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Abstract Despite the ability of current GPU processors to
treat heavy parallel computation tasks, its use for solving
medical image segmentation problems is still not fully ex-
ploited and remains challenging. A lot of difficulties may
arise related to, for example, the different image modalities,
noise and artifacts of source images, or the shape and ap-
pearance variability of the structures to segment. Motivated
by practical problems of image segmentation in the med-
ical field, we present in this paper a GPU framework based
on explicit discrete deformable models, implemented over
the NVidia CUDA architecture, aimed for the segmentation
of volumetric images. The framework supports the segmen-
tation in parallel of different volumetric structures as well
as interaction during the segmentation process and real-time
visualization of the intermediate results. Promising results
in terms of accuracy and speed on a real segmentation ex-
periment have demonstrated the usability of the system.
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1 Introduction

Medical image segmentation is nowadays at the core of
medical image analysis and supports e.g. computer-aided di-
agnosis, surgical planning, intra-operative guidance or post-
operative assessment. Segmentation is also present in com-
puter vision applications such as tracking and recognition.
Furthermore, segmentation attracts the interest of the Com-
puter Graphics community, by supporting e.g. visualization
of medical data sets. Although research has been very active
these last decades, segmentation is still a very challenging
problem. The large variety of image modalities with asso-
ciated artifacts, the variability of the structures to segment
and the strong demanded requirements (e.g., high accuracy,
automation) seriously hinder the design of efficient segmen-
tation methods. In this context, the use of interactive and
fast segmentation approaches can expedite tedious parame-
ter tuning and reduce the limitations of segmentation meth-
ods since interactive control is available [22].

The rapid development of Graphics Processing Units
(GPU) was followed by the porting and adaptation of
segmentation approaches to the GPU architectures. These
methods strongly contributed to the fostering of fast in-
teractive segmentation. Initially, GPU approaches stemmed
from the idea to speed up time-consuming CPU segmenta-
tion approaches and to provide an interactive visualization
of the segmentation evolution. GPU programming became
then easier and more efficient yielding the implementation
of more advanced segmentation approaches.

We present in this paper a GPU framework, implemented
using the NVidia’s Compute Unified Device Architecture
(CUDA) [21], aimed for the segmentation of volumetric im-
ages based on discrete physically-based deformable mod-
els. The framework exploits parallelism and performs com-
pletely in the GPU being capable of managing real-time in-
teractive segmentation of multiple structures. To our best
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knowledge, such a GPU-based 3D segmentation framework
based on discrete deformable models has not been reported
in the previous literature.

The paper is structured as follows. Related work on GPU-
based segmentation is reviewed in Sect. 2, while Sect. 3 de-
scribes our segmentation algorithm. In Sect. 4 we describe
the most important features of our GPU framework imple-
mentation. In Sect. 5 we present our results which are an-
alyzed and discussed in Sect. 6. Section 7 concludes this
paper with possible future improvements of our GPU-based
implementation.

2 Related work on GPU-based segmentation

In general, segmentation approaches can be classified as
low- and high-level approaches. Low-level approaches di-
rectly work on voxel information and are usually burdened
by the intensive manipulation of volumetric image data. As a
result, these methods naturally appeared at first as good can-
didates for GPU implementations. Indeed, images are regu-
lar lattices on which read-access can be very efficient due to
the optimized GPU texture management (e.g., caching). We
can find in the literature GPU-based implementations of the
watershed [34] and region growing methods [32], along with
Markov random fields [43] and graph cuts approaches [17,
24]. Image registration also turned out to strongly benefit
from parallel computing, giving birth to a variety of im-
plementations based on mutual information [37], sum of
squared differences [14], demons [20, 31], viscous-fluid reg-
ularization [23] or regularized gradient flow [35].

Higher-level approaches, such as deformable models,
were also ported to GPU architectures by considering im-
plicit deformable models as image lattices (e.g., a 2D curve
is implicitly represented as the iso-value of a field encoded
as a 2D image). Level-sets approaches [2, 16] became par-
ticularly popular in the GPU-segmentation community as
significant speed-ups and interactive rendering were made
available. Geodesic active contours [1], which are a combi-
nation of traditional active contours (snakes) [12] and level-
sets evolution, were efficiently implemented in GPU [26, 40]
by using the total variation formulation, mostly to quickly
segment structures by foreground and background separa-
tion in 2D images.

