption of a final good and emissions. This allows us to
analyze the welfare implications of split time-preference rates for time-lagged technological
transitions in general and to treat policy implications of those cases, where the market failure
underlying the distortion cannot otherwise be remedied.

Our paper complements the wide-spanned literature on induced technological change and
the environment. In this literature, the intertemporal nature of the climate change problem is
mostly addressed either in endogenous growth or integrated assessment models. Top-down
approaches study induced technological change by applying one representative aggregated
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production technology, which becomes more efficient and/or less polluting by technological
change (e.g., Bovenberg and Smulders 1995; Goulder and Mathai 2000; Nordhaus 2002;
Newell et al. 1999; Tahvonen and Salo 2001). In bottom-up approaches, induced technolog-
ical change also allows for structural change between competing technologies (e.g., Gerlagh
and Van der Zwaan 2003; Goulder and Schneider 1999; Van der Zwaan et al. 2002). The
two kinds of approaches commonly model technological change endogenously as a gradual
improvement resulting either from R&D investments or learning by doing. They focus on
positive spillovers to other firms from the innovation process or dynamic increasing returns
stemming from learning by using, learning by doing or network externalities typically related
to the diffusion of new technologies as sources of market failure inducing technology pol-
icy (Jaffe et al. 2005). In contrast to this literature, we abstract from these components of
long-run technological change in particular, and growth in general. Instead we emphasize the
welfare-theoretic consequences of the split of social and private time preference rates and the
time-to-build feature in a framework of structural change. As in Winkler (2008), we rather
adopt a medium-term perspective, in which the set of available technologies is given, and
the system dynamics is governed by the accumulation of the corresponding specific capital
stocks.1

Although derived from a stylized theoretical model, our results have direct policy impli-
cations for the energy sector in particular, and technological transitions in general. With
respect to the former, we expect the energy sector, due to its long constructions times and
the implied reinforcing effect, to be particularly vulnerable for inefficiencies caused by split
time-preference rates. In addition, our results give new theoretical support for subsidizing
new less polluting energy technologies. From a more general perspective, we provide a new
reason why environmental regulation should be complemented by technology policy.

The paper is organized as follows. The model is introduced in Sect. 2. In Sects. 3 and 4,
we solve the intertemporal optimization problems in the social optimum and in the decen-
tralized competitive market economy, and derive conditions for partial and full replacement
of the established by the new energy technology. In Sect. 5, we discuss model assumptions
and policy implications. Section 6 concludes.

2 The Model

Consider an economy composed of two vertically integrated sectors, the energy sector and
the investment sector. Labor constitutes the only primary input. It is by assumption fixed
to unity at all times t . The energy sector comprises two technologies, an established and a
new one. The established technology is fully set up at the beginning of the planning horizon.
As a consequence, we do not explicitly consider capital for the established technology. We
include the costs of employing and maintaining the capital stock into the labor costs which
are normalized to 1. The established technology generates one unit of energy x for every unit
of labor l1 employed. In addition, each unit of output produced gives rise to one unit of an
unwanted and harmful joint output j :

x1(t) = l1(t) = j (t). (1)

1 Formally, our paper builds on the structural change frameworks of Winkler (2005) and Winkler et al. (2005),
and is more loosely related to recent growth models with time-lagged stock accumulation (e.g., Bambi 2008;
Boucekkine et al. 2005; Fabbri and Gozzi 2008).
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220 C. Heinzel, R. Winkler

Abatement effort a per unit of energy (partially) reduces the joint output. The function
G denotes the fraction of the joint output j which is disarmed by abatement. G is assumed
to be twice continuously differentiable, satisfying G(0) = 0, G ′ > 0, G ′′ < 0 and lima→1

G(a) = 1. We impose Inada conditions lima→0 G ′(a) = ∞, lima→1 G ′(a) = 0 to ensure
that the abatement effort a is strictly positive and finite along the optimal path as long as
l1 > 0. Then, net emissions e equal the amount of joint output j minus abatement:

e(t) = x1(t) (1 − G(a(t))) . (2)

The new technology employs λ units of labor together with one unit of the specific capital
good k to produce one unit of energy:

x2(t) = min

(
l2(t)

λ
, k(t)

)
. (3)

Without loss of generality, the new technology does not produce an unwanted joint output.
Energy is assumed to be homogeneous, such that total production x equals:

x(t) = x1(t) + x2(t). (4)

The investment sector employs one unit of labor to produce one unit of the capital good.
We assume that the creation of new capital goods needs a positive time span σ . That is, there
is a time lag σ between the costs of investment i and the emergence of productive capital k.
The intuition behind this assumption is twofold. On the one hand, power plants are not built
in a day but need substantial time for creation.2 On the other hand, the time lag σ can also be
identified with the time required for the R&D of a new technology. In addition, the capital
stock k deteriorates at the constant and exogenously given rate γ , implying the following
equation of motion:

k̇(t) = i(t − σ) − γ k(t), γ > 0. (5)

Due to the time lag σ the equation of motion for the capital stock (5) constitutes a retarded
differential-difference equation. Thus, variations of the capital stock k do not only depend
on parameters evaluated at time t but also on parameters evaluated at the earlier time t − σ .

The labor constraint implies that

1 ≥ [1 + a(t)] l1(t) + l2(t) + i(t), (6)

holds at all times t .3 Assuming efficient labor allocation among the three production pro-
cesses, i.e., 1 = [1 + a(t)]l1(t) + l2(t) + i(t) ∀t , and full employment of the capital stock,
i.e., x2(t) = l2(t)/λ = k(t), we obtain the following formulae for total energy x(t) and net
emissions e(t):

x(t) = 1 − λk(t) − i(t)

1 + a(t)
+ k(t), (7a)

e(t) = [1 − G(a(t))]
1 − λk(t) − i(t)

1 + a(t)
. (7b)

2 In general, the time span σ strongly depends on the type of technology. While a nuclear power plant may
take five to seven years to be built, a gas co-generation plant is set up in a year or two.
3 Note that we have defined abatement effort a per unit of energy produced via the established energy tech-
nology. Thus, total abatement effort equals a(t)x1(t) = a(t)l1(t).
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To close the model we consider a representative consumer who derives instantaneous
utility from consumption of the final product and disutility from net emissions.4 Like
Arrow and Kurz (1970, 116) we assume that the representative consumer’s private rate
of time preference differs from the social. That is, the representative consumer applies dif-
ferent intertemporal weights between welfare today and welfare tomorrow compared to a
social planner maximizing social welfare. For simplicity, we consider instantaneous welfare
to be additively separable in energy consumption x and net emissions e. As a consequence,
the representative consumer (privately) maximizes

Wp =
∞∫

0

[U (x(t)) − D(e(t))] exp[−ρpt] dt, (8a)

whereas, at the same time, the social planner maximizes

W =
∞∫

0

[U (x(t)) − D(e(t))] exp[−ρt] dt, (8b)

where U and D are twice differentiable functions with U ′ > 0, U ′′ < 0, limx→0 U ′ = ∞
and D′(0) ≥ 0, D′ > 0 for any positive amount of emissions e, and D′′ > 0. We concentrate
on the empirically relevant case that the private rate of time preference ρp exceeds the socially
efficient rate ρ, i.e., ρp > ρ. That is, individual actors are in a private decision context more
impatient to consume than society as a whole.

