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Abstract The interplay between support systems and the rock when tunneling

under squeezing conditions is normally studied by means of two-dimensional

analyses. The present paper shows that the underlying plane strain assumption

involved in a two-dimensional analysis may lead, under certain conditions, to

ground pressure and deformation values that are considerably lower than those

produced by stress analyses that take into account spatial effects in the vicinity of

the tunnel face. The differences are due to the stress path dependency in the elasto-

plastic behavior of the ground and, more specifically, to the inability of the plane

strain model to map the actual radial stress history, which involves a complete radial

unloading (and, later, a re-loading) of the tunnel boundary over the unsupported

span. This inherent weakness of any plane strain analysis is relevant from the design

standpoint, particularly for heavily squeezing conditions that require a yielding

support. For the majority of tunneling conditions and methods, however, involving

as they do the completion of a stiff support within a few meters of the face, the

errors introduced by the plane strain assumption are not important from a practical

point of view.
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E Young’s modulus of the ground

EL Young’s modulus of the lining

e Unsupported span

fc Uniaxial compressive strength

F Function defined by Eq. 6

g1, 2 Plastic potential functions

k Lining stiffness

m Material constant defined by Eq. 4

p Radial pressure acting upon the lining

p(?) Final radial pressure acting upon the lining

�p Transformation of pressure p (Eq. 4)

r Radial co-ordinate (distance from tunnel axis)

s Round length in the step-by-step calculations

u Radial displacement

u(?) Final radial displacement of the ground at r = a
�u Radial displacement (unsupported opening)

�uE Radial displacement (unsupported opening, elastic ground)

y Axial co-ordinate (distance behind the tunnel face)

d1, 2,… Material constants defined by Eq. 4

eyy Axial strain

err Radial strain

ett Tangential strain

ery Shear strain

e…, el Elastic strain

e…, pl Plastic strain

g1, 2, 3 Material constants defined by Eq. A32

g4 Material constants defined by Eq. A14

g5, 6 Material constants defined by Eq. A29

j Material constant defined by Eq. 4

m Poisson’s ratio of the ground

q Radius of the plastic zone

q0 Radius of the inner part of the plastic zone

q2D Radius of the plastic zone under plane strain conditions

qpl Radius of the plastic zone under spatial conditions

qpy Radius of zone yielding in the past under spatial conditions

�r... Transformation of stress r… (Eq. A3)

r1 Maximum principal stress

r3 Minimum principal stress

ra Radial support pressure

r0 Initial stress

ryy Axial stress

rrr Radial stress

rtt Tangential stress

rry Shear stress

rq0 Radial stress at r = q0
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/ Angle of internal friction of the ground

U Function defined by Eq. 12

w Dilatancy angle of the ground

1 Introduction

The interaction between the ground and the tunnel lining is well understood in

principle (see Lombardi 1971, 1981; Panet and Guellec 1974). In the initial state

prevailing before tunnel construction, an equilibrium exists between the core ahead

of the tunnel face and the surrounding ground. The ground around the future

opening exerts a load upon the core and, vice versa, the core supports the

surrounding ground. As the support effect of the core disappears with its excavation,

a spatial stress redistribution accompanied by deformations occurs around the

working face, and a pressure develops upon the lining, because the latter partially

hinders the convergence of the tunnel walls. The magnitude of the loading depends

on the magnitude of the deformations constrained by the lining (i.e., on the

magnitude of the deformations that would occur in the absence of a lining) and,

thus, on the distance between the working face and the location of the lining

installation (e in Fig. 1a). The smaller this distance, the higher will be the load that

develops with the progress of excavation. Furthermore, as in any statically

undetermined system, the magnitude of the ground pressure depends on the load–

deformation characteristics of both the lining and the ground.

The deformations and rock pressures can be estimated by means of three-

dimensional numerical models that take into account the sequence of lining

installation and excavation works. Due to the high cost of such three-dimensional

analyses, however, tunnel design calculations are based, in most cases, upon plane

strain models that consider a tunnel cross section. The principle of such two-

dimensional calculations can be illustrated best by considering the axisymmetric case

of a deep cylindrical tunnel. Figure 1b shows the characteristic lines of the ground

and of the lining. The characteristic line of the rock (the so-called ground response

curve) relates the radial displacement of the rock at the excavation boundary to the

support pressure, while the characteristic line of the lining relates the radial

displacement of the lining to the pressure exerted by the rock. The intersection point

(a) (b)

Fig. 1 a Radial displacement of the tunnel wall. b Characteristic lines of the ground and of the lining
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of the two lines (the ‘‘ground response point’’) fulfils the conditions of equilibrium

and compatibility, and shows the radial pressure p(?) acting upon the lining far

behind the face and the respective radial displacement u(?) of the ground at the

excavation boundary r = a. For determining the intersection point, an a priori

assumption must be made concerning the ground displacement u(e) that occurs

before the lining is installed (‘‘pre-deformation’’). Note that small variations in the

assumed pre-deformation u(e) may lead to large variations in rock pressure,

particularly in the case of a highly non-linear ground response. This sensitivity has

prompted considerable research aimed at finding methods for estimating pre-

deformation without needing to carry out costly spatial numerical analyses. Research

efforts in the 1990s were focused mainly on the axisymmetric problem of a

cylindrical tunnel (Corbetta 1990; Bernaud 1991; Bernaud and Rousset 1996;

Nguyen-Minh and Corbetta 1992; Nguyen-Minh and Guo 1993, 1996; Guo 1995;

Panet 1995; AFTES 2002), while recent papers have examined the influence of the

tunnel shape and of the anisotropy or heterogeneity of the initial stress field

(Carranza-Torres and Fairhurst 2000; González-Nicieza et al. 2008).