Nevertheless, little work has been made in implementing
explicit discrete deformable models in GPU for segmenta-
tion purposes. That is unfortunate since discrete deformable
models offer several advantages. Indeed, they provide an
intuitive and more appropriate control of the shape defor-
mations compared to implicit models. Furthermore, they are
much more robust against image artifacts than most low-
level approaches owing to the use of shape regularization.
In GPU, methods for implementing active contours based

on gradient flow have been proposed [10, 13], but they were
limited to the case of 2D images. On the other hand, many
works exploited physically-based surface or volumetric de-
formable models in GPU in other application domains, such
as spring–mass systems [6, 19], cloth simulation [25], vol-
umetric mesh deformation [36] or Finite Element Model-
ing [9].

In this paper, we propose hence a flexible GPU frame-
work for fully interactive parallel segmentation of multiple
volumetric objects based on discrete deformable models. We
demonstrate the interactivity of our framework implement-
ing several image-based and shape preserving forces com-
plemented with local control-point forces which demon-
strate the interaction capabilities of the system.

3 Segmentation algorithm

Our segmentation approach is based on our previous work
on dynamic deformable models [7, 27]. The general prin-
ciple is to consider mesh vertices as a set of lumped mass
particles with a state (position and velocity) subjected to in-
ternal and external forces. The concepts are hence similar to
any deformable model-based simulation with the specificity
here that images are used to drive model deformation for
segmentation purpose. As a result, we might hereon refer to
the segmentation as the simulation and vice versa.

3.1 Mesh representation

A mesh j is composed of Mj vertices and represented as
a 2-simplex mesh [5]. A 2-simplex mesh is characterized
by the property that a vertex has exactly three neighbors
(see Fig. 1 for an example of 2-simplex mesh with a possi-
ble triangular tessellation). This representation is popular in
image segmentation as local descriptors can be easily com-
puted, such as the curvature. Furthermore, three local pa-
rameters uniquely define vertex positions from their three
neighbors. These three parameters are independent, invari-
ant under similarity transform and are denoted as simplex

Fig. 1 (a) 2-simplex-mesh representation: this example shows a
2-simplex mesh where the cell (i.e., a face) C1 is composed of 6 points
with indices {1,2,3,4,5,6}; (b) depicts a possible triangular tessella-
tion of the mesh which is built by connecting the points to the center
of the corresponding cells (red discs)
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parameters. We also define for any point an elevation which
is the signed distance between the point and its projection
on the triangle formed by the three neighbors.

3.2 Internal and external forces

Internal forces are necessary to regulate the segmentation
while external forces effectively drive it towards the correct
result, as detailed in the following.

3.2.1 Internal smoothing and shape prior forces

Internal forces ensure that the model evolution is perturbed
as little as possible by image artifacts or possible numeri-
cal instabilities. Assumptions are thus made on the model
smoothness and shape. A smoothness force is expressed by
a weighted Laplacian smoothing coupled with an additional
term accounting for the average local elevation of neighbor-
ing vertices. For each point, the Laplacian smoothing at-
tracts vertices towards the barycenter of its neighbors. In
case of weighted barycenter, weights are proportional to the
area “covered” by a vertex, which is defined as the sum of
the surfaces of all triangles sharing this point according to
the presented tessellation (Fig. 1(b)). The local elevation
term minimizes the shrinking effect recurrent with Lapla-
cian smoothing.

Shape constraints are enforced by creating a force which
aims to move the vertices to have a local description iden-
tical to a predefined one. This is simply done by us-
ing the simplex-mesh parameters of a reference “average”
shape [5]. This reference shape is constructed once with in-
teractive approaches [28] that yield models with appropriate
characteristics, such as smoothness and quasi-regularity of
mesh faces.

The manual creation of the reference shape may be seen
as a drawback with respect to methods using a small “seed”
primitive (e.g., tetrahedron in [33]) which is e.g. placed in
the structure interior and is progressively inflated until the
structure boundaries are reached. These approaches avoid
indeed the creation of the reference model. However, as we
will see in experimental section (Sect. 5), shape priors ex-
pressed by the simplex parameters of the reference model
are essential to regulate the segmentation in presence of
image artifacts. In fact, these artifacts mislead the evolu-
tion of approaches which ignore shape priors and are ex-
clusively based on smoothness constraints (e.g., active con-
tours [12], geodesic active contours [1], discrete deformable
models [33]). Furthermore, it is important to understand that
simplex parameters are invariant under similarity transform
and hence some flexibility is given to the shape deforma-
tions. This implies that the structure to segment does not
necessarily need to be very similar to the reference mesh.
Figure 2 illustrates the use of these internal forces to denoise
two bone shapes and recover their original aspect.