We want to emphasize that the split in time-preference rates does not imply that the repre-
sentative consumer and the social planner have preferences that differ in an arbitrary way. On
the contrary, we impose that both exhibit essentially the same preferences, as expressed in
the instantaneous utility function U (x(t))− D(e(t)). However, we acknowledge that certain
circumstances may cause a split in the time-preference rates. Apart from the causes already
mentioned in Sect. 1, we want to give two further intuitive examples. First, individuals only
live for a finite time. As a consequence, they ask for a higher interest rate than an infinitely
lived individual, as they face the risk not to survive the repayments. If, for example, indi-
viduals are risk-neutral, exhibit a pure time preference rate ρ and face a Poisson-distributed
death probability p, the resulting effective rate of time-preference is ρ + p (Blanchard 1985,
see also Yaari 1965). Identifying the representative consumer with the finitely lived private
households and the social planner with the state as an eternal entity leads to ρp > ρ.5 Sec-
ond, a state as a large investor may have the chance to better diversify and, therefore, better
ensure itself against risk than an individual private investor. Everything else equal, the pri-
vate investor would, thus, ask for a higher return on investment than the social planner. In
our stylized model this can be modelled by assuming a higher time-preference rate of the
representative consumer. However, due to the variety of different causes for a split in the
time-preference rate, we neither model finite lifetimes or risk diversification explicitly, but
assume split time-preference rates as a stylized fact and rather focus on the implications of this
assumption.

4 Obviously, CO2 is a stock and not a flow pollutant. However, assuming that the negative externality on
utility is caused by the emissions and not the global stock simplifies further calculations without impacting
on our qualitative results (for further discussion, see Sect. 5).
5 Calvo and Obstfeld (1988) show in a growth model with different generations of consumers with uncertain
finite lifetimes that the optimal long-run interest rate corresponds to the social planner’s generational discount
rate, but need not coincide with the individuals’ subjective utility discount rates.
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3 Social Optimum

We now derive the optimal plan for the development of the model economy. As outlined in
Sect. 2, social welfare is given by Eq. (8b). Thus, the social planner solves the following
maximization problem:

max
a(t),i(t)

∞∫
0

[U (x(t)) − D(e(t))] exp[−ρt] dt, (9a)

subject to Eqs. (5), (7a), (7b), the inequality constraints

0 ≤ i(t) ≤ 1 − λk(t), (9b)

and the initial conditions

k(0) = 0, i(t) = 0, t ∈ [−σ, 0). (9c)

For the dynamics of the economy it is important that, due to the linearity of the production
techniques, two corner solutions can occur along the optimal path. It may be optimal not to
invest in the new technology, which corresponds to i(t) = 0. Or, it may be optimal only to
use the new technology, in which case all labor is utilized to employ and maintain the capital
stock, i.e., i(t) = 1 − λk(t) and l1(t) = a(t) = 0. As a consequence, we have to explicitly
check for these two corner solutions to characterize the complete dynamics of the model
economy.

3.1 Necessary and Sufficient Conditions for the Social Optimum

To solve the optimization problem of the social planner we apply the generalized maximum
principle derived in El-Hodiri et al. (1972) for time-lagged optimal control problems. One
obtains the following present-value Hamiltonian H:

H = [U (x(t)) − D(e(t))] exp[−ρt] + qk(t + σ)i(t) − qk(t)γ k(t)

+qx (t)

[
1 − λk(t) − i(t)

1 + a(t)
+ k(t) − x(t)

]
+ qi (t)i(t)

+qe(t)

[
(1 − G(a(t)))

1 − λk(t) − i(t)

1 + a(t)
− e(t)

]
+ qi (t) [1 − λk(t) − i(t)], (10)

where qk denotes the costate variable or shadow price of the capital stock k, and qx , qe, qi

and qi denote the Kuhn-Tucker parameters for the (in)equality conditions (7a), (7b) and (9b).
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Assuming the Hamiltonian H to be continuously differentiable with respect to the control
variables a and i , the following necessary conditions hold for an optimal solution:

qx (t) = U ′(x(t)) exp[−ρt], (11a)

qe(t) = −D′(e(t)) exp[−ρt], (11b)

0 = 1 − λk(t) − i(t)

[1 + a(t)]2

{
qx (t) + qe(t)

[
1 − G(a(t)) + (1 + a(t))G ′(a(t))

]}
, (11c)

qk(t + σ) + qi (t) = qx (t)

1 + a(t)
+ qe(t)

1 − G(a(t))

1 + a(t)
+ qi (t), (11d)

q̇k(t) = γ qk(t) − qx (t)
1 + a(t) − λ

1 + a(t)
+ λqe(t)

1 − G(a(t))

1 + a(t)
+ λqi (t), (11e)

qi (t) ≥ 0, qi (t)i(t) = 0, (11f)

qi (t) ≥ 0, qi (t) [1 − λk(t) − i(t)] = 0. (11g)

As the Hamiltonian is strictly concave along the optimal path (see Appendix A.1), the optimal
solution is unique and the necessary conditions (11a)–(11g) are also sufficient if, in addition,
the following transversality condition holds:

lim
t→∞ qk(t)k(t) = 0. (11h)

Conditions (11a) and (11b) state that along the optimal path the shadow price of energy
equals the marginal utility of energy and the shadow price of net emissions equals the mar-
ginal disutility of net emissions. By inserting conditions (11a) and (11b) in condition (11c),
we obtain for i(t) < 1 − λk(t):

U ′(x(t)) = D′(e(t))
[
G ′(a(t)) (1 + a(t)) + 1 − G(a(t))

]
. (12)

This condition expresses that along the optimal path (and for i(t) < 1 − λk(t)) the utility
of an additional marginal unit of energy equals the disutility of the emissions that it induces.
Along the optimal path this equation determines the optimal value of the abatement effort
a per unit of output x1. If i(t) = 1 − λk(t), implying that labor input in the established
production technology l1 and abatement effort a equal zero, condition (11c) reduces to the
truism 0 = 0.

Together with the transversality condition (11h), and inserting conditions (11a) and (11b),
condition (11e) can be unambiguously solved to yield:

qk(t) = exp[−ρt]
∞∫

t

U ′(x(t ′))(1+a(t ′)−λ) + λ
[
D′(e(t ′))

(
1−G(a(t ′))

) − qi (t
′)
]

1 + a(t ′)

× exp[−(γ + ρ)(t ′ − t)]dt ′. (13)

Along the optimal path the shadow price for the capital stock equals the net present value
of all future welfare gains of one additional marginal unit of the capital good. As capital
goods are long-lived, they contribute over the whole time horizon (increasingly less though
due to deterioration and discounting). The fraction under the integral equals the marginal
instantaneous welfare gain of an additional unit of capital, which comprises two components.
The first is the direct welfare gain due to the energy produced. It is positive if the new tech-
nology needs less labor input per unit of output than the established one, i.e., λ < 1 + a(t).
The second term is always positive and denotes the welfare gain due to emissions abated by
switching from the established to the new production technique.
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Inserting conditions (11a) and (11b) in Eq. (11d) yields:

qk(t + σ) + qi (t) = exp[−ρt]
1 + a(t)

[
U ′(x(t)) − D′(e(t)) (1 − G(a(t)))

] + qi (t). (14)

The equation states that along the optimal path, and as long as the inequality constraints (9b)
are not binding, the present value of the welfare loss by investing in one marginal unit of
new capital, which is given by the present value welfare gain of the alternative use of one
marginal unit of labor in the established production technique minus the resulting disutility
from emissions (right-hand side), equals the net present value of the sum of all future welfare
gains by using the new capital good in production (left-hand side). As the investment needs
the time span σ to become productive capital, the sum of all future welfare gains of an invest-
ment at time t is given by the shadow price of capital at time t + σ, qk(t + σ). If it is not
optimal to invest, i.e., qi (t) ≥ 0, the future welfare gains of an investment are weakly smaller
than the costs of investment. Further, if all labor is used to employ and maintain the capital
stock, i.e., qi (t) ≥ 0, the future welfare gains of an investment weakly exceed the costs of
investment.