The problem is, however, more fundamental than estimating the magnitude of

pre-deformation: for geomaterials with path-dependent mechanical behavior, the

existence of a single ‘‘ground response curve’’ is, in itself, questionable, as the

response of the ground depends on its stress history and, in the case of time-

dependent processes, such as creep (Kaiser 1980) or consolidation (Anagnostou

2007a), on the excavation advance rate as well. The method involving characteristic

lines may, nevertheless, oversimplify reality, even in the absence of time-

dependency. So, for example, Amberg (1999) has remarked (on the basis of the

results of design calculations for the Gotthard Base Tunnel) that three-dimensional

simulations of tunnel excavation may lead to both higher ground pressures and

higher deformations than those predicted by plane strain calculations (i.e., to ground

response points which are located above the ground response curve, e.g., point

‘‘3D’’ in Fig. 1b). Also, Bliem (2001) and Kumasaka (2007) recognized that the

final lining pressure and the final ground deformation obtained by a spatial

calculation may be higher than the values obtained by considering the ground

response curve. Furthermore, the numerical results presented by Barla (2000, 2001)

show a significant difference between the stresses predicted by two- and three-

dimensional models, with a clear influence on the stress path experienced by the

ground surrounding the tunnel. The role of the stress path has also been examined in

recent years in the context of tunneling or mining through hard brittle rocks (Pelli

et al. 1995; Martin et al. 1999; Cai et al. 2002; Diederichs et al. 2004a, b). So, for

example, Eberhardt (2001) presented the results of a three-dimensional numerical

study on the rotation of the principal stress axes in the vicinity of the tunnel face and

on its effect on the direction of fracture propagation.

In the present paper, emphasis is placed on the influence of the stress path on the

deformations and ground pressures developing in tunnels crossing weak rocks that

are prone to squeezing and exhibit important plastic flow. More specifically, it is the

purpose of this paper to show, by comparative computations, how greatly the

ground response calculated using a more realistic spatial model may deviate from

the response predicted through plane strain analyses (Sect. 3), to show the
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limitations and the nature of the simplifications involved in even the most

sophisticated methods of pre-deformation estimation (Sect. 4), and to improve our

understanding of the reasons for these deviations (Sect. 5).

The present investigation concerns only the effect of the computational domain

(plane vs. spatial system). It should be noted, however, that the stress history of the

ground and its response to tunneling may also be influenced by time-effects. The latter

are particularly pronounced when the ground becomes overstressed and are, therefore,

important for squeezing behavior. This aspect is not dealt with by the present paper.

2 Problem Layout and Solution Method

2.1 Problem Layout

For the sake of simplicity and without compromising its general applicability, the

comparative analyses of the present paper refer to a deep, cylindrical, and uniformly

supported tunnel that crosses a homogeneous and isotropic ground. The initial stress

field is assumed to be uniform and hydrostatic. The mechanical behavior of the

ground is modeled as isotropic, linearly elastic, and perfectly plastic according to

the Mohr–Coulomb yield criterion with a non-associated flow rule.

The lining is modeled as an elastic radial support with stiffness k = dp/du, where

p and u denote the radial loading and the radial displacement of the lining,

respectively. The radial stiffness k of a ring-shaped lining is equal to ELd/a2, where

a, d, and EL denote its radius, thickness, and Young’s modulus, respectively. The

longitudinal bending stiffness of the lining will not be taken into account. (This

effect is, however, of subordinate importance.) Lining installation occurs at a

distance e behind the tunnel face (Fig. 1a).

Under the assumptions made above, the problem obeys rotational symmetry with

respect to the tunnel axis y (Fig. 1a). The plane strain assumption leads to a one-

dimensional problem, for which closed-form solutions exist (Sect. 2.2), while the

three-dimensional problem of the advancing tunnel heading reduces, then, to a two-

dimensional axisymmetric problem that is solved numerically by the finite element

method (Sect. 2.3).

2.2 Plane Strain Problem

According to the closed-form solutions presented by, e.g., Anagnostou and Kovári

(1993), the displacements in the elastic range, i.e., if:

�p

�r0

� 2

mþ 1
; ð1Þ

are given by the following equation:

u pð Þ ¼ a�r0

E
1þ vð Þ 1� �p

�r0

� �
; ð2Þ

while in the elasto-plastic range:
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u pð Þ ¼ a��r0

E
d1 þ d2

��p

��r0

þ d3

��p

��r0

� ��d4

 !
; ð3Þ

where:

�p ¼ pþ fc
m� 1

; �r0 ¼ r0 þ
fc

m� 1
; m ¼ 1þ sin U

1� sin U
; j ¼ 1þ sin W

1� sin W
;

d1 ¼ �ð1� 2vÞð1þ vÞ; d2 ¼ ð1þ vÞ ð1� vÞð1þ mjÞ � vðmþ jÞ
mþ j

;

d3 ¼
2ð1� v2Þðm� 1Þ

mþ k

2

mþ 1

� �d4

; d4 ¼
jþ 1

m� 1
:

ð4Þ

These equations assume that plastic flow takes place only in the plane of the

tunnel cross section. According to the adopted Coulomb yield criterion, this is

true only if the secondary axial stress is the strict intermediate principal stress.

The effect of the axial stress on the deformation fields around a cylindrical

cavity in a brittle Coulomb material has been investigated analytically by

Nguyen-Minh and Berest (1979) and Reed (1988). Here, attention is paid to the

special case of a perfectly plastic material. The closed-form solution for the

stress field and the ground response curve is given in the Appendix. According to

this analysis, when the support pressure is low and the initial stress is high, out-

of-plane plastic strains develop as both the axial stress and the tangential stress

fulfill the yield condition (so-called ‘‘edge flow’’). The error introduced by

neglecting the out-of-plane plastic strains may be considerable for materials

exhibiting softening behavior (Reed 1988), but, as shown below, is negligible for

perfectly plastic materials.

Figure 2a shows ground response curves for an example with parameter values

according to Table 1 (with c = 500 kPa). The dashed curve is based upon Eq. 3,

which does not take into account the out-of-plane plastic flow, while the solid line

has been calculated by the closed-form solution derived in the Appendix (Eq. A31).

The marked points have been obtained numerically by the finite element method. (In

the numerical calculations, edge flow is taken into account based upon the classical

method of Koiter 1953.) The error caused by neglecting the out-of-plane strains is,

in this example, negligible. In the theoretical case of m = 0, the error is larger but

still small (Fig. 2b). The numerical solutions agree well with the analytical ones.

Figure 3 provides a more complete picture. The diagram shows the error over the

normalized support pressure for a friction angle / = 15 or 35�, the common range

of Poisson’s ratio (m = 0.15–0.35) and the two borderline cases of the flow rule

(w = 0� or /). As can be seen from Fig. 3, neglecting the plastic flow in the axial

direction leads, in general, to an underestimation of the radial boundary

displacement by a few percent.

2.3 Axisymmetric Problem

The numerical solution of the axisymmetric problem is usually based upon a

simulation of the excavation and support installation that models the advancing
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tunnel heading step-by-step (see, e.g., Franzius and Potts 2005). Since large stress

and deformation gradients prevail in the vicinity of the tunnel face and the latter

moves during the step-by-step simulation, either the finite element mesh has to be

fine everywhere along the tunnel axis or adaptive re-meshing must be carried out for

each excavation step. Such an analysis is, therefore, very time-consuming, even in

the case of linear material behavior.