Fig. 2 Shape denoising example. From left to right: perturbed models,
result with shape prior, and with smoothing

3.2.2 External image forces

Image forces are based on the minimization of image-based
energies. Along the normal n of each mesh point x, an im-
age energy E is computed at various positions {y1, . . . ,ym}
regularly sampled. A force is then built to attract the ver-
tex towards the optimal target position y∗ with the lowest
image energy. We use two types of image energies. A first
energy aims at aligning the gradient ∇I (x) with the nor-
mal n: Eg(x) = ε∇I (x).n, where ε = 1 when the expected
gradient direction should be in the opposite direction of the
normal and ε = −1 otherwise.

Another energy Eip can be computed by intensity pro-
file (IP) similarity maximization [5, 7]. An IP is a vector
of intensity values collected in a neighborhood swept along
the normal direction during the search. At each neighbor-
hood position, the similarity between the current neighbor-
hood and a predefined reference IP is computed. The posi-
tion which returns the highest similarity is used as the target
position y∗. The computation of the reference IP is com-
puted once from a training image whose characteristics are
alike but not necessarily identical to those of the image to be
segmented (i.e., similar imaging protocol). In fact, we used
the Normalized Cross Correlation (NCC) [11] as the similar-
ity measure between IPs. NCC is quite robust to linear image
intensity variations, which confers flexibility in choosing the
imaging protocol. In conclusion, this IP-based force exploits
the appearance of the structure of interest and can thus assist
the segmentation of structures with inhomogeneous intensi-
ties as demonstrated in the experimental section (Sect. 5).

3.3 Deformable-model evolution

The evolution of the model is based on the resolution of a
discrete differential equations system, which is the result of
the Newtonian law of motion applied to the particle system.
Given the forces and the particle state, the numerical inte-
gration yields a new state of the particle. Various approaches
are available for integration (e.g, Explicit/Implicit Euler) de-
pending on stability, accuracy and technical implementation
constraints. Choices relative to our implementation of the
numerical integration in GPU will be discussed in Sect. 4.3.
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4 GPU Framework architecture

Our GPU segmentation framework is implemented on top of
NVidia CUDA. We suggest interested readers non-familiar
with CUDA architecture to refer to the corresponding pro-
gramming guide [21]. The framework delivers interac-
tive performance, real-time rendering, while being flexible
enough to support new forces or even new segmentation par-
adigms. The framework architecture is divided according to
the major stages involved in a simulation step (see Fig. 3).
In the following, each stage is described along with the de-
signed data access layer for storage and retrieval purposes
of all the basic simplex-mesh data.

4.1 Simplex-mesh data access layer

We have designed a simple data access layer for storage
and retrieval of the simplex-mesh data (see Fig. 4). In our
GPU segmentation framework, meshes are encoded as ver-
tices within one unique array. This encoding strategy has the
advantage of being very compact in terms of space require-
ments and supports a straightforward distribution of the data
for parallel processing within the GPU. We store position

Fig. 3 GPU segmentation. In a simulation step, forces are computed
for each particle (Sect. 4.2), whose state is updated in the numerical
integration (Sect. 4.3), before updating the parameters of the meshes
(Sect. 4.1). In parallel and asynchronously, meshes and image data
are rendered (Sect. 4.4) while user can interact with the segmentation
(Sect. 4.5)

and normal for each vertex using a CUDA one-dimensional
texture sampler and bound to linear memory as we need to
use these attributes in both read and write modes. The same
strategy is used for other local parameters like the mass or
elevation of a particle with respect to its neighbors. Besides,
we store other (mostly) invariant per-vertex attributes using
2D samplers mapped to cudaArrays, because in that way
(i) bigger amounts of memory in the GPU can be allocated
and (ii) fast cached reads are available. In order to access the
desired data, we just need to compute the offset in each di-
mension of a 2D texture. Examples of per-vertex attributes
stored using 2D textures are the neighbor indices and the
indices of the 3 neighbor cells sharing the same vertex. Fi-
nally, we store some per-cell information like the indices of
the vertices of each cell and the number of vertices forming
a cell, which is not necessarily the same for all the cells.

