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Extending Furstenberg’s ergodic theoretic proof for Szemerédi’s theorem on arithmetic
progressions, Furstenberg and Weiss (2003) proved the following qualitative result. For
every d and k, there exists an integer N such that no matter how we color the vertices of a
complete binary tree TN of depth N with k colors, we can find a monochromatic replica of
Td in TN such that (1) all vertices at the same level in Td are mapped into vertices at the
same level in TN ; (2) if a vertex x∈V (Td) is mapped into a vertex y in TN , then the two
children of x are mapped into descendants of the two children of y in TN , respectively; and
(3) the levels occupied by this replica form an arithmetic progression in {0,1, . . . ,N −1}.
This result and its density versions imply van der Waerden’s and Szemerédi’s theorems,
and laid the foundations of a new Ramsey theory for trees.

Using simple counting arguments and a randomized coloring algorithm called random
split, we prove the following related result. Let N = N(d,k) denote the smallest positive
integer such that no matter how we color the vertices of a complete binary tree TN of
depth N with k colors, we can find a monochromatic replica of Td in TN which satisfies
properties (1) and (2) above. Then we have N(d,k)=Θ(dk logk). We also prove a density
version of this result, which, combined with Szemerédi’s theorem, provides a very short
combinatorial proof of a quantitative version of the Furstenberg-Weiss theorem.
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1. Introduction

Van der Waerden’s celebrated theorem [12] states that for any positive inte-
gers d and k, there exists an integer M =M(d,k) such that no matter how
we color the elements of the set {1,2, . . . ,M} with k colors, at least one of
the color classes contains an arithmetic progression of length d.

Erdős and Turán [4] conjectured in 1936 and Szemerédi [10] proved in
1974 that this statement can be generalized as follows. For any positive
integer d and real δ >0, there exists an integer m=m(d,δ) such that every
subset of the set {1,2, . . . ,m} of size at least δm contains an arithmetic
progression of length d. Clearly, in van der Waerden’s theorem, M(d,k) can
be chosen to be m(d,1/k).

A second proof of Szemerédi’s theorem was given by Furstenberg [5],
using ergodic theory. Although qualitative in nature, this proof also has a
quantitative version [11]. Furstenberg’s proof represented a breakthrough,
partly because of its flexibility. It led to a number of generalizations of Sze-
merédi’s theorem that do not seem to follow by the original approach. These
include the density Hales-Jewett theorem [6] and the polynomial Szemerédi
theorem [2], [3].

In 2003, Furstenberg and Weiss [7] extended Furstenberg’s proof to re-
currence properties for Markov processes, which resulted in a series of new
Ramsey-type theorems for trees. To formulate their results, we need to in-
troduce some definitions.

For any positive integer d, let Td denote the full binary tree of depth
d−1. We will use the terms of root, leaf, child, descendant, and level in their
usual meaning. In the standard implementation, for any d>0, the vertex set
V (Td) of Td consists of the strings of length smaller than d over the binary
alphabet {0,1}. The level of a vertex is the length of the string. The root,
the only vertex at level 0, is the empty string. The leaves are the vertices at
level d−1. The children of a non-leaf vertex x are x0 and x1. Finally, x is
a descendant of y if y is an initial segment of x. Any vertex is considered a
descendant of itself. The empty tree will be denoted by T0.

We call a function f : V (Td)→V (Tn) a regular embedding of Td in Tn if
the following two conditions are satisfied.

1. If y and z are the two children of x in Td, then f(y) and f(z) are descen-
dants of distinct children of f(x) in Tn.

2. If x and y are vertices at the same level of Td, then f(x) and f(y) are
also at the same level in Tn.

For any subset H ⊆V (Tn), we say that H contains a replica of Td if there
is a regular embedding f : V (Td) → H. If, in addition, there exist suitable
integers a and b such that every vertex at level i in Td is mapped into a
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vertex at level a+ ib in Tn, then H is said to contain an arithmetic replica
of Td. See Figure 1 for an example of a non-arithmetic replica of T3 in T5.