(a) (b)

Fig. 2 Ground response curve with/without consideration of out-of-plane plastic flow (solid/dashed
curve, respectively), as well as numerically obtained results (marked points). a Poisson’s ratio m = 0.30. b
Poisson’s ratio m = 0.0 (c = 500 kPa; other parameters, see Table 1)

Table 1 Assumed model parameters

Parameter Value

Initial stress, r0 12.5 MPa

Tunnel radius, a 4 m

Lining stiffness, k Variable

Unsupported span, e Variable

Young’s modulus (ground), E 1,000 MPa

Poisson’s ratio (ground), m 0.3

Angle of internal friction (ground), u 25�
Cohesion (ground), c 500 or 2,000 kPa

Dilatancy angle (ground), w 5�
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The present problem, however, belongs to the large category of problems with

constant conditions in the tunneling direction (the stress and deformation fields are

steady with respect to the tunnel heading, i.e., they ‘‘advance’’ together with the

face in the direction of excavation) and it is solved here by means of a single

computational step. The basic principle behind this so-called one-step solution

method can be traced back to the work of Nguyen-Quoc and Rahimian (1981) on

steady crack propagation in elasto-plastic media, and it is that the time coordinate

can be eliminated from the equations governing the steady state by re-formulating

the equations in a frame of reference that is fixed to the advancing heading. In

such an approach, the co-ordinate y in the tunneling direction (Fig. 1a) undertakes

the role of the time dimension in the integration of the elasto-plastic constitutive

equations. Corbetta (1990) applied this method for the analysis of advancing

tunnels in elasto-plastic and viscoplastic media (see also Corbetta and Nguyen-

Minh 1992), while Anagnostou (2007a) proposed a generalization of the one-step

solution method for coupled problems involving seepage flow and consolidation

processes. Details concerning the calculation of the internal forces of the support

elements (under consideration of the pre-deformations of the ground) can be found

in Anagnostou (2007b).

Figures 4 and 5 compare numerical results obtained by the one-step solution

method with the results of step-by-step computations. A sequential excavation and

support installation procedure is determined by the following two geometrical

parameters: the round length s and the minimum distance e between the leading

edge of the support and the tunnel face (Fig. 4a). In the step-by-step method, the

excavation and support cycles are simulated by activating support elements and de-

activating ground elements stepwise over successive round lengths s. Each

excavation round causes a stress re-distribution in the longitudinal direction and

an additional load increment upon the installed support elements. The anterior parts

of the support elements are more affected by the excavation of the core, because the

effect of each excavation round decreases with the distance from the face. This leads

Fig. 3 Error caused by not considering the out-of-plane plastic flow
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(a)

(b)

(c)

Fig. 4 a Calculation sequence in the step-by-step method. b Radial displacement of the tunnel boundary.
c Distribution of the pressure acting upon the lining
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to a saw-shaped distribution of the ground pressure and deformation along the

tunnel wall. Lines 1 and 2 in Fig. 4 have been obtained by means of step-by-step

simulations performed by the finite element code HYDMEC of the ETH Zurich

(Anagnostou 1992) and the commercial geotechnical finite element package

PLAXIS (Brinkgreve 2002), respectively. The parameters of the numerical example

are: round length s = 2 m, unsupported span e = 4 m, cohesion c = 500 kPa,

lining thickness d = 50 cm, Young’s modulus of the lining EL = 30 GPa (see

Table 1 for the other parameters). The lining was modeled as an elastic radial

support with (PLAXIS simulation) or without (HYDMEC simulation) longitudinal

bending stiffness. The saw-shaped distribution is typical for step-by-step simula-

tions (see, e.g., Bonnier et al. 2002; Graziani et al. 2005) and, as can be seen from

Fig. 4, occurs even if taking into account the bending stiffness of the support.

Furthermore, the comparison of lines 1 and 2 in Fig. 4 shows that the simplification

0

2

4

6

8

0 1 2 3 4

step-by-step method (average p(∞) over lining segment)
step-by-step method (variation over lining segment)
one-step solution method

p 
[M

Pa
]

s [m]

0

0.4

0 1 2 3 4

step-by-step method (variation over lining segment)
step-by-step method (average u(∞) over lining segment)

one-step solution method

u 
[m

]

s [m]

0.3

0.2

0.1

(a)

(b)

one-step solution method (zero variation
by definition)

one-step solution method (zero variation
by definition)

Fig. 5 Results of the step-by-step method as a function of round length s and results of the one-step
solution method (plotted at s = 0) for an unsupported span e = 4 m
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introduced by neglecting the longitudinal bending stiffness of the lining is not

decisive for the investigation of the final lining pressures and convergences.

Line 5 in Fig. 4 show the respective numerical results of the one-step solution

method implemented in the finite element code HYDMEC. The distribution of the

pressures and deformations along the tunnel is smooth because the round length

does not represent a parameter in this method. In fact, the one-step solution method

refers to the borderline case of a zero round length s. The length of the unsupported

span is, thus, continuously equal to e, while in the step-by-step simulations, it varies

between e and e ? s (Fig. 4a). Due to the shorter unsupported span, the one-step

solution method leads to slightly lower ground deformations and slightly higher

ground pressures. (For the comparison of the pressures, the numerical results of the

step-by-step simulations have been averaged over each lining segment; see lines 3

and 4 in Fig. 4c).

For the validation of the implementation of the one-step solution method into the

finite element code HYDMEC, a series of step-by-step simulations has been carried

out with different values of the round length s. The lines marked by white symbols

in Fig. 5 show the influence of the round length s on the final lining pressure p and

ground deformation u (average values and variation over the lining segment). One

recognizes that the results of the step-by-step calculations approach the values

obtained by the one-step solution method (black markers) with decreasing round

length. The one-step solution method corresponds, thus, to the limiting case of a

step-by-step model with zero round length.

3 Deviation from the Plane Strain Response

In this section, the results of plane strain analyses will be compared to those of

spatial analyses that take into account the advance of the tunnel heading. The

analysis refers to a 500-m deep tunnel that has a radius a = 4 m. Table 1

summarizes the parameters of the model. The material constants (particularly, the

low dilatancy angle) are typical for the weak kakiritic rocks from the Gotthard Base

Tunnel (Vogelhuber et al. 2004). Concerning the shear strength of the ground, two

cohesion values have been considered. The higher value (c = 2,000 kPa) applies to

a moderately squeezing ground, the lower (c = 500 kPa) to a heavily squeezing

ground.