The volumetric image information is stored in a raw un-
compressed format by using 3D textures. This is to take ad-
vantage of spatial locality to provide hence a fast access for
read operations which are the most intensive in terms of
access time. Moreover, 3D textures provide a cheap trilin-
ear interpolation, which is intensively used by image-related
operations. In this first implementation of the framework,
moderate-size volume data sets are handled, so no special
compression or multi-resolution strategies are applied, but
they should be easily integrated. We refer interested readers
to recent publications [8] and [4], which tackled the problem
of massive volume management by organizing the volume
data set into a hierarchical octree-based data structure. Af-
ter each numerical integration, all meshes are processed in
parallel at once by calling a CUDA kernel responsible of the
update for each point, normal, area and elevation. Cell cen-
ters are also updated if necessary since some forces (e.g.,
smoothing and shape prior forces) or the visualization may
need them. Writing operations are then performed using data
structures in global memory space, as cudaArrays and
texture memory writing operations are not yet supported by
current versions of CUDA.

Fig. 4 GPU arrays. (a) Per-vertex GPU arrays which are shared by all
meshes in the system; (b) cell description held in GPU: e.g. cell Cj is
composed of vertices {V1,V2,V3,V4,V5,V6} and the number of ver-

tices (6) is stored in a separated GPU array; (c) neighbor information
per vertex on the GPU: e.g. vertex Vi has 3 neighbors {V4,V8,V2}.
Similarly, cell Cj has neighbor cells {C1,C2,C3}
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4.2 Force computation

Once the information of all meshes has been updated, the
computation of the available set of forces is ready to start.
The computation of the forces in our framework is distrib-
uted in parallel assigning each particle to a GPU thread.
Forces can be activated and disactivated for each mesh regis-
tered in the framework. For this purpose we maintain in the
GPU a simplex-mesh activation register storing a collection
of values α

f
i , being 0 ≤ α

f
i ≤ 1 the contribution of the force

f to the ith mesh. Our framework supports changes on this
state at any moment during the runtime of the segmentation
algorithm. The different forces are computed in a sequential
order to avoid asynchronous updates of the resultant force.
This behavior is directly related to the availability of atomic
operations, only supported by NVidia graphics cards with
CUDA compute capability above 1.0. In any case, force
computation time is quite heterogeneous and so variable. In
particular when one force is much more expensive than the
others, we can assume that the total time of computation in
parallel for all the forces is almost equivalent to the time of
the most expensive force in terms of computation time (see
force computation percentages in Sect. 6).

Most of the forces were implemented without any special
GPU optimizations as the chosen data access layer (e.g., tex-
ture samplers) and parallelism strategies (e.g. simultaneous
processing of all vertices with one kernel) were already care-
fully chosen. However, ‘interactive’ forces required more at-
tention and are detailed in Sect. 4.5.

4.3 Numerical integration

Once the resultant force per particle is computed, we need
to update the new particles state by solving a set of discrete
differential equations. An appropriate integration technique
is selected to reach a compromise between two conflicting
criteria:

– Simulation criterion: since force evaluations are time-
consuming, the integration technique should minimize
extra simulation time steps, requiring the minimum pos-
sible force evaluations per step.

– Interaction criterion: since the selected solution will be
used within an interactive framework, the time we have
for performing the simulation steps as well as for other
GPU computations is severely limited.

While implicit based techniques are generally more stable
and permit bigger step-sizes, the complexity of the tech-
nique in terms of computation time and programming com-
plexity is quite high. The solution generally requires to in-
vert a matrix of considerable size, whose dimensions depend
directly on the number of forces and on the total number of
particles involved in the system. Although some approaches,

e.g. based on the conjugate gradient, avoid the effective in-
version of the system, they rely on iterative procedures re-
quiring a considerable effort to be successfully implemented
in the GPU.

Then, since solving the integration in the CPU with an
explicit method was shown to require a small step-size in
order to converge, we chose to move the calculations to the
GPU in order to decrease the step-size and reach better in-
teractive frame rates. Among the explicit techniques imple-
mented in the GPU, we have obtained the best results with a
Verlet-based approach [42]. Our method is derived by writ-
ing two Taylor expansions of the position vector x(t) in dif-
ferent time directions. Adding these two expansions we ob-
tain

x(t + �t) = 2x(t) − x(t − �t) + a(t)�t2 + O
(
�t4),

where substituting v(t) = x(t)−x(t−�t)
�t

gives us a position
vector equation depending just on the previous position, the
velocity and the time step:

x(t + �t) = x(t) + v(t)�t + a(t)�t2.