Figure 1. A non-arithmetic replica of T3 in T5

Furstenberg and Weiss [7] established the following theorem and various
density versions of it.

Theorem A. [7] For any positive integers d and k, there exists N =N(d,k)
such that for every coloring of the vertices of TN with k colors, at least one
of the color classes contains an arithmetic replica of Td.

Restricting this result to colorings of TN , in which all vertices at the same
level receive the same color, we obtain van der Waerden’s theorem.

More than half of the vertices of TN are leaves, yet the set of leaves of TN

contains no replica of T2. Therefore, to formulate an analogue of Szemerédi’s
theorem for trees, we have to measure the “density” of a subset H⊂V (TN )
differently.

Furstenberg and Weiss defined the weight w(x) of a vertex x ∈ V (Tn)
to be 2−l(x), where l(x) denotes the level of x in Tn. The weight of a set
H⊆V (Tn) is

w(H) =
∑

x∈H

w(x).

In other words, w(H) is the expected size of the intersection of H with a
uniformly selected random branch of Tn.

Theorem B. [7] For any positive integer d and real δ > 0, there exists
n=n(d,δ) such that every subset of the vertex set of Tn with weight at least
δn contains an arithmetic replica of Td.

Obviously, Theorem B generalizes both Theorem A and Szemerédi’s the-
orem on arithmetic progressions.

The aim of this note is to offer a simple alternative approach to Theo-
rems A and B. Using elementary combinatorial arguments and a randomized
coloring algorithm, called random split, we prove the following results.
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Theorem 1. Let d, n be positive integers, and let H be a subset of the
vertex set of Tn satisfying

2w(H) >

d−1∑

i=0

(
n

i

)
.

Then H contains a replica of Td.

Theorem 2. Let k,d,n≥2 be integers.

(i) Suppose that n > 5dk logk, where log denotes the logarithm of base 2.
Then, for any coloring of the vertices of Tn with k colors, one can find in
Tn a monochromatic replica of Td.

(ii) If n≤ (d−1)k log(k/6), then there exists a coloring of Tn with k colors
such that Tn contains no monochromatic replica of Td.

The first statement of Theorem 2 directly follows from Theorem 1. In-
deed, for any k-coloring of V (Tn), the weight of at least one of the color
classes is at least w(V (Tn))/k = n/k. Thus, this color class contains a
monochromatic replica of Td, whenever we have

2n/k >
d−1∑

i=0

(
n

i

)
.

It follows by straightforward computation that this inequality holds for
n>5dk logk.

By its nature, the original ergodic proof of the Furstenberg-Weiss theo-
rem is purely existential. We finish this section by showing that Theorem 1
implies a quantitative version of Theorem B with

n(d, δ) < 22(1/δ)2
2d+9

.

Proof of Theorem B. Let H⊂V (Tn) be a set of weight at least δn, and let
l be a positive integer. We are going to prove that H contains an arithmetic
replica of Tl, provided that n is sufficiently large.

Let d=εn, for some ε>0 to be specified later. It follows from Chernoff’s
bound [9] that

d−1∑

i=0

(
n

i

)
< 2h(ε)n,

where h(ε) =−ε logε− (1− ε) log(1− ε) stands for the binary entropy of ε.
Therefore, as long as h(ε)≤δ, we have

2w(H) ≥ 2δn ≥ 2h(ε)n >

d−1∑

i=0

(
n

i

)
,
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and the condition in Theorem 1 is satisfied. Setting ε = h−1(δ), we obtain
that Tn contains a replica of Td with d = �εn	 = �h−1(δ)n	. Let Hd ⊂ H
denote the set of elements of such a replica.