Typical linings have a stiffness k in the range 0.1–1 GPa/m. The calculations

have been carried out for a wider range of stiffness values (0.01–100 GPa/m) in

order to gain a complete picture of model behavior. Furthermore, unsupported spans

e of up to 16 m have been considered. The larger values for an unsupported span

take into account, in a simplified way, the case of a yielding support that allows the

occurrence of a free radial convergence [u(0) - u(e) in Fig. 1a] and starts to exert a

pressure at a distance y = e behind the tunnel face.

Figure 6b shows the ground response curve (the solid line marked by ‘‘GRC’’)

obtained by a closed-form, plane strain solution (Eq. 3), as well as the results of the

numerical calculations for the case of heavily squeezing ground (points marked by

circles, e.g., A1, 2, 3,…; see also Table 2). The numerical results show that the ground
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response deviates considerably from the plane strain curve (GRC). The stiffer the

lining and the longer the unsupported span e, the more pronounced will be the

difference. Plane strain analysis systematically underestimates ground pressures and

deformations. The same observation, but to a lesser degree, can be made for the case

(a) (b)

(c)

Fig. 6 Heavily squeezing ground. a Radial displacement u(?) of the ground far behind the face as a
function of the unsupported span e. b Ground response curve under plane strain conditions (GRC), ground
response curve under axisymmetric conditions for the case of a uniform support pressure acting along the
excavation boundary (dashed curve next to GRC), ground response points (A1, 2, 3,…; see Table 2) far
behind the tunnel face (at y/a = 75) for different unsupported spans e and lining stiffnesses k,
characteristic lines of support (us1, us2, us3, s1, s2, s3; see Table 2). c Radial pressure p(?) acting upon
the lining far behind the face as a function of the unsupported span e
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of a moderately squeezing ground (Fig. 7b). The underestimation of ground

pressures and deformations by the plane strain model is typical for elasto-plastic

ground behavior. For elastic behavior, of course, there is no difference between the

plane and the spatial model.

A plane strain analysis is adequate under the following conditions:

(i) It must lead to ground response points (p(?), u(?)) that are close to the ones

obtained when taking into account the evolution of stress and deformation in

the vicinity of the working face.

(ii) A practicable way exists to estimate the pre-deformations of the ground, i.e.,

the deformations that take place up to the installation of the support.

As can be seen from Figs. 6b and 7b, the first condition is fulfilled in the case

of a lower stiffness lining (low k values) or a lining installation close to the face

(small e values). With respect to the second condition, the ground pressure and

deformation values obtained by the convergence–confinement method will be

examined next.

4 Limitations of the Convergence–Confinement Method

The estimation of pre-deformation, which is of paramount importance for any plane

strain model, starts by considering the development of the radial displacement �uE yð Þ
along the excavation boundary (y [ 0, r = a) of an unsupported tunnel crossing a

linearly elastic ground:

�uE yð Þ ¼ �uE 1ð ÞF
y

a

� �
; ð5Þ

Table 2 Parameters for support and ground response points in Figs. 6 and 7

Line or point k (GPa/m) e (m) Estimation of pre-deformation

us1 0.1 2 Based upon unsupported opening (Eq. 10)

us2 1 2

us3 1 8

s1 0.1 2 Implicit method (Eqs. 13 and 14)

s2 1 2

s3 1 8

A1 0.1 2 Not applicable (result of axisymmetric analysis)

A2 1 2

A3 1 8

A4 0.1 1

A5 1 1
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where �uE 1ð Þ denotes the final radial displacement far behind the face (given by

Eq. 3 with p = 0), while the function F is defined as follows (AFTES 2002):

F tð Þ :¼ 1� 0:75
0:75

0:75þ t

� �2

ð6Þ

(a) (b)

(c)

Fig. 7 Moderately squeezing ground. a Radial displacement u(?) of the ground far behind the face as a
function of the unsupported span e. b Ground response curve under plane strain conditions (GRC), ground
response points (A1, 2, 3,…; see Table 2) far behind the tunnel face (at y/a = 75) for different unsupported
spans e and lining stiffnesses k, characteristic lines of support (s1, s2, s3; see Table 2). c Radial pressure
p(?) acting upon the lining far behind the face as a function of the unsupported span e
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or, according to Corbetta (1990):

F tð Þ :¼ 0:29þ 0:71 1� exp �1:5t0:7
� �� �

: ð7Þ

As both expressions lead to similar results, Eq. 6 will be used in the comparative

calculations of the present paper. Following Corbetta (1990), the development of

convergence �u yð Þ for the case of elasto-plastic ground can be obtained approxi-

mately by applying a so-called homothetic transformation to the elastic convergence

�uE yð Þ (Fig. 8):

OP

OE
¼ �u 1ð Þ

�uE 1ð Þ
¼ constant; ð8Þ

where �u 1ð Þ denotes the final elasto-plastic convergence of an unsupported tunnel

(given by Eq. 2 with p = 0). It follows from Eqs. 2, 3, and 8 that the so-called

similitude ratio �u 1ð Þ=�uE 1ð Þ depends on the initial stress r0, on the Poisson’s ratio

m, and on the plasticity constants c, /, and w. From Fig. 8, it follows that:

�u yPð Þ ¼
�u 1ð Þ
�uE 1ð Þ

�uE yEð Þ; yE ¼
�uE 1ð Þ
�u 1ð Þ yP: ð9Þ

Equations 5 and 9 yield, with yP = e, the convergence at the point of support

installation:

�u eð Þ ¼ �u 1ð ÞF �uE 1ð Þ
�u 1ð Þ

e

a

� �
: ð10Þ

Equation 10 offers the simplest way of estimating pre-deformation, but, at the same

time, it leads, as pointed out by the AFTES (2002), to a serious underestimation of

ground pressure. This can be illustrated by comparing the numerical results of

Figure 6b with the results obtained by the convergence–confinement method. The

straight lines us1, us2, and us3 are the characteristic lines for three linings with

Fig. 8 Development of radial displacement along the excavation boundary of an unsupported tunnel
crossing an elasto-plastic ground according to Corbetta (1990)
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different stiffnesses k and an unsupported span e (Table 2). Line us1 applies to a

rather soft lining (k = 0.1 GPa/m, i.e., a 15-cm thick ring with a Young’s modulus

of only 10 GPa) installed at e = 2 m behind the face. The intersection point of the

line us1 with the ground response curve gives the ground pressure and deformation

according to the convergence–confinement method. It is lower—by a factor of 2—

than the pressure obtained by the axisymmetric analysis (point A1). Lines us2 and

us3 apply to a higher lining stiffness (k = 1 GPa/m, i.e., a 50-cm thick ring with a

Young’s modulus of 30 GPa) and an unsupported span e of 2 or 8 m, respectively.