Finally, the Verlet equations can also be modified to create
a very simple damping effect, consisting of a value γ , being
0 ≤ γ ≤ 1, and representing the fraction of the velocity per
update that is lost to friction. The final resulting equation
used in our framework is:

x(t + �t) = x(t) + (1 − γ )v(t)�t + a(t)�t2. (1)

This equation is implemented in a CUDA kernel and is com-
puted in parallel for each particle of the simplex meshes. The
final result is written in the linear memory position array and
then rebound to the texture sampler.

4.4 Visualization

To ensure real-time interaction, we established a balance be-
tween simulation and visualization tasks by fixing the maxi-
mum amount of time that the simulation can spend. As long
as we are within the bounds of this time interval, one or
more segmentation iterations are performed. Straight after-
wards the simplex meshes are rendered employing the Ver-
tex Buffer Object (VBO) OpenGL extension, in order to
minimize the data transfers between GPU and CPU.

The sequence of operations needed for updating and dis-
playing the simplex-mesh data in the VBO is shown in
Fig. 5. First, all the VBO attribute arrays are mapped in the
GPU linear memory. Next, we perform a series of simula-
tion iterations and write the partial result in the memory
used by the VBO. Meshes are then updated in parallel be-
fore the VBO is unmapped. All meshes are then rendered
by (i) calculating the offset in the index array, (ii) binding
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Fig. 5 Interactive Visualization Pipeline. In order to synchronize inter-
action and visualization while performing an interactive segmentation,
we employ a timer to decide how many simulation steps we would like
to perform each new frame. For the rendering itself, we employ the
OpenGL VBO extension and the glDrawElements call

all VBO attribute arrays in OpenGL, (iii) setting all particu-
lar simplex-mesh parameters (e.g. color or clipping planes)
and finally calling the glDrawElements OpenGL com-
mand with the current index offset and bounded arrays as
parameters. Finally, we restore the default OpenGL state by
unbinding the vertex and index arrays. In addition, we dis-
play other useful information such as standard axial, sagittal
or coronal slices to explore the volumetric image. To render
these slices, the Pixel Buffer Object (PBO) OpenGL exten-
sion was used as it supports interoperability with the CUDA
architecture. More specifically, a PBO buffer is declared and
the 2D slice of our interest is written by using a kernel. Fi-
nally, the PBO is used to define a 2D texture which is ren-
dered on a simple quad.

4.5 Interaction

All the parameters affecting the segmentation (e.g., force
contribution αi , time step) can be dynamically changed, pro-
viding a first level of interactivity. Such actions are how-
ever insufficient to accurately interact with the segmenta-
tion, and “pictorial input” is rather preferred [22, 38]. We
implemented an interaction based on attraction points (AP).
For each mesh j , different attraction points can be posi-
tioned in the 3D space by clicking on rendered slices. Given
Ck

j the kth AP associated with mesh j , we find the closest

mesh point P0
j to Ck

j and its p-order neighbor points Pi
j,∀i ∈

[1,Np] (e.g., a 2-order neighborhood is composed of the
neighbors of neighbors of P0

j as exemplified in Fig. 6(a)),
and compute the following weighted attraction forces fa ap-

Fig. 6 Interaction by attraction points. (a) A point and its 2-order
neighborhood (small discs) of a spherical mesh are attracted by an at-
traction point (AP) yielding the mesh deformation. (b) In a sequential
manner, a N -tuple of APs is processed in parallel to find the points on
each mesh to be attracted

plied to each vertex Pi
j:

∀i ∈ [0,Np], fa
Pi

j
= wi(Ck

j − P0
j )∑

k∈[0,Np] wk

, (2)

wi = αa
j /

∥∥Ck
j − Pi

j

∥∥. (3)

In practice, various N -tuples of APs {Ck
1, . . . ,Ck

N} are se-
quentially processed (Fig. 6(b)), where N denotes the num-
ber of meshes. Note that this N -tuple can actually have less
than N elements as not all meshes have the same number of
APs. Given a N -tuple of APs, the closest point P0

j is found
on each mesh j by (i) running in parallel a kernel on each
mesh point xi

j that computes the squared Euclidean distance

between Ck
j and xi

j, and by (ii) applying a parallel reduction
on the array of squared distances to get for each mesh j the
index of the closest mesh point P0

j . Since for each mesh j of
Mj points, Mj CUDA threads will access the same memory
location containing the coordinates of the AP Ck

j , this infor-
mation is initially loaded into shared memory to speed up
read-accesses. Furthermore, the possibility to interactively
select, move or delete each AP is provided to users by intu-
itive point and grab actions, leading to a real-time control of
mesh deformation.