As noted above, the optimal system dynamics of the optimization problem (9) splits into
three qualitatively different regimes. These different regimes are determined by whether and
which of the two inequality constraints (9b) are binding:

1. No investment:
The new technology may be so inferior compared to the established technology that it
is not used in the long run. In fact, if it is not optimal to invest in the new technol-
ogy in t = 0, then it is optimal to never invest in the new technology.6 In this case, in
which the inequality constraint i(t) ≥ 0 is binding at all times, the economy does not
exhibit any transitional dynamics but instantly switches to and stays in the corner solution
i(t) = 0, k(t) = 0, x1(t) = x0

1 > 0, a(t) = a0 > 0, e(t) = e0 > 0 for all t .
2. Full replacement:

The new technology may be so superior compared to the established technology that
it eventually fully replaces the established one. That is, from some time t̄ onwards the
economy enters a regime in which all labor is solely used to employ and maintain the
capital stock for the new technology. In this case, in which the inequality constraint
i(t) ≥ 1 − λk(t) is binding for all t ≥ t̄ , the economy either converges to a stationary
state in which i(t) = i∞ > 0, k(t) = k∞ > 0, x1(t) = a(t) = e(t) = 0 or converges to
a limit cycle around this stationary state.

3. Partial replacement:
Finally, the new technology may be such that it is optimal to invest in the new technology
but the new technology is not superior enough compared to the established technology to
fully replace it. In this case it is not entirely clear what the system dynamics looks like,
as it is governed by a system of functional differential equations. However, the system
exhibits a unique stationary state with i(t) = i� > 0, k(t) = k� > 0, x1(t) = x�

1 >

0, a(t) = a� > 0 and e(t) = e� > 0. Fortunately, the system dynamics of the third
regime is irrelevant to our analysis.

In Appendix A.2 we further discuss the system dynamics of the first and second regime,
on which our results in the following are based.

6 This holds because if no investment at t = 0 is optimal, no capital is accumulated. As a consequence, the
optimization problem at time t + �t is identical to the optimization problem at time t = 0. As it was not
optimal to invest at t = 0 it is also not optimal to invest at time t + �t .

123



Distorted Time Preferences and Time-to-Build 225

3.2 Conditions for Investment and Replacement

Thus far, it is not clear which of the three possible regimes apply for a given economy. We
now derive conditions which classify all possible economies into the three different regimes
by their set of exogenous parameters . These conditions determine whether there is any
investment in the new technology, and if so, whether the established technology is eventually
fully replaced by the new one. We start with the no investment condition.

In order to derive a condition which identifies whether no investment is optimal, we assume
that it is optimal never to invest, i.e., the economy stays in the corner solution i(t) = 0, ∀ t .
The following proposition states the condition for which this corner solution satisfies the
necessary and sufficient condition for an optimal solution.

Proposition 1 (No investment condition in the social optimum) Given optimization problem
(9), there is no investment in the new technology, i.e., i(t) = 0∀t if and only if

1 + a0 + 1 − G(a0)

G ′(a0)
≤ λ + (γ + ρ) exp[ρσ ], (15)

where a0 is determined by the unique solution of the implicit equation:

U ′ (1 − a0) = D′ ((1 − a0)(1 − G(a0))
) [

1 − G(a0) + (1 + a0)G ′(a0)
]
. (16)

The proof is given in Appendix A.3.
Condition (15) has an intuitive economic interpretation. The left-hand side corresponds

to the unit costs of production of the established technology, UC0
T1

, the right-hand side to

the unit costs of production of the new technology, UC0
T2

. Thus, condition (15) states that
no investment in the new technology is optimal if its unit costs of production are greater or
equal to those of the established technology, i.e., UC0

T2
≥ UC0

T1
.

In the centralized economy, UC0
T1

comprises three components, the ‘pure’ labor costs per
unit of energy production, the labor costs for abatement per unit, and the social costs of unit
emissions in terms of labor. UC0

T2
comprises, apart from the ‘pure’ labor costs, the costs

for building up and maintaining the necessary capital good in terms of labor. Obviously, the
capital costs per unit of output depend positively on the dynamic characteristics γ and σ of
the capital good production, as well as on the time preference rate ρ. In particular, the longer
the time lag σ and the higher the rate of time preference ρ the higher are the unit costs of
production of the new technology.

Despite the infinite time horizon and the linearity of the two production techniques, a
violation of condition (15) does not guarantee full replacement of the established technology
by the new technology in the long run. In the following, we deduce conditions for which
complete or partial replacement occur. Formally, full replacement of the established by the
new production technique implies that the economy is in the i(t) = 1−λk(t) corner solution
in the long run. The inference of a condition for full replacement is similar to that of Propo-
sition 1. We investigate under which conditions a full replacement stationary state, in which
all labor is used to employ and maintain the fully developed new technology, is consistent
with the necessary and sufficient conditions for an optimal solution. Proposition 2 states the
result.

Proposition 2 (Full replacement condition in the social optimum) Given optimization prob-
lem (9) and assuming U ′(x∞) − D′(0) 	= 0, full replacement of the established technology
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226 C. Heinzel, R. Winkler

by the new one in the long-run stationary state is consistent with the necessary and sufficient
conditions for a social optimum, if and only if

1 + D′(0)

U ′(x∞) − D′(0)
≥ λ + (γ + ρ) exp[ρσ ], (17)

where x∞ is given by x∞ = 1
λ+γ

.

The proof is given in Appendix A.4.
Proposition 2 says that full replacement can only occur if the costs per unit of output of the

new technology in the full replacement stationary state UC∞
T2

(right-hand side) are smaller
than or equal to the costs of the established technology UC∞

T1
(left-hand side). As there are

no emissions in the full replacement stationary state, abatement effort is zero and UC∞
T1

only
consists of the ‘pure’ labor costs plus the social costs, which stem from the damage of the
first marginal unit of emissions. In the common case that the first marginal unit of emissions
does not induce any environmental damage, i.e., D′(0) = 0, UC∞

T1
reduces to the ‘pure’

labor costs of production.7

For full replacement to occur, condition (15) must be violated while at the same time
condition (17) holds. A straightforward corollary from Propositions 1 and 2 is that the estab-
lished technology is only partially replaced by the new one, if conditions (15) and (17) are
simultaneously violated.

Corollary 1 (Partial replacement condition in the social optimum) Given optimization prob-
lem (9) and U ′(x∞) − D′(0) 	= 0, partial replacement of the established technology by the
new one is optimal in the long-run if and only if

1 + a0 + 1 − G(a0)

G ′(a0)
> λ + (γ + ρ) exp[ρσ ] > 1 + D′(0)

U ′(x∞) − D′(0)
, (18)

where x∞ = 1
λ+γ

and a0 is given by the unique solution of the implicit equation (16).

In sum, investment is not optimal if and only if the labor costs per unit of output of the new
technology, UCT2 = UC0

T2
= UC∞

T2
, are higher than the labor costs per unit of output of the

established technology in the no investment corner solution, UC0
T1

. If it is optimal to invest,

i.e., UCT2 < UC0
T1

, full replacement is optimal in the long run if and only if, in addition,

UCT2 ≤ UC∞
T1

holds. Otherwise, UC∞
T1

< UCT2 < UC0
T1

, and the new technology will
partly replace the established technology in the long run.

4 Competitive Market Equilibrium

We now consider a decentralized economy, in which a representative household and two
representative firms interact on competitive markets for labor, capital and energy, which are
cleared at all times.8 Due to the emission externality and the split time-preference rates,
the long-run stationary state in the decentralized economy falls, in general, short of the

7 Condition (17) is not well defined if limx→x∞ U ′(x) = D′(0). However, full replacement will still occur
if, in addition, condition (15) holds, as the welfare gain of an additional unit of labor assigned to the old
technology vanishes while the shadow price of capital, which is the net present value of all future welfare
gains of an additional unit of capital, remains positive.
8 We present a decentralized market economy in which the households directly manufacture the capital good
in “home production” by means of labor and rent it to the firms. An alternative market economy encompassing
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social optimum. We show how the social optimum can be implemented by complementing a
standard emission tax with an investment subsidy.

4.1 Representative Household

We assume the household to own the two firms and the total labor and capital endowments
of the economy. Thus, the household chooses between selling labor to the firms at the market
price of labor w and investing labor in the accumulation of capital k, which the household
rents to the firms at the market price of capital r . In addition, the household buys energy x
and may profit from the investment subsidy τi (t), paid per unit of investment i . Choosing
energy as numeraire, the following budget constraint has to hold at all times t9:

x(t) = w(t) (1 − i(t)) − τi (t)i(t) + r(t)k(t) + π1(t) + π2(t), (19)

where π1 and π2 denote the profits of firms 1 and 2. In addition, capital can be accumulated
according to Eq. (5). Assuming that the representative household maximizes its intertemporal
welfare, as given by Eq. (8a), implying that it applies a higher rate of time preference ρp in
the decentralized market regime than in the social decision context, the household solves the
following maximization problem:

max
i(t)

∞∫
0

[U (x(t)) − D(e(t))] exp[−ρpt] dt, (20)

subject to Eqs. (5), (19) the inequality constraint

i(t) ≥ 0, (21)

and the initial conditions (9c).
Thus, the present value Hamiltonian HH reads:

HH = [U (x(t)) − D(e(t))] exp[−ρpt] + qk(t + σ)i(t) − qk(t)γ k(t)

+qb(t) [w(t) (1 − i(t)) − τi (t)i(t) + r(t)k(t) − p(t)x(t)] + qi (t)i(t), (22)

where qk denotes the costate variable or shadow price of the capital stock k, and qb and qi

denote the Kuhn-Tucker parameters for the (in)equality conditions (19) and (21). Again, the
strict concavity of the Hamiltonian HH (at least along the optimal path) ensures a unique
solution.

Assuming that the Hamiltonian HH is continuously differentiable with respect to the
control variable i , the following necessary conditions hold for an optimal solution:

qk(t + σ) = (w(t) + τi (t)) U ′(x(t)) exp[−ρpt] − qi (t), (23a)

q̇k(t) = qk(t)γ − r(t)U ′(x(t)) exp[−ρpt], (23b)

qi (t) ≥ 0, qi (t)i(t) = 0. (23c)

Due to the strict concavity of the Hamiltonian, the necessary conditions (23a)–(23c) are
also sufficient if, in addition, a transversality condition analogous to condition (11h) holds.

Footnote 8 continued
a third firm which produces the capital good by means of labor is conceivable. As long as also the third firm
operates under conditions of perfect competition this does not alter the market equilibrium. A formal proof is
available on request.
9 Following the standard notation, τ > 0 denotes a tax and τ < 0 corresponds to a subsidy.
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Together with this transversality condition, condition (23b) can be unambiguously solved to
yield:

qk(t) = exp[γ t]
∞∫

t

r(s)U ′(x(t)) exp[−(γ + ρp)s] ds. (24)

4.2 Firms

Taking prices as given, the firms maximize their profits in the competitive market equilibrium.
Firm 1 produces energy according to the first production technology, described by equations
(1) and (7b). Given a tax τe(t) per unit of emissions, its profit π1 at time t is given by:

π1(t) = [1 − w(t)(1 + a(t)) − τe(t) (1 − G(a(t)))] l1(t). (25)

Firm 1 chooses both labor l1 and abatement effort a such as to maximize the net present
value of all future profits, which is equivalent to maximizing the profit π1 at all times t . A
necessary condition for profit maximization is

∂π1(t)

∂a(t)
= [−w(t) + τe(t)G

′(a(t))] l1(t) = 0, (26)

which is an implicit equation for the unique optimal abatement effort a�(t), as long as
l1(t) > 0 and τe(t) > 0. If l1(t) = 0 or τe(t) = 0, the optimal abatement effort a�(t) = 0,
as either no emissions have to be abated or emission abatement is a pure cost to the firm.

Profit function π1(t) is linear in labor demand l1(t). Thus, the demand for l1(t) is given
by the following correspondence:

l1(t)

⎧⎨
⎩

= ∞, if 1 > w(t) (1 + a(t)) + τe(t) (1 − G(a(t)))
∈ [0,∞), if 1 = w(t) (1 + a(t)) + τe(t) (1 − G(a(t)))
= 0, if 1 < w(t) (1 + a(t)) + τe(t) (1 − G(a(t)))

, (27)

where the optimal abatement effort a is given by the solution of the implicit equation
τe(t)G ′(a(t)) = w(t) if l1(t) > 0, and a(t) = 0 if l1(t) = 0 or τe(t) = 0.

Firm 2 produces energy according to the second production technology, described by
Eq. (3). Neither the innovation subsidy τi nor the emission tax τe directly affects firm 2.
Thus, the profit π2 at time t equals:

π2(t) = [1 − λw(t) − r(t)] k(t), (28)

which is a linear function of k. As a consequence, the profit π2 is non-negative for any k > 0,
as long as the value of outputs exceeds the value of inputs. Analogously to firm 1, firm
2 demands as much capital as possible together with λk units of labor, if the value of the
output exceeds the value of the inputs. Thus, the demand of firm 2 is given by the following
correspondence:

k(t)

⎧⎨
⎩

= ∞ ∧ l2(t) = λk(t) = ∞, if 1 > λw(t) + r(t)
∈ [0,∞) ∧ l2(t) = λk(t), if 1 = λw(t) + r(t)
= 0 ∧ l2(t) = 0, if 1 < λw(t) + r(t)

. (29)
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4.3 Necessary and Sufficient Condition for the Market Equilibrium

At the market equilibrium, all markets clear. Again, the market solution may exhibit two
corner solutions, in which either the household never invests in capital, or the total labor
endowment is used to employ and maintain the capital stock. In the former, firm 2 is unable
to operate. In the latter, firm 1 is driven out of the market. First, we analyze the interior market
equilibrium where both firms operate (i.e., l1(t), i(t) > 0). From conditions (26), (27) and
(29) we derive the following equations:

1 = τe(t)
[
G ′(a(t))(1 + a(t)) + 1 − G(a(t))

]
, (30)

w(t) = 1 − τe(t) (1 − G(a(t)))

1 + a(t)
, (31)

r(t) = 1 + a(t) − λ + λτe(t) (1 − G(a(t)))

1 + a(t)
. (32)

Inserting Eq. (31) into Eq. (23a) yields[
1 − τe(t) (1 − G(a(t)))

1 + a(t)
+ τi (t)

]
U ′(x(t)) exp[−ρpt] = qk(t + σ), (33)

which together with Eq. (30) determines the interior market equilibrium for a given emission
tax τe and investment subsidy τi . From Eq. (33) we see that the future welfare gains of a
marginal unit of capital (right-hand side) have to equal its current welfare losses due to the
costs of labor minus the investment subsidy (left-hand side). Intuitively, the welfare costs of
a marginal unit of capital are the lower, the higher is the environmental tax τe and the higher
(i.e., the more negative) is the investment subsidy τi .

Comparing Eq. (33) with the corresponding condition (14) at the social optimum, we see
that, in general, the decentralized market equilibrium falls short of the social optimum, as
the welfare costs of investment in the former exceed the corresponding costs in the latter. As
a consequence, in the decentralized market solution without policy intervention less favor-
able circumstances for investment in the new production technique prevail than in the social
optimum. To derive the optimal levels for the emission tax and the investment subsidy, we
first compare (30) with the corresponding condition (12) at the social optimum. We derive
for the optimal emission tax τ

opt
e :

τe(t)
opt = D′(e(t))

U ′(x(t))
. (34)

Second, inserting Eq. (24) into Eq. (33) and Eq. (13) into Eq. (14) and comparing the resulting
conditions, we derive for the optimal investment subsidy τ

opt
i :

τi (t)
opt = −exp[−γ (t+σ)]

U ′(x(t))

∞∫
t+σ

U ′(x(s))(1 + a(s) − λ) + D′(e(s))λ (1 − G(a(s)))

1 + a(s)

× exp[−γ s] (exp[−ρ(s − t)] − exp[−ρp(s − t)]) ds. (35)

If the two instruments are set in such a way that the market equilibrium is identical to the
social optimum, τ opt

e is always positive (i.e., emissions are taxed) and τ
opt
i is always negative

(i.e., investment is subsidized). The emission tax τ
opt
e fully internalizes the emission exter-

nality, while the investment subsidy τ
opt
i corrects for the underinvestment in capital due to

the split time preference rates between the individual household and the social planner.
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4.4 Conditions for Investment and Replacement

In the following, we derive conditions for investment and full replacement in the decentral-
ized economy. Again, we first derive conditions for which the no investment corner solution
is a market equilibrium.

Proposition 3 (No investment condition in the market equilibrium) Given the household’s
problem (20), the profit functions (25) and (28) of firm 1 and firm 2, and the emission tax
τe(t) and the investment subsidy τi (t), there is no investment in the new technology in the
market equilibrium, i.e., i(t) = 0 ∀ t if and only if the following conditions hold:

• for τ 0
e = 0

(
implying a0 = 0

)
1 ≤ λ + (γ + ρp) exp[ρpσ ], (36a)

• for τ 0
e > 0

(
implying a0 > 0

)

1 + a0 + 1 − G(a0)

G ′(a0)
≤ λ +

[
1 + τ 0

i

τ 0
e G ′(a0)

]
(γ + ρp) exp[ρpσ ], (36b)

where τ 0
e = τe(t), τ 0

i = τi (t) evaluated at the no investment stationary state and, if τ 0
e > 0,

a0 is determined by the unique solution of the implicit equation:

1 = τ 0
e

[
G ′(a0)(1 + a0) + 1 − G(a0)

]
. (37)

Condition (36b) for the market equilibrium is identical to the corresponding condition for
the social optimum (15), if τ 0

e and τ 0
i are set as follows:

τ 0
e = D′(e0)

U ′(x0)
> 0, (38a)

τ 0
i = D′(e0)

[
(1+a0−λ)G ′(a0)+1−G(a0)

]
U ′(x0)

(
exp[−ρpσ ]

γ+ρp
− exp[−ρσ ]

γ+ρ

)
< 0, (38b)

where x0 = 1 − a0 and e0 = (1 − a0)(1 − G(a0)).

The proof is given in Appendix A.5.
Conditions (36a) and (36b) display the unit costs of energy production of the established

and the new technology in the competitive market equilibrium. No investment is a market
equilibrium if the the established technology displays lower unit costs than the new tech-
nology. In the unregulated market regime, the social costs of pollution are not accounted for
implying that firm 1 has no incentive to abate. UCT1 reduces to the ‘pure’ costs of production,
and is, thus, lower than socially optimal. UCT2 displays the same composition as at the social
optimum. However, as it now depends on ρp > ρ, it exceeds the socially optimal unit costs
of energy of the new technology. Thus, in the unregulated market economy higher UCT2 have
to stay below lower UCT1 as compared to the social optimum for the new technology to be
innovated. The new technology is disadvantaged in a twofold manner.

Imposing τ 0
e enforces the incorporation of the social costs of emissions into the unit costs

of production of the established technology. Setting τ 0
e equal to the ratio between marginal

damage from environmental degradation and marginal benefit from consumption raises UCT1

to its socially optimal level. However, as is obvious from condition (36b), the imposition of
the emission tax is not sufficient for the market equilibrium to resemble the social optimum.
Lowering UCT2 to its socially optimal level can be achieved by payment of an investment
subsidy τ 0

i .
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We now derive the conditions for which full replacement of the established by the new
technology is a market equilibrium in the long run.

Proposition 4 (Full replacement in the market equilibrium) Given the household’s problem
(20), the profit functions (25) and (28) of firm 1 and firm 2, the emission tax τe(t) and the
investment subsidy τi (t), full replacement of the established technology by the new one in
the long-run stationary state is consistent with the necessary and sufficient conditions for a
regulated market equilibrium, if and only if the following condition holds:

• for τ 0
e = 0

(
implying a0 = 0

)
1 ≥ λ + (γ + ρp) exp[ρpσ ]. (39a)

• for τ 0
e > 0

(
implying a0 > 0

)

1 + τ∞
e

1 − τ∞
e

≥ λ +
[

1 + τ∞
i

1 − τ∞
e

]
(γ + ρp) exp[ρpσ ], (39b)

where τ∞
e = τe(t), τ∞

i = τi (t) evaluated at the long-run stationary state.
Condition (39b) for the market equilibrium is identical to the corresponding condition for

the social optimum (17), if τ∞
e and τ∞

i are set as follows:

τ∞
e = D′(0)

U ′(x∞)
≥ 0, (40)

τ∞
i = U ′(x∞)(1 − λ) + D′(0)λ

U ′(x∞)

(
exp[−ρpσ ]

γ + ρp
− exp[−ρσ ]

γ + ρ

)
< 0, (41)

where x∞ = 1
λ+γ

.

The proof is given in Appendix A.6
The economic interpretation of conditions (39a) and (39b) is analogous to that of condi-

tions (36a) and (36b). Although the external effect from the emissions vanishes in case the
new technology fully replaces the old one, a positive emission tax has to be raised if D′(0) > 0
for the market equilibrium to resemble the social optimum. For D′(0) = 0, the optimal tax in
the full replacement stationary state is given by τ∞

e = 0. The optimal investment subsidy τ∞
i

has to be negative in any case. For full replacement to occur in the regulated market regime
in the long run, condition (36b) has to be violated while condition (39b) holds. However,
if τe and τi are such that both conditions (36b) and (39b) are simultaneously violated, the
economy exhibits a market equilibrium where both technologies are used. That is, partial
replacement of the established by the new technique is optimal. Note that partial replacement
of the established technology by the new one cannot occur in the unregulated market regime.

5 Discussion

Before discussing model assumptions and policy implications, we briefly summarize the find-
ings of our analysis. Recall that there are two energy technologies available in the economy.
The first gives rise to emissions which can be partly abated by an end-of-pipe technology.
The resulting net emissions impose a negative externality on society. The second is clean
but needs some time σ before investment becomes productive. Moreover, the intertemporal
valuation is deterred by the split between the private and social rates of time preference.
Whether the second technology (partly) replaces the first one hinges on the exogenously
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Fig. 1 Full replacement, partial replacement, and no investment in the unregulated market equilibrium and
the social optimum

given parameters and on whether and to what extent the emission externality and the split of
time preferences are corrected by an emission tax τe and an investment subsidy τi . Figure 1
illustrates the findings.

In the unregulated market regime UCT1 always equals 1. Thus, the combination of the unit
costs of production of the two technologies associated with the investment and replacement
conditions is always represented by a point on the UCT2 axis in Fig. 1. For example, point Aun

denotes a situation where no investment in the new technology takes place in the unregulated
market regime, though full replacement would be socially optimal (point Aso). Imposing an
emission tax τe increases UCT1 (upwards shift in Fig. 1). At the social optimum UCT1 equals

1+a0 + 1−G(a0)

G ′(a0)
. The introduction of an investment subsidy decreases UCT2 , shifting it to the

left in Fig. 1. In general, the social optimum in a market regime can only be implemented by
combining environmental and technology policies (moving from Aun to Aso). In the example,
the sole imposition of the emission tax would lead to a partial replacement of the established
technology (shift from Aun to Atax), and the sole imposition of the investment subsidy leaves
the economy in the no-investment stationary state (shift from Aun to Asub).

5.1 Model Assumptions

In our analysis, we explore the welfare-theoretic implications of diverging social and private
time preferences for the time-lagged transition from a polluting established to a new clean
technology. Although our model considers important features of the energy industry, we
make a series of simplifying assumptions, which we shall briefly discuss in the following.

In our model we consider a flow pollutant, whereas the accumulation of greenhouse gases
in the atmosphere causing the rise of global mean temperature is a stock-pollutant problem.
This simplification does not qualitatively affect our results. However, for a stock pollutant,
the split of time-preference rates would imply an underestimation of the future damages
from emissions today by the individual households compared to the social planner. As a
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consequence, the unit costs of production of the established technology would be further
underestimated in the not optimally regulated market economy.

By modeling the technologies as linear and linear-limitational, we assume very specific
functional forms. The rationale is to account for the rigidities in energy conversion due to
technical and thermodynamic constraints. From a more technical point of view, it is the
linearity of the production functions which gives rise to the corner solutions we exploit to
derive the conditions of investment and partial and full replacement. As our focus is on
the substitution effects between (the established and the new) production technologies, the
analysis abstracts from substitution possibilities among different production factors within
the individual technologies. Taking a medium-term perspective with invariable technologies,
we abstract furthermore from some typical long-run problems. First, we neglect endogenous
technological change in the sense that new technologies emerge or technologies become more
efficient over time. Second, we do not consider fuel inputs explicitly and, thus, implicitly
assume the finiteness of conventional energy sources to be non-binding over the relevant time
horizon. Finally, we abstract from growth. Obviously, all these characteristics are important
for successful climate-change mitigation strategies but are not in the primary focus of our
paper.

Finally, for the sake of a tractable model we abstract from a series of peculiarities relevant
in the economics of electric power systems. First, the energy industry is subject to cyclical
demand fluctuations on different time-scales (for example day/night-time or summer/win-
ter). As different energy technologies exhibit different turn-on/turn-off costs and rigidities,
a mix of energy technologies is in general preferable over ‘energy monocultures’. Second,
in contrast to our assumption of a perfectly competitive market, the energy industry rather
exhibits an oligopolistic market structure. As is well known from the industrial organization
literature, unregulated oligopolistic market regimes lead in general to additional market fail-
ures, from which we abstract to concentrate on the distortions imposed by emissions and
diverging time-preference rates.

5.2 Policy Implications

Although the analysis has been carried out in a stylized theoretical framework, direct policy
implications can be drawn which are relevant for the regulation of the energy industry in
particular, and optimal technological transitions in general.

First, our analysis shows that the time lag in the production of capital amplifies the dis-
tortion created by the split of time preference rates. In Table 1 we illustrate the effect of
time-to-build and split time preference rates on the unit costs of the new technology for dif-
ferent values of the labor costs λ and time lags σ .10 The first number displays the steady-state
unit costs in the social optimum, λ + (γ + ρ) exp[ρσ ], the second number the steady-state
unit costs without investment subsidy, λ + (γ + ρp) exp[ρpσ ], and the third number the
difference in percent of the unit costs in the social optimum. We see that without correcting
for the split time preference rates the new production technology is particularly disadvan-
taged (as a comparison to its unit costs in the social optimum) if pure labor costs are small
implying that the share of capital costs for total unit costs is high, and if the gestation lag σ is
large. For example, for λ = 0.1 which implies that capital costs amount to 50% of total unit
costs and a time lag σ = 6 years, a difference in time preference rates of ρ = 0.03 per year

10 The following parameters have been chosen: ρ = 0.03, ρp = 0.07, γ = 0.05 (all rates per year). While
the calculations are relatively insensitive to changes in γ , they are very sensitive to the split in time preference
rates ρp − ρ.
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Table 1 Calculation of steady-state unit costs of the new technology in the social optimum (first number) and
in the market economy without investment subsidy (second number) for different gestation lags σ and pure
labor costs λ

λ 0.1 0.3 0.5 0.7 0.9

σ = 0 0.18, 0.22, 22.2% 0.38, 0.42, 10.5% 0.58, 0.62, 6.9% 0.78, 0.82, 5.1% 0.98, 1.02, 4.1%
σ = 2 0.18, 0.24, 28.7% 0.38, 0.44, 13.8% 0.58, 0.64, 9.1% 0.78, 0.84, 6.8% 0.98, 1.04, 5.4%
σ = 4 0.19, 0.26, 36.1% 0.39, 0.46, 17.6% 0.59, 0.66, 11.6% 0.79, 0.86, 8.7% 0.99, 1.06, 6.9%
σ = 6 0.20, 0.28, 44.4% 0.40, 0.48, 21.9% 0.60, 0.68, 14.6% 0.80, 0.88, 10.9% 1.00, 1.08, 8.7%
σ = 8 0.20, 0.31, 53.7% 0.40, 0.51, 27.0% 0.60, 0.71, 18.0% 0.80, 0.91, 13.5% 1.00, 1.11, 10.8%
σ = 10 0.21, 0.34, 64.3% 0.41, 0.54, 32.8% 0.61, 0.74, 22.0% 0.81, 0.94, 16.5% 1.01, 1.14, 13.3%

The third number states the difference in percent of the unit costs of the social optimum

and ρp = 0.07 per year results in an overestimation of the unit costs by 44.4% compared
to the unit costs in the social optimum. As the energy sector exhibits both a high share of
capital costs and substantial construction lags, we expect it to be particularly affected. This
expectation is confirmed by Heinzel (2008), who conducts an analysis of the German power
industry around 2015, which shows that the distortion induced on the (imputed) unit costs
of electricity at the busbar of new coal, gas or nuclear power plants may amount to 1.0–18.5
¤/MWh. In addition, its elimination may have a decisive impact on the technology ranking.

Second, our analysis gives new theoretical support for policies that subsidize the deploy-
ment of energy technologies. According to our analysis, the level of the subsidy should, in
particular, depend on the difference in time-preference rates and the time lag in construction
of the new technology. Thus, we are rather skeptical about the efficiency of policies such
as the German “Erneuerbare-Energien-Gesetz” (Renewable Energy Sources Act) that subsi-
dizes electricity from renewable energy technologies by feed-in tariffs oriented at the level
of their unit costs of production.11

Finally, the analysis implies that for the transition towards a low-emission energy industry
the imposition of an environmental tax alone is in general not sufficient to implement the
socially optimal path.12 Rather, technology policy should complement environmental pol-
icy. As a general result, this is not new, as there is a series of well established causes for
technology policy associated with the process of technological transformation (e.g., Jaffe
et al. 2005). We derive this result without considering these cases. In our model, it is the
split of social and private time-preference rates combined with the time-consuming nature of
bringing a new technology into use which leads to the additional distortion. Thus, the split
time-preference rates constitute a general case for a welfare-enhancing policy intervention,
irrespective of the causes of the split. However, the intervention is to be directed towards the
source of the distortion. The split of the rates itself may only be the direct point of reference,
if and only if the underlying market failure cannot directly or differently be remedied.

6 Conclusion

We study the implications of diverging social and private time-preference rates for the transi-
tion from an established polluting to a new clean energy technology in a time-lagged general

11 Feed-in tariffs amount to 457–624 ¤/MWh for photovoltaics, 55–91 for wind energy and 71.6–150 for
geothermal energy, which is way off the 1.0–18.5 ¤/MWh computed by Heinzel (2008) for the distortion
induced by the split time-preference rates.
12 The equivalent result holds for the sole introduction of an emission permit trading scheme.
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equilibrium model. The two distortions in the model create in a mutually reinforcing way
less favorable circumstances for the introduction of the new technology, and hence delay or
even hinder structural change as compared to the social optimum.

The distortion created by the split of time-preference rates and amplified by time-to-build
feature of capital constitutes a general case for a welfare-enhancing policy intervention, irre-
spective of the causes of the split. The split of the rates itself may, however, be the direct
point of reference, if and only if the underlying market failure cannot directly or differently
be remedied. We show for this case that the socially optimal path may be implemented if,
in addition to standard environmental policy, an investment subsidy is paid. Our results con-
structively contribute to the questions of whether and how environmental policy should be
complemented by further measures, such as technology policy.

In different respects, our analysis sticks to simplest cases. In particular, we avoid an endog-
enous explanation of the split of the rates in the model and consider a flow pollutant. While
this is sufficient to clarify the basic relationships, it points to a number of issues for further
research. Thus far, there has been no systematic analysis of the causes of the split of social and
private time preferences, their quantitative contribution to the split, and the specific policy
implications with respect to each cause. Further theoretical investigations should especially
account for a richer representation of preferences.

Appendix A

A.1 Concavity of the Hamiltonian (10)

We show that the Hamiltonian (10) is strictly and jointly concave in a, i and k whenever the
necessary condition (12) holds. We first introduce function F(a(t), i(t), k(t)) defined as

F(a(t), i(t), k(t)) = U

(
1−λk(t)−i(t)

1+a(t)
+k(t)

)
−D

(
(1−G(a(t)))

1−λk(t)−i(t)

1+a(t)

)
.

(A.1)

Due to the linearity of the equation of motion (5) and the inequality conditions (9b), it is
sufficient to show that F is strictly and jointly concave in a, i and k whenever (12) holds.13

F is strictly concave if the determinants of the leading principal minors of the Hessian H of
F are alternating in sign, starting with a negative sign. This is equivalent to H being negative
definite.

Denoting by F0
yz the second partial derivatives of F with respect to y and z, given that the

necessary condition (12) holds, we obtain:

F0
aa = 1 − λk − i

(1 + a)2

{
1 − λk − i

(1 + a)2

[
U ′′(x) − D′′(e)[1 − G(a) + (1 + a)G ′(a)]2]

+ D′(e)G ′′(a)

}
, (A.2a)

F0
ai = 1 − λk − i

(1 + a)3

{
U ′′(x) − D′′(e)[1 − G(a)][1 − G(a) + (1 + a)G ′(a)]} ,

(A.2b)

13 In the following, we refrain from stating the time argument explicitly.
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F0
ak = −1 − λk − i

(1 + a)3

{
U ′′(x)(1 − λ + a) + λD′′(e)

× [1 − G(a)][1 − G(a) + (1 + a)G ′(a)]} , (A.2c)

F0
i i = 1

(1 + a)2

{
U ′′(x) − D′′(e)[1 − G(a)]2} , (A.2d)

F0
ik = − 1

(1 + a)2

{
U ′′(x)(1 − λ + a) + λD′′(e)[1 − G(a)]2} , (A.2e)

F0
kk = 1

(1 + a)2

{
U ′′(x)(1 − λ + a)2 − λ2 D′′(e)[1 − G(a)]2} . (A.2f)

Calculating the determinants of the leading principal minors of the Hessian H

det
[
H1] = F0

aa < 0, (A.3a)

det
[
H2] = F0

aa F0
i i − (F0

ai )
2 > 0, (A.3b)

det
[
H3] = det[H ] = −1 − λk − i

(1 + a)4 U ′′(x)D′(e)D′′(e)G ′′(a)[1 − G(a)]2 < 0, (A.3c)

reveals that H is negative definite.

A.2 Optimal System Dynamics

In the following, we discuss the optimal system dynamics of the optimization problem (9)
in case of the first and second regime:

(i) In the no investment regime, i(t) = 0 ∀ t holds. As a consequence, also k(t) = 0 ∀ t ,
and the system remains in a stationary state where the labor endowment is fully used
up by energy production via the established technology and by abatement: x0 = x0

1 =
1−a0, e0 = (1−a0)(1− G(a0)), and a0 is given implicitly by Eq. (12), which yields
a unique solution as shown in the proof of Proposition 1.

(ii) If the new technology eventually fully replaces the established technology, then all
labor is used to employ and maintain the capital stock k. Thus, a(t) = l1(t) = 0, and
we derive from the labor constraint (6):

k(t) = 1 − i(t)

λ
, (A.4)

which expresses capital k(t) in terms of investment i(t). Differentiating with respect
to time t and inserting into the equation of motion for the capital stock (5), yields the
following differential-difference equation, which governs the long-run system dynam-
ics:

di(t)

dt
+ γ i(t) + λi(t−σ) = γ. (A.5)

According to Theorem 3.3 (Bellman and Cooke 1963, p. 53), the solution is given by the
superposition of the solution to the homogeneous equation

di(t)

dt
+ γ i(t) + λi(t−σ) = 0, (A.6)

and a particular solution for the inhomogeneous equation. For di(t)/dt = 0 Eq. (A.5) yields
the non-trivial stationary state

i∞ = γ

λ + γ
, k∞ = 1

λ + γ
. (A.7)
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According to Theorem 3.4 (Bellman and Cooke 1963, p. 55) the solution to the homogeneous
equation can be written as ∑

n

pn(t) exp[ynt], (A.8)

where yn are the roots of the characteristic equation

h(y) ≡ y + γ + λ

γ
exp[−σ y], (A.9)

and pn(t) is a polynomial in t of degree less than the multiplicity of the characteristic root
yn .14 Thus, the general solution is given by

i(t) = i∞ +
∑

n

pn(t) exp[ynt]. (A.10)

It can be shown that the characteristic equation (A.9) has at most two negative real roots and
an infinite number of conjugate pairs of complex roots of which only a finite number have
positive real part (Proposition 2 in Winkler et al. 2005). All summands which correspond to
characteristic roots with negative real parts converge to zero in the long-run. There may be
one summand corresponding to a pair of purely imaginary roots (which, of course, then col-
lapse to one root), which oscillates around 0.15 All summands corresponding to characteristic
roots with positive real part are diverging oscillatory for t → ∞.

While diverging summands are solutions to the differential-difference equation (A.5),
they are no solutions to the system dynamics of the second regime. This is because invest-
ment is bounded to 1 by the labor constraint. All diverging solutions are not feasible, as they
eventually violate the labor constraint. This implies directly that also the capital stock cannot
diverge in the second regime. Moreover, all diverging solutions do not only violate the labor
constraint, but also the non-negativity constraint i(t) ≥ 0. To see this, consider the pair of
summands corresponding to the pair of complex conjugate roots with the highest positive
real part, say y = a ± ib, a, b > 0. These two summands can be written as:

K1 exp[at] cos[bt + K2], (A.11)

with two real constants K1 and K2. As the cosine is at times positive and at times negative, we
have a divergent oscillation, which implies that investment not only diverges over time but
also switches from periods in which it is positive to periods in which it is negative. In most
economic models, negative investment and capital stocks have no meaningful interpretation.

In summary, the optimal solution converges to the stationary state if there exists no com-
plex root with vanishing real part, and to a limit cycle around the stationary state otherwise.
As the latter case can only hold accidentally for certain exogenous parameter constellations,
we restrict attention to the case of convergence to the stationary state (A.7).

A.3 Proof of Proposition 1

Assume that it is optimal not to invest at t = 0, which implies that it is optimal not to
invest at all times t . As a consequence, the economy will remain in the no investment corner

14 It is easy to verify that there is at most one multiple root corresponding to y = −(γ + 1/σ) which only
occurs when λ = (γ /σ) exp[−(1 + σγ )].
15 For this to hold, there has to exist b ∈ [0, λ] which simultaneously solves γ = −λ cos[σb] and
b = λ sin[σb].
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solution where no capital is accumulated. Hence, i(t) = 0 and qi (t) ≥ 0 ∀ t . All energy is
solely produced by the established production technique which implies that x0 = x0

1 = l0
1 =

1 − a0, x0
2 = 0, > 0 and qi = 0. The optimal abatement effort a0 is determined by Eq. (12)

by inserting x0 = 1 − a0 and e0 = x0(1 − G(a0)) which yields Eq. (16). To see that there
exists a unique solution for a0 we define the following functions which correspond to the
left-hand side and the right-hand side of Eq. (16):

lhs(a0) = U ′(1 − a0), (A.12a)

rhs(a0) = D′ ((1 − a0)(1 − G(a0))
) [

1 − G(a0) + (1 + a0)G ′(a0)
]
. (A.12b)

Uniqueness is guaranteed by lhs′(a0) > 0 and rhs′(a0) < 0. Existence holds as

lim
a0→0

lhs(a0) = U ′(1) ∈ (0,∞), lim
a0→1

lhs(a0) = +∞,

lim
a0→0

rhs(a0) = +∞, lim
a0→1

rhs(a0) = 0.

In the corner solution i(t) = 0, we derive the shadow price of capital q0
k (t) by solving the

integral Eq. (13):

q0
k (t) = D′(e0)

[(
1 + a0 − λ

)
G ′(a0) + 1 − G(a0)

] exp[−ρt]
γ + ρ

. (A.13)

Inserting Eq. (12) and q0
k (t + σ) into (14) yields the following necessary and sufficient

condition for the corner solution to be optimal:

D′(e0)G ′(a0) exp[−ρt] = D′(e0)
[
(1 + a0 − λ)G ′(a0) + 1 − G(a0)

] exp[−ρ(t + σ)]
γ + ρ

+ qi (t). (A.14)

Taking into account that qi (t) ≥ 0, dividing by D′(e0)G ′(a0) exp[−ρt] and rearranging
terms yields condition (15). Note that condition (15) is independent of t . This implies that
it is optimal not to invest at all times t , if it is optimal not to invest at time t = 0. Thus, if
condition (15) holds, the optimal solution of the optimization problem (9) is to remain in the
no investment corner solution forever.

A.4 Proof of Proposition 2

Assume that it is optimal in the long-run stationary state to use the total labor endowment
to employ and maintain the capital stock for the new technology, i.e., x∞

2 = 1
λ+γ

. Then, all
output is solely produced by the new technology, i.e., x∞ = x∞

2 , x∞
1 = l∞1 = 0. In addition,
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no emissions are produced and have to be abated implying e∞ = 0 and a∞ = 0. Solving the
integral Eq. (13) yields:

q∞
k (t) = exp[−ρt]

γ + ρ

[
U ′(x∞)(1 − λ) + λ

(
D′(0) − q∞

i

)]
. (A.15)

Inserting q∞
k (t + σ) into Eq. (14), and taking into account that q∞

i
≥ 0, we derive condition

(17). �

A.5 Proof of Proposition 3

Assume that no investment at all times t is a market equilibrium. Then, no capital is accu-
mulated and i(t) = 0 and qi (t) ≥ 0 ∀ t . All energy is solely produced by the established
production technique (i.e., x0 = x0

1 = l0
1 = 1 − a0, x0

2 = 0). We know from conditions (27)
and (29):

w(t) = 1 − τ 0
e

(
1 − G(a0)

)
1 + a0 , (A.16a)

r(t) >
1 + a0 − λ

[
1 − τ 0

e

(
1 − G(a0)

)]
1 + a0 . (A.16b)

Equation (A.20) determines the profit maximizing abatement effort a0 of firm 1 if τ 0
e > 0

(otherwise the optimal a0 = 0). Inserting condition (A.16b) in Eq. (23b) and solving the
differential equation, yields the following inequality for the shadow price of capital:

q0
k (t) ≥ 1 + a0 − λ

[
1 − τ 0

e

(
1 − G(a0)

)]
(1 + a0)(γ + ρp)

U ′(x0) exp[−ρpt]. (A.17)

Inserting Eq. (A.16a) and q0
k into Eq. (23a), and taking into account that qi (t) ≥ 0, we derive:

(
w(t) + τ 0

i

)
U ′(x0) exp[−ρpt] ≥ 1 + a0 − λ

[
1 − τ 0

e

(
1 − G(a0)

)]
(1 + a0)(γ + ρp)

. (A.18)

Dividing by U ′(x0) exp[−ρpt] and rearranging terms yields that in the regulated market
equilibrium there is no investment in the new technology, if and only if:

1 + a0

1 − τ 0
e

(
1 − G(a0)

) ≤ λ +
[

1 + τ 0
i (1 + a0)

1 − τ 0
e

(
1 − G(a0)

)
]

(γ + ρp) exp[ρpσ ]. (A.19)

If a0 = τ 0
e = τ 0

i = 0, condition (A.19) reduces to (36a). If τ 0
e > 0, Eq. (26) holds and a0 is

given by the following implicit equation:

1 = τ 0
e

[
G ′(a0)(1 + a0) + 1 − G(a0)

]
. (A.20)

For an exogenously given τ 0
e the right-hand side of Eq. (A.20) is strictly decreasing. More-

over, it approaches +∞ for a0 → 0 and 0 for a0 → 1. This implies that there exists a unique
solution for a0 whenever τ 0

e > 0. Inserting into condition (A.19) yields (36b).
By setting τ 0

e = D′(e0)/U ′(x0), condition (A.20) which determines the profit maxi-
mizing abatement effort a0 becomes identical to Eq. (16) which determines the socially
optimal abatement level. Again, there exists a unique solution for a0 as shown in the proof of
Proposition 1. Furthermore, inserting τ 0

e and τ 0
i from Eq. (38a) and (38b) into condition

123



240 C. Heinzel, R. Winkler

(36b) yields (after some tedious calculations) the no investment condition in the social
optimum (15).

A.6 Proof of Proposition 4

Assume that using the total labor endowment to employ and maintain the capital stock for
the new technology in the long-run stationary state is a market equilibrium, i.e., l∞1 = 0,
i∞ > 0 and q∞

i = 0. Then, all output is solely produced by the new technology, i.e.,
x∞ = x∞

2 = 1
λ+γ

and x∞
1 = l∞1 = 0. In addition, no emissions are produced and have to be

abated and, thus, e∞ = 0 and a∞ = 0. For this case, we know from demand correspondences
(27) and (29) of firm 1 and firm 2:

w(t) ≤ 1 − τe(t), (A.21a)

r(t) = 1 − λw(t). (A.21b)

Inserting Eq. (A.21b) into Eq. (24), yields for the the shadow price of capital:

q∞
k (t) = 1 − λw∞

γ + ρp
U ′(x∞) exp[−ρpt], (A.22)

where w∞ = w(t) is evaluated at the full replacement stationary state and, hence, constant.
Inserting q∞

k and inequality (A.21a) into Eq. (23a), and taking into account that qi (t) = 0,
we derive the following condition:

(1 − τ∞
e )

(
λ + (γ + ρp) exp[ρpσ ]) ≤ 1 − τ∞

i (γ + ρp) exp[ρpσ ]. (A.23)

Dividing by (1 − τ∞
e ) and rearranging terms yields condition (39b). Setting τ∞

e = τ∞
i = 0,

we derive condition (39a).
Furthermore, inserting τ∞

e and τ∞
i from Eqs. (40) and (41) into condition (39b)

yields (after some tedious calculations) the full replacement condition in the social
optimum (17). �
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