Points A2 and A3 mark the respective results of the axisymmetric analysis. Here, the

convergence–confinement method underestimates the pressure by a factor of about

4.

As Eq. 10 is based upon the development of convergence along an unsupported

opening, while a stiff lining reduces not only the final convergence but the pre-

deformations as well, the underestimation of pressure by the convergence–

confinement method has been attributed to the overestimation of pre-deformation

(see, e.g., AFTES 2002). We see, however, from Fig. 6b that the deformations are

actually only slightly overestimated. The fact that all of the ground response points

A1, 2, 3,… are located above the plane strain ground response curve shows that the

problem is more fundamental: a plane strain analysis cannot reproduce both the

deformations and the pressures. In order to determine the ground pressure through a

plane strain analysis, the pre-deformations have to be underestimated.

A more advanced, so-called implicit method (Guo 1995; Nguyen-Minh and Guo

1996) attempts to resolve this problem basically by applying a reduction factor U to

the ‘‘unsupported’’ pre-deformation �u eð Þ :

u eð Þ ¼ U
u 1ð Þ
�u 1ð Þ

� �
�u eð Þ; ð11Þ

where u(e) and u(?) denote the pre-deformation and final convergence of the

supported opening, respectively, while the function U is defined as follows:

U tð Þ :¼ 0:55þ 0:45t � 0:42 1� tð Þ3: ð12Þ

Equations 10 and 12 lead to the following expression for the pre-deformation:

u eð Þ ¼ �u 1ð ÞF �uE 1ð Þ
�u 1ð Þ

e

a

� �
U

u 1ð Þ
�u 1ð Þ

� �
: ð13Þ

According to Eq. 13, the pre-deformation u(e) depends on the final displacement

u(?) and, thus, (see Eq. 2) on the unknown final support pressure p(?) as well. The

latter is, however, related to the deformation of the support:

p 1ð Þ ¼ k u 1ð Þ � u eð Þð Þ: ð14Þ
Equations 13 and 14 form a system for the support pressure p(?) and the pre-

deformation u(e). By inserting u(e) from Eq. 13 into 14, we obtain a non-linear

equation for the support pressure p(?), which can be easily solved using Newton’s

iteration method.

The pre-deformations underlying the characteristic lines of supports s1, s2, and

s3 in Fig. 6b have been calculated in this way. Line s1 applies to a soft lining
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(k = 0.1 GPa/m) installed at e = 2 m behind the face. The intersection point of the

characteristic line s1 with the ground response curve is located below the respective

ground response point A1, i.e., it shows a practically equal ground pressure but

underestimates the radial displacement. At a higher lining stiffness (lines s2 and s3),

both the ground pressure and the pre-deformation are underestimated considerably

(by 1 MPa and 15–20 cm, respectively, compared with points A2 and A3). In order

to achieve a better agreement with the numerically obtained ground pressure value,

an even smaller and unrealistic pre-deformation must be assumed. Note that, due to

the large dp/du gradient of the plane strain ground response curve in the relevant

pressure range, small variations in the assumed pre-deformation lead to significant

variations in the ground pressure.

Figure 6a, c provide a more complete picture of the differences between the

results of the convergence–confinement method and the axisymmetric analyses. The

diagrams show the ground pressure p and the ground displacement u, respectively,

as a function of the length e of unsupported span for two values of lining stiffness: a

soft lining (k = 0.1 GPa/m, e.g., a 15-cm thick ring with a Young’s modulus of only

10 GPa) and a rather stiff lining (k = 1 GPa/m, e.g., a 50-cm thick ring with a

Young’s modulus of 30 GPa). According to Fig. 6c, the ground pressures predicted

by the implicit method for the soft lining agree well with the numerical results for

all e values, while the deformations are underestimated by a factor of 1.5–2,

particularly for long unsupported spans (Fig. 6a). For the stiff lining, however, the

pressures are underestimated considerably (up to 1 MPa). A similar trend can also

be observed for the moderately squeezing ground (Fig. 7). It is, however,

remarkable that the results of the convergence–confinement method here agree

better with the ones of the axisymmetric analyses.

On the basis of these comparisons, it can be concluded that the convergence–

confinement method, even in combination with advanced methods of pre-

deformation estimation, underestimates the ground pressure and deformation,

particularly for stiff linings, long unsupported spans, and heavily squeezing ground

with highly non-linear material behavior.

5 Stress and Deformation History and its Effect on Ground Response

Next, the numerical results obtained for the case of the heavily squeezing ground

will be studied in detail in order to explain the reasons for the deviation of the

ground response values from those that were predicted under plane strain

conditions.

5.1 Stresses and Deformations

Figure 9 shows the region with plastic deformations and the stress distribution along

the excavation boundary (r = a) for an unsupported opening (Fig. 9a), as well as for

three supported tunnels with a different lining stiffness k and unsupported spans e
(Fig. 9b–d). The term ‘‘past yield zone’’ will be explained later in this section. As

can be seen from Fig. 9, the axial stress ryy ahead of the face decreases with the

Effect of the Stress Path on Squeezing Behavior in Tunneling 305

123



approaching excavation from its initial value r0 (which prevails far ahead of the

face) to zero (at the unsupported tunnel face). Due to the lowered axial stress, the

core cannot sustain the radial pressure exerted by the surrounding ground: the core

yields and, consequently, larger radial deformations u develop ahead of the face,

while both the radial and tangential stresses (rrr, rtt) decrease (Fig. 11). This

happens within the plastic zone, which extends, in this example, up to a distance of

one–two radiuses ahead of the face (Fig. 9). As indicated by the peak in the

tangential stress rtt (at the boundary of the plastic zone at r = a), a stress

(a) (b)

(c) (d)GPa GPa

GPa

Fig. 9 Plastic zone and history of the radial (rrr), tangential (rtt), axial (ryy), and shear stress (rry) along
the tunnel boundary (r = a). Note that the cases b, c, and d correspond to the points A5, A4, and A3 of
Fig. 6b, respectively
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concentration occurs in the elastic region ahead of the plastic zone. Although this

peak is slightly more pronounced if the tunnel is unsupported (Fig. 9a), Fig. 9

shows that the stress field ahead of the face is largely independent of the support

characteristics.