5 Experimental results

5.1 MRI bone segmentation

Our GPU segmentation framework was evaluated under real
conditions for the segmentation of the hip joint bones, i.e.
femur and hip bone, from Magnetic Resonance Imaging
(MRI) (Figs. 7(a)–7(d)). MRI bone segmentation is gener-
ally very challenging due to (Fig. 8(a)):
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Fig. 7 GPU-based MRI hip joint bones segmentation examples: from
(a) to (d) axial slices are shown without and with white mesh overlays
respectively on top and bottom of the subfigure. In (e), a coarse mesh

is initialized at the beginning of the segmentation, and in (f) the final
result is shown with meshes at their higher resolution

Fig. 8 Correction of bone segmentation by attraction points (APs).
(a) The hip joint area is challenging to segment due to a strong dif-
ference in intensity between cortical (bone exterior, white arrow) and
trabecular (bone interior, gray arrow) bone. Furthermore, hip bone and
femur are very close and may present fuzzy boundaries. (b) Result
without APs where the red arrow points at mesh inter-penetrations.
(c) Corrected result with APs, which are displayed as (d) small spheres
in a 3D view with a transparent hip bone

1. Inhomogeneous imaged bone intensity caused by differ-
ent cortical and trabecular bone tissues [18, 30].

2. A strong proximity of bones in the joint area with unclear
and diffused boundaries [30, 33].

3. A possible low image resolution (as in our test images)
causing a large partial volume effect.

The first issue affects segmentation approaches such as
thresholding, edge detection, level-sets and region growing
as they are usually unable to segment a structure with a very
inhomogeneous intensity. This issue is addressed by exploit-
ing a prior knowledge of the appearance of the structures to
segment, which we consider with our IP-based image force.
Similarly, the second and third pitfalls of MRI images also
hinder these segmentation approaches as they might diffuse
the segmentation evolution across the close and fuzzy bone
boundaries (i.e. “leaking” phenomenon). Once again, we ef-
ficiently tackle this problem by using a shape prior-based

force which regulates the segmentation evolution and re-
duces its sensitivity to image artifacts.

5.2 Setup

We acquired 28 MRI images of female subjects in the
supine position with a 1.5T Philips Medical Systems MRI.
The acquisition protocol was: Axial 3D T1, TR/TE =
4.15/1.69 ms, FOV/Matrix = 35 cm, 256 × 256,
resolution = 1.367×1.367×5 mm3. The field of view fully
covered both right and left hip bones and femurs.

For each bone side (right/left) and type (femur/hip bone),
a low resolution simplex mesh was created and initialized in
the image by using an interpolation technique [7]. This ini-
tialization technique only required the placement of 7 land-
marks per bone in the image, which was performed in less
than 5 min. A coarse-to-fine strategy was then adopted. All
meshes at a given resolution level were simultaneously de-
formed for a fixed number of iterations. Afterwards, the res-
olution of the meshes was increased and a new simulation
was carried out again. The process was repeated until the
finest resolution was reached.

We used three different resolutions per bone and adopted,
based on empirical tests, an iteration schedule consisting on
300 iterations for the lowest resolution, 100 for the medium
resolution and 20 for the highest resolution. Obviously this
schedule must be tuned in order according to the number of
levels-of-detail (LOD) used in the multi-resolution scheme.
In practice, each particle was attributed a mass proportional
to its coverage area (Sect. 3.2) multiplied by an arbitrary
density. Due to the construction process of the reference
mesh, faces were quasi-regular and vertices were uniformly
distributed over the model surface. As a result, particle mass
was almost the same for all particles. Profile size, search
depth and weights for image forces were chosen based on
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Table 1 MRI hip joint bone segmentation results for each mesh reso-
lution level: accuracy error (ASSD) for GPU and CPU; times for GPU
and CPU with time/iteration in parenthesis; #iterations is the number
of iterations and #vertices the total number of vertices for all meshes