The set of levels occupied by the elements of Hd in Tn is a subset of
{0,1, . . . ,n−1} with density roughly h−1(δ) > 0. Thus, it follows from Sze-
merédi’s theorem that this set contains an arithmetic progression of length
l, provided that n is sufficiently large. This implies that there is a regular
embedding f : V (Tl) → V (Hd) such that the levels of f(V (Tl)) in Tn form
an arithmetic progression. In other words, Tn contains an arithmetic replica
of Tl, as desired. If we plug in the best known quantitative version of Sze-
merédi’s theorem, due to Gowers [8], we obtain the desired bound.

2. Proof of Theorem 1

Let us start with a couple of definitions.
The signature of a regular embedding f : V (Td)→V (Tn) is defined as the

set of levels in Tn occupied by the images of the vertices v∈V (Td). Since all
vertices at the same level of Td are mapped by f into vertices at the same
level of Tn, and vertices at different levels in V (Td) are mapped into vertices
at different levels, we obtain that the signature of f is a d-element subset of
{0,1, . . . ,n−1}.

For a given subset H⊂Tn, We write S(H) for the set of signatures of all
regular embeddings of Td in H, with d≥ 0. We have that ∅ ∈ S(H), which
corresponds to the degenerate case when d=0, and T0 has no vertices.

Lemma 3. Let H⊆V (Tn). We have |S(H)|≥2w(H).

Proof. The proof is by induction on n. If n=0, we have H = ∅, w(H)=0,
and S(H)={∅}, so the statement is true.

Suppose now that n≥1 and that we have proved Lemma 3 for n−1. Let
r denote the root of Tn, and let T ′ and T ′′ be the two subtrees isomorphic to
Tn−1 that Tn−r splits into. We apply the lemma to these subtrees and to the
sets H ′=H∩V (T ′) and H ′′=H∩V (T ′′). By the induction hypothesis, we have
|S(H ′)| ≥ 22w(H′). Note that the weight of H ′ inside the tree T ′ is 2w(H ′),
because the levels are shifted by one. However, this shift does not affect the
size of the set of signatures. Analogously, we have |S(H ′′)|≥22w(H′′).

We distinguish two cases. If r /∈ H, then w(H) = w(H ′) + w(H ′′) and
S(H)=S(H ′)∪S(H ′′). The inequality claimed in the lemma follows:

|S(H)| ≥ max(|S(H ′)|, |S(H ′′)|) ≥ 2max(2w(H′),2w(H′′)) ≥ 2w(H′)+w(H′′).

On the other hand, if r ∈ H, then we have w(H) = w(H ′)+w(H ′′)+1, as
w(r) = 1. In view of the fact that S(H) is the disjoint union of the sets
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S(H ′)∪S(H ′′) and {s∪{0}|s∈S(H ′)∩S(H ′′)}, we obtain that in this case
|S(H)|= |S(H ′)|+ |S(H ′′)|. Using the convexity of the function 2w, we can
conclude that in this case

|S(H)| = |S(H ′)|+ |S(H ′′)| ≥ 22w(H′) + 22w(H′′) ≥ 2 · 2w(H′)+w(H′′) = 2w(H),

as desired.

Proof of Theorem 1. By Lemma 3, the number of signatures determined
by H is at least 2w(H). By the assumption of Theorem 1, this quantity is
larger than the number of signatures of size smaller than d. Therefore, S(H)
has an element of size at least d. In other words, there exists a regular
embedding of Td in H.

3. Random split and fit – Proof of Theorem 2(ii)

To prove the existence of a coloring which meets the requirements in Theo-
rem 2(ii), we use a random coloring algorithm which will be called random
split.