At the face, the radial stress becomes equal to zero, while both the tangential and

axial stresses (rtt, ryy) become—in accordance with the assumed yield condition—

equal to the uniaxial compressive strength fc. The continuation of excavation does

not alter the stresses at the wall (r = a) of an unsupported tunnel (Fig. 9a). In a

supported tunnel, however, the radial stress at the tunnel wall remains equal to zero

over the unsupported span 0 \ y \ e, but, afterwards, increases due to the

installation of the lining, as the latter offers a resistance to the deformations of the

ground caused by the subsequent excavation (Fig. 9b–d). The axial and tangential

stress increase as well with the distance y from the face, because the ground—on

account of Coulomb’s yield condition—is able to sustain more pressure in the

tangential and axial directions due to radial confinement. In the case of a stiff lining

(a) (b)

(c) (d)

GPa GPa

GPa

Fig. 10 Principal stress paths along the tunnel boundary (line yc = yield condition, line ps = elastic
portion of the stress path under plane strain conditions, see Fig. 11 for the location of points A to F). Note
that the cases b, c, and d correspond to the points A5, A4, and A3 of Fig. 6b, respectively
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(Fig. 9b, d), the axial stress ryy increases more rapidly than the tangential stress rtt

and becomes the highest principal stress. This is because a stiff lining facilitates

arching in the longitudinal direction, particularly if installed close to the face

(Fig. 9b). In the case of a soft lining (Fig. 9c), the ground at the excavation

boundary also continues to yield after lining installation (both the axial and

tangential stress increase with rrr, thus, fulfilling the yield condition of Coulomb).

Figure 10a shows the stress path in the principal stress space (r3, r1) for an

unsupported tunnel. The points A to F in the diagram refer to the location of the

advancing face (see Fig. 11). The stress state reaches the yield condition at point B
ahead of the face, follows the yield condition down to point D (which is located at

the tunnel face), and remains constant afterwards. In the plastic zone developing

around the opening (Fig. 9a), the deformations are partially irreversible and the

stress field fulfils the yield condition.

In the presence of a stiff lining (Fig. 10b, d), the stress state reaches the yield

condition slightly closer to the face, becomes bi-axial at the tunnel face (point D),

and remains bi-axial over the unsupported span (stress state D applies for

e \ y \ 0). With the development of radial pressure from the lining, however, the

stress state again becomes elastic (‘‘elastic re-compression,’’ see Gärber 2003). The

deformations within the so-called ‘‘past yield zone’’ (Fig. 9b, d) are partially

irreversible, however, while the stress state is within the elastic domain (the ground

in this region will have experienced yielding and irreversible deformations in the

past). Figure 12 shows the results of a parametric study on the extent of the plastic

(a)

(b)

Fig. 11 a State prevailing in a cross section far ahead of the face. b Qualitative representation of the
effect of the approaching excavation and location of the points A to F referred by Fig. 10
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zone. The marked points have been obtained by a series of axisymmetric

calculations with different values of lining stiffness k and show the radiuses qpl

and qpy of the plastic zone and of the past yield zone, respectively, as well as the

respective ground pressure p(?) developing upon the lining far behind the face.

Note that the plane strain analysis (solid curve q2D) underestimates the extent of the

region experiencing irreversible deformations in the case of stiff linings (q2D \ qpy

at high k values).

In the vicinity of the face, the longitudinal gradient of the radial displacement is

large, because the core partially hinders the deformations (Fig. 13). Consequently,

Fig. 12 Radius q2D of the plastic zone developing under plane strain conditions as a function of support
pressure p (solid curve), radius of the plastic zone (qpl), and of the zone with past yielding (qpy) developing
far behind the face under axisymmetric conditions for different values of the support stiffness k

(a) (b)

GPa

Fig. 13 Radial displacement u/a along the tunnel boundary: a for an unsupported tunnel; b for a tunnel
supported by a stiff lining installed close to the face (corresponds to point A5 of Fig. 6b)
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the ground is subject to shearing and, thus, to a rotation of the principal stress axes

in the r–y plane. The rotation of the principal stress axes is temporary, as the shear

stress rry disappears (the principal stresses are oriented in the radial, tangential, and

axial directions) far ahead and far behind the face (Fig. 9). Note that the major part

of the shear strain ery is irreversible (Fig. 14) and, consequently, the ground remains

in an intensively sheared state (in the r–y plane) far behind the face, although the

shear stresses disappear (Fig. 9).

5.2 Reasons for the Deviations in Ground Response

The behavior of the axisymmetric model discussed in the last section has two

particularly conspicuous features: (1) the development of irreversible shear strains

in the r–y plane associated with the rotation of the principal axes in the vicinity of

the face; (2) the complete radial unloading of the excavation boundary over the

unsupported span and an increase in radial stress following the installation of the

lining.

In a plane strain analysis, it applies that: (1) the out-of-plane shear strains are, by

definition, zero, while (2) the radial stress at the excavation boundary decreases

monotonously from its initial value r0 to the support resistence p(?). For these

reasons, the features described above cannot be reproduced by a plane strain analysis

and this might, therefore, explain the ground response deviations discussed in Sect. 3.

The results obtained for the case of an unsupported tunnel show, however, that

point (1) cannot be responsible for the error of the plane strain model: the

axisymmetric analysis leads, in spite of the large irreversible shear strains ery

(Fig. 14a), to a final convergence, which is practically equal to the one obtained by

the closed-form, plane strain solution (Fig. 6). Note also that, according to Figs. 6b

and 7b, the distance of the ground response points (A1, 2, 3,…) from the plane strain

ground response curve increases systematically with increasing lining stiffness,

although the longitudinal convergence gradients and, consequently, the shear strains

ery will decrease in the presence of a stiffer lining. Additional evidence of this is

provided by axisymmetric analyses for the hypothetical case of a support that is

installed immediately after excavation at the tunnel face and exerts right from the

start a constant uniform pressure (i.e., rrr = p(?) at r = a for all y [ 0). The

(a) (b)
GPa

Fig. 14 ery, el, ery, pl along the tunnel at r/a = 1.2: a for an unsupported tunnel; b for a tunnel supported
by a stiff lining installed close to the face (corresponds to point A5 of Fig. 6b)
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results for this case are given by the dashed curve plotted next to the plane strain

solution (solid curve GRC) in Fig. 6b. The dashed curve practically coincides with

the plane strain ground response curve, in spite of the plastic shear strains ery

developing in the vicinity of the face. The stress path followed by the ground in this

case is similar to the plane strain model in that the support does not allow for a

complete radial de-stressing of the excavation boundary.