Coarse Medium Fine

ASSDGPU (mm) 1.93±0.50 1.66±0.43 1.62±0.44

ASSDCPU (mm) 2.07±0.70 1.60±0.63 1.58±0.63

timeGPU (s) 1.85 (0.006) 1.27 (0.012) 0.42 (0.021)

timeCPU (s) 44.9 (0.15) 57.2 (0.57) 29.9 (1.49)

#iterations 300 100 20

#vertices 2656 10624 42496

our previous works [7, 27]. In particular, we use intensity
profiles with 25 and 5 samples spaced by 0.5 mm in the mesh
interior and exterior, respectively. Segmentation parameters
were kept identical throughout all trials. Furthermore, gold-
standard segmentations were produced based on supervised
segmentations performed by an experienced researcher un-
der the guidance of a radiologist. The error metric to assess
the segmentation accuracy was the average symmetric sur-
face distance (ASSD) [41] measured in millimeters.

5.3 Results

We have compared the accuracy and speed of our GPU-
framework against our CPU-based implementation of dis-
crete deformable models [7, 27], without collision detection
and any advanced shape prior (e.g., statistical shape model)
forces in order to make comparison more fair for the GPU
version (see Table 1). Experiments were run on a single-core
3.40 GHz PC equipped with an NVidia GTX 8800 graphics
board with 768 Mb TRAM. Computation times listed in Ta-
ble 1 do not account for loading, saving and rendering of the
meshes.

The GPU approach was consistently about 25–70 times
faster than the CPU version to execute a single time step. As
expected, this difference became more significant when the
number of vertices increased, as e.g. the CPU needed 1.49 s
to process 42 K vertices while 21 ms were only necessary
for the GPU implementation. These figures also show that
the parallelization is not fully performed at the vertex level
as an increase of the vertices yielded a sensitive increase
of the time spent to perform an iteration. Nevertheless, this
time did not scale linearly with the number of vertices (it
seems to double when the number of vertices is quadrupled)
which highlights the presence and good performance of the
underlying parallelization. Most importantly, the update fre-
quencies of the GPU approach were consistently above the
minimum 10 Hz of refresh rates required for interactivity.

In terms of accuracy, both CPU and GPU approaches re-
turned similar results. Indeed, the final ASSD error of the
CPU segmentation was 1.58 ± 0.63 against 1.62 ± 0.44 for

the GPU implementation. Similarly, errors between both ap-
proaches were very close at the end of each iteration se-
quence which exploited a given mesh resolution. These sim-
ilar accuracy results highlight the correct implementation of
the segmentation into the GPU formalism.

A visual inspection (Fig. 7) confirmed a satisfactory seg-
mentation in most bony regions. Nevertheless, the current
GPU approach suffered from mesh inter-penetrations ob-
served in the joint area (Fig. 8(b)). However, owing to
the new possibilities of higher update frequencies of the
GPU approach, attraction points could be easily added in
real-time to correct bad segmentation results as shown in
Fig. 8(c), where inter-penetrations were avoided improving
the ASSD about 9% (1.52 to 1.40 mm) for this particular
subject.

6 Discussion

In this section, we discuss our GPU implementation with
respect to key aspects of image segmentation. Comments on
possible improvements of the framework through extensions
are also provided.

6.1 Accuracy and robustness

In terms of accuracy, both CPU and GPU approaches re-
turned similar results. Small discrepancies between both ap-
proaches can be explained by the use of single precision
floating-point in the GPU approach, compared to double
precision for the CPU segmentation. Furthermore, the image
interpolation performed by the texture sampler may slightly
differ from a CPU calculation. These minor differences can
yield after several iterations to minor variations observed in
the results.

Regardless the chosen approach, the segmentation
achieved satisfactory results given the relatively low image
resolution of these clinical images (1.367×1.367×5 mm3).
The sub-voxel standard deviation error also revealed the
consistency of the segmentation over the trials with the 28
subjects. Visual inspection of the segmented images (see
Figs. 7(a)–7(d)) confirmed the good quality of the segmen-
tation in most of the bony regions. However, the articular
area sometimes presented segmentation errors mainly due
to the pitfalls listed in Sect. 5.1, namely the bone proximity
and the presence of fuzzy boundaries.

We discussed the possibility to tackle these errors in the
articular region by using attraction points (Fig. 8). While
this interactive action is efficient in most of the cases, it is
preferred to exploit additional corrective techniques to min-
imize or simply remove the user interaction. One of them
is the use of more appropriate internal regularization forces.
Typically, the exploitation of more sophisticated