We color the vertices of Tn by the positive integers in order of increasing
level (breadth first). While performing the coloring procedure, we maintain
a list of “forbidden colors” for each vertex of Tn not yet colored. These lists
are empty at the beginning of the procedure. When we reach a vertex x, we
assign to x the smallest permitted color: the smallest positive integer c that
does not appear on its list of forbidden colors. If x is not a leaf, we update
the lists associated to its descendants as follows. Let y and z be the two
children of x, and let Dy and Dz denote their sets of descendants. For each
level l larger than the level of x, we make an independent uniform random
choice and either add c to the list of forbidden colors of every element of Dy

on level l or we add c to the list of every vertex in Dz on level l.

Lemma 4. The random split coloring of Tn admits no monochromatic reg-
ular embedding (replica) of T2.

Proof. Consider any regular embedding f of T2 in Tn. Denote by x the image
of the root of T2 and let y and z be the images of the leaves. By definition,
y and z are on the same level l and they are descendants of distinct children
of x. In the random split coloring, x receives some color c and at the same
time the c is added to the list of forbidden colors to all descendants of one
of its children on level l. In particular, c will be forbidden either for y or for
z. Thus, f cannot be monochromatic with respect to this coloring.
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Lemma 5. Restricted to any one root-leaf branch of Tn, the random split
coloring is equivalent to the following “random fit” procedure: We color
the vertices one by one, starting at the root. For each vertex, we consider
the positive integers in increasing order until one is accepted and give the
vertex the accepted color. When considering the integer c, we accept it with
probability 2−m, where m is the number of vertices (along this branch) that
have earlier been colored with the color c. In particular, we do accept c the
first time it is considered.

Proof. Restricting our attention to a single branch simplifies the procedure
of updating the lists of forbidden colors in random split: once a vertex is
colored, its color is added to the list of each uncolored vertex independently
with probability 1/2. Equivalently, in the random fit procedure, if a color
c appears m times along the branch up to a certain point, then for every
remaining vertex y, the color c appears on the list of y with probability
1−2−m. These events are independent for different pairs (c,y), so deciding
them can be postponed until the particular vertex y is colored, as done in
random fit.

The key to the proof of Theorem 2(ii) is the following statement.

Lemma 6. Let n≥ 8 and k = 2�3n/ logn	. For any branch of Tn of length
n, the probability that the random fit algorithm uses a color higher than k
is smaller than 21−n.

Before proving Theorem 2(ii) in its full generality, we show that Lemma 6
implies the result for d=2. Indeed, let us apply random split coloring to Tn.
This coloring admits no regular embedding of T2, by Lemma 4. By Lemmas
5 and 6, the probability that it uses a color higher than k on any given
branch is less than 21−n. So, by the union bound, it uses at most k colors
on the entire tree Tn, with positive probability.

Proof of Lemma 6. Fix a branch of length n of Tn, and consider one
by one the sequence of all choices made by the random fit algorithm. The
maximum number of choices is N :=

(
n+1

2

)
, and after each choice we either

accept or reject a color. Let pj denote the probability with which we accept
the color at the j’th choice.

Set X0 =0, and for any j >0, define the random variable Xj as follows.
Let Xj =Xj−1 +pj if random fit rejects the corresponding color considered
at the j’th choice, and let Xj = Xj−1 + pj − 1 if it accepts. If random fit
makes fewer than j individual choices, we simply set Xj =Xj−1. Obviously,
the random variables Xj (j = 1,2,3, ...) define a martingale with differences
bounded by 1, and Xj stabilizes for j≥N .

There are exactly n choices at which a color is accepted, and the corre-
sponding −1 terms contribute −n to XN . If a color larger than k was ever
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used, then every color up to k +1 must have been used at least once. For
simplicity, we set l=k/2+1 and use the fact that each color i≤ l must have
been considered at least l times, and every time it was considered, it gave a
positive contribution to Xn of at least 2−mi , where mi is the total number
of vertices along this branch that were assigned color i. Thus, we have

Xn ≥
l∑

i=1

l

2mi
− n ≥ l2

n1/3
− n ≥ 9n5/3

log2 n
− n,

where the middle inequality comes from the fact the
∑

i mi≤n and 2−m is
a convex function.