So, the deviation of the ground pressures developing upon a support must be due to

the above-mentioned point (2), i.e., to the inability of any plane strain model to map

the radial stress reversal that follows the installation of the lining. If this suggestion is

true, then we would expect that the error introduced by the plane strain assumption

will increase with the amount of radial stress reversal, i.e., with the length of the stress

path portion DF in Fig. 10 or, since stress state D is biaxial, with the final pressure

p(?) and, thus, with the lining stiffness k (the unsupported span e being fixed).

Figure 6b shows precisely this behavior. For example, the ground response point

A4 that results from the axisymmetric calculation for a soft support (k = 0.1 GPa/m,

installed at e = 1 m) is closer to the plane strain ground response curve (GRC) than

the ground response point A5 that applies to a stiff support (k = 1 GPa/m, also

installed at e = 1 m). As can be seen from Fig. 10, the elastic re-compression that

follows support installation is less pronounced in the case of a soft support (the path

portion DF is shorter in Fig. 10c than in Fig. 10b). In general, the stiffer the lining

(the value of the unsupported span e being fixed), the larger will be the deviation

from the ground response curve.

Let us consider now the effect of an unsupported span e for a fixed value of lining

stiffness k. Cases b and d in Fig. 9 involve a stiff lining (k = 1 GPa/m) installed at

e = 1 or 8 m, respectively. The deviation from the ground response curve is larger

in the case of the longer unsupported span (compare point A3 with point A5 in

Fig. 6b). This is because the biaxial stress state (point D in Fig. 10d), rather than the

final stress state (point F in Fig. 10d), governs the extent of the plastic zone

(Fig. 9d) and the magnitude of deformation, since it prevails over the long

unsupported portion of the tunnel. The deviation from the ground response curve,

therefore, increases with the length e of the unsupported span.

At the same time, however, the longer the unsupported span, the lower will be the

final pressure p(?), the smaller will be the difference between the final stress state and

the temporary biaxial stress state, and the less pronounced will be the radial stress

reversal. Consequently, the deviation from the ground response curve will also be

smaller. The net effect of an unsupported span is, therefore, more complicated than

that of lining stiffness. The error introduced by the plane strain assumption is small for

linings installed close to the face, increases with the unsupported span e, but decreases

again at very large values of e (see, e.g., solid line for k = 1 GPa/m in Fig. 6b).

6 Conclusions

In the case of elasto-plastic material behavior, an axisymmetric model that takes

into account the sequence of excavation and lining installation will always lead to

ground response points above the plane strain ground response, i.e., the convergence
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corresponding to a certain ground pressure p(?) will always be larger than the one

obtained by a plane strain analysis. This is due to the inability of the plane strain

model to map the radial stress reversal that follows the installation of the lining. In

general, the stiffer the lining and the longer the unsupported span e, the larger will

be the deviation from the ground response curve.

The convergence–confinement method, even in combination with advanced

methods of pre-deformation estimation, underestimates the ground pressure and

deformation, particularly for stiff linings, long unsupported spans, and heavily

squeezing ground with highly non-linear material behavior. The inherent weakness

of any plane strain analysis is that it cannot reproduce at one and the same time both

the deformations and the pressures. This is relevant from the design standpoint,

particularly for heavily squeezing conditions that require a yielding support in

combination with an overexcavation: in this case, one needs reliable estimates of the

deformations that must occur in order for the squeezing pressure to be reduced to a

pre-defined, technically manageable level. In cases where the question of

deformation is of secondary importance, however, a plane strain analysis in

combination with an implicit method of pre-deformation estimation will suffice. For

support completion close to the face, the differences in the results obtained by the

different methods of analysis are not important from a practical point of view.

Appendix: Consideration of Out-of-Plane Plastic Flow in the Ground Response
Curve

Radial and Tangential Stress Field

The radius q of the plastic zone as well as the distribution of the radial and

tangential stresses (rrr, rtt) within the plastic zone (a B r B q) can be determined

without taking into account the deformations because the equilibrium equation:

drrr

dr
¼ rtt � rrr

r
ðA1Þ

and the yield condition:

�rtt ¼ m�rrr; ðA2Þ

where the overscore denotes the stress transformation:

�r ¼ rþ fc
m� 1

; ðA3Þ

form a system for the determination of the two stress components. Equation A2

presupposes that rrr \ryy B rtt. This condition is always satisfied (Reed 1988).

Taking into account the condition:

rrrjr¼a¼ ra ðA4Þ

prevailing at the tunnel boundary as well as the requirement of stress continuity at

the interface between the plastic and the elastic zone, i.e.:
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�rrrjr¼q¼
2�r0

mþ 1
; ðA5Þ

the integration of Eqs. A1 and A2 leads to the well-known expressions:

�ra � �rrr ¼ �ra
r

a

� �m�1

� 2�r0

mþ 1
for a � r � qð Þ ðA6Þ

and:

q
a
¼ 2

mþ 1

�r0

�ra

� � 1
m�1

: ðA7Þ

Axial stress field

Assuming that plastic flow does not occur in the axial direction, i.e.:

eyy; pl ¼ 0; ðA8Þ

the out-of-plane elastic strain is also equal to zero:

eyy; el ¼ eyy � eyy; pl ¼ 0; ðA9Þ

and on account of Hooke’s law:

eyy; el ¼
1

E
ryy � r0

� �
� v rrr � r0ð Þ � v rtt � r0ð Þ

� �
; ðA10Þ

the axial stress ryy reads as follows:

ryy ¼ v rrr þ rttð Þ þ 1� 2vð Þr0; ðA11Þ

The assumption made (Eq. A8) presupposes that the axial stress is the strict inter-

mediate stress, i.e.:

rrr\ryy\rtt; ðA12Þ

or, on account of Eqs. A2 and A11:

1� v 1þ mð Þð Þ�rrr \ 1� 2vð Þ�r0 \ m 1� vð Þ � vð Þ�rrr: ðA13Þ

One can readily verify that the first inequality is always satisfied: in a trivial manner

if m[ (1-sin/)/2 and due to Eq. A5 if m\ (1-sin/)/2. The second inequality will

be satisfied if:

�rrr [ g4�r0; where g4 ¼
1� 2v

m 1� vð Þ � v
; ðA14Þ

i.e., if the radial stress is higher than a critical value. Taking into account that the

lowest radial stress to be considered in the determination of the ground response

curve is equal to zero:

�rrr � �rrr að Þ ¼ �ra�
fc

m� 1
; ðA15Þ
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the inequality A14 will be satisfied for the entire ground response curve if:

fc [ r0

1� 2v

1� v
: ðA16Þ

Incompressible materials (m = 0.5) fulfill this condition always. For m\ 0.5 and

uniaxial compressive strength fc lower than the value indicated by Eq. A16, how-

ever, the out-of-plane stress (Eq. A11) obtained under the assumption of no plastic

flow in the axial direction (Eq. A8) will be higher than the tangential stress, thereby,

violating the yield criterion (Fig. 15). In order to satisfy the latter, i.e.:

�ryy ¼ m�rrr; ðA17Þ

plastic flow in the axial direction has to occur in the inner part of the plastic zone.

The plastic flow does not influence the extent of the plastic zone q or the radial and

tangential stress field, because these are determined by the equilibrium and the yield

conditions. Therefore, the radius q0 of the inner part of the plastic zone can be

calculated from Eqs. A6 and A14, while the radial stress at r = q0 is given by the

right hand side of inequality A14:

q0

a
¼ g4

�r0

�ra

� � 1
m�1

; �rq0 ¼ g4�r0: ðA18Þ

One can readily verify that q0\ q, i.e., the plastic zone consists of an outer ring

with rrr \ryy \rtt and an inner ring with rrr \ ryy = rtt (Fig. 15).

σ0

ρ' ρa

σrr < σyy < σtt

elastic

σrr < σyy = σtt

σ

r

plastic

ν = 0.0

ν = 0.3
ν = 0.5

σtt

σrr

σyy

Fig. 15 Distribution of the radial stress rrr, of the tangential stress rtt, and of the axial stress ryy for an
unsupported tunnel (c = 500 kPa; other parameters, see Table 1)
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Deformation Field

The stress states within the inner ring satisfy both Eq. A2 and A17. The

corresponding plastic potential functions are:

g1 rrr; rtt; ryy

� �
¼ rtt � jrrr; ðA19Þ

g2 rrr; rtt; ryy

� �
¼ ryy � jrrr; ðA20Þ

where j depends on the dilatancy angle w (Eq. 4). As the stress states are located on

the edges of the Coulomb plastic potential surface (which has a pyramidoidal form

in the principal stress space) and the latter is not continuously differentiable at the

edges, the determination of the plastic strain increments proceeds according to

Koiter (1953):

dett; pl ¼ dk1

og1

ortt
þ dk2

og2

ortt
¼ dk1; ðA21Þ

deyy; pl ¼ dk1

og1

oryy
þ dk2

og2

oryy
¼ dk2; ðA22Þ

derr; pl ¼ dk1

og1

orrr
þ dk2

og2

orrr
¼ �j dk1 þ dk2ð Þ; ðA23Þ

where dk1 and dk2 denote the plastic multipliers. From these equations, we

obtain:

err; pl þ j ett; pl þ eyy; pl

� �
¼ 0: ðA24Þ

By taking into account the kinematical relations:

err ¼
du

dr
and ett ¼

u

r
ðA25Þ

as well as the strain decomposition:

err ¼ err; el þ err; pl; ett ¼ ett; el þ ett; pl; and eyy ¼ eyy; el þ eyy; pl ¼ 0 ðA26Þ

the relationship between the plastic strains (Eq. A24) leads to:

du

dr
þ j

u

r
¼ err; el þ j ett; el þ eyy; el

� �
: ðA27Þ

This is a differential equation for the radial displacement u because the right hand

side is a known function of radius r (the elastic strains are interconnected with the

stresses via Hooke’s law and the stresses are given by Eqs. A2, A6, and A17). The

solution reads as follows:

u rð Þ ¼ u q0ð Þ q0

r

� �j

þ a

E
�g5�ra

r

a

� �m q0

r

� �mþj

� 1

� �
þ g6�r0

r

a

q0

r

� �jþ1

� 1

 ! !
; ðA28Þ
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where

g5 ¼
2j m 1� vð Þ � vð Þ þ 1� 2mv

mþ j
; g6 ¼

1þ 2jð Þ 1� 2vð Þ
jþ 1

; ðA29Þ

while the displacement u(q0) of the interface of the two plastic regions is obtained

by applying Eq. 3 to the outer plastic ring:

u q0ð Þ ¼ q0�r0

E
d1 þ d2

�rq0

�r0

þ d3

�rq0

�r0

� ��d4

 !
; ðA30Þ

where the radius q0 and the contact pressure rq0 are given by Eq. A18. The ground

response curve is obtained from Eq. A28 for r = a and can be written in the

following form:

u að Þ ¼ a�r0

E
d1 þ g1ð Þ þ d2 þ g2ð Þ �ra

�r0

þ d3 þ g3ð Þ �ra

�r0

� ��d4

 !
; ðA31Þ

where

g1 ¼ � j 1� vð Þ � vð Þ 1� 2vð Þ
jþ 1

; g2 ¼ j 1� vð Þ � vð Þ m 1� vð Þ � vð Þ
mþ j

;

g3 ¼ j 1� vð Þ � vð Þ 1� 2vð Þ m� 1ð Þ
mþ jð Þ jþ 1ð Þ gd4

4 :

ðA32Þ

The coefficients g1, g2, and g3 in Eq. A31 are the contributions of the out-of-plane

plastic flow. These terms shall be considered in the determination of the following

portion of the ground response curve:

�ra\g4�r0: ðA33Þ

The inequality (A33) has been obtained from Eq. A18 for q0/a [ 1.One can readily

verify by observing Eqs. 3 and A31 that the error of the simplified Eq. 3, defined as:

error ¼
u að ÞjEq: 3�u að ÞjEq: A31

u að ÞjEq: A31

; ðA34Þ

depends on the normalized support pressure �ra=�r0; on the Poisson’s ratio m, on the

friction angle /, and on the plastic dilatancy angle w (or, equivalently, on the

material constants m and j).
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