Azuma’s inequality [1] bounds the probability that XN = XN −X0 > T

by e−
T2

2N . Substituting T = 9n5/3

log2 n
−n, we obtain the desired bound for the

probability that a color larger than k is assigned to some vertex.

Proof of Theorem 2(ii). We have already seen that for d=2 the statement
directly follows from Lemma 6. This means that there is a k-coloring χ′ of
Tn′ with n′ = �k log(k/6)	, which does not admit a monochromatic regular
embedding of T2.

To tackle the case d> 2, let n = (d−1)n′ and split Tn into subtrees iso-
morphic to Tn′ , in the usual way: the levels 0 to n′−1 form one subtree, the
levels n′ to 2n′−1 form 2n′

subtrees, etc. Coloring each of these subtrees sep-
arately according to χ′, we obtain a coloring that admits no monochromatic
regular embedding of Td.

4. Concluding remarks

Furstenberg and Weiss generalized Theorem B in two directions. First of all,
instead of binary trees, one can consider ternary trees or, in general, trees
in which every non-leaf vertex has s children, for some s≥2.

Obviously, our approach also applies to this case. Let Tn,s denote a full
tree of depth n with this property. The only difference in our argument is
that now the weight of a vertex x∈ V (Tn,s) at level l has to be defined as
w(x) = s−l. The weight of a subset of V (Tn,s) is the sum of the weights of
its elements. We can define the regular embeddings of Td,s in Tn,s as in the
binary case, but now the s children of a vertex v∈V (Td,s) have to be mapped
to descendants of distinct children of the image of v. Instead of Lemma 3,
now we have
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Lemma 3’. Let H⊆V (Tn,s). Then the number of signatures of all regular
embeddings of Td,s in H satisfies

|S(H)| ≥
∑

σ∈S(H)

(s − 1)−|σ| ≥
(

s

s − 1

)w(H)

.

Lemma 3’ readily implies the following version of Theorem 1:

Theorem 1’. Let d, n, and s be positive integers, and let H be a subset of
the vertex set of Tn,s satisfying

(
s

s − 1

)w(H)

>
d−1∑

i=0

(
n
i

)

(s − 1)i
.

Then H contains a replica of Td,s.

Using Theorem 1’ and Szemerédi’s theorem, one can easily deduce the
corresponding version of Theorem B: Any subset H of the vertex set of
Tn,s with weight w(H)≥ δn contains an arithmetic replica of Td,s provided
n>n0(d,s,δ).

As another variant of their result, Furstenberg and Weiss considered
arithmetic embeddings in not necessarily full trees. Nevertheless, in what
follows, we use the same definition of regular embeddings of Td in T as for
embeddings in Tn.

Theorem B’. [7] Let α be a positive real, let s>1 be an integer, and T a
rooted tree satisfying the following three conditions:

(a) every vertex has at most s children;
(b) every leaf is at level n; and
(c) the number of leaves is at least 2αn.

Then there is an arithmetic replica of Td in T provided n>n′
0(s,d,α).

Proof. Let us define the map g : V (Tn)→ V (T ) as follows. For the root r
of Tn, let g(r) be the root of T . For any non-leaf vertex v ∈ V (Td), let g
map the two children of v to the two distinct children of g(v) which have
the largest number of descendants that are leaves, unless g(v) has only one
child. In the latter case, we map both children of v to the only child of g(v).
Let

H = {v ∈ V (Td) | g(v) has 0 or at least 2 children}.
Since g preserves levels, it maps every replica of Td in H into a replica of Td

in T , and every arithmetic replica is mapped into an arithmetic replica.
Note that T has at most sw(H)−1 leaves. Thus, by our assumption, w(H)>

αn/ logs. By Theorem B, if n > n′
0(s,d,α), then H contains an arithmetic

replica X of Td. Consequently, g(X) is an arithmetic replica of Td in T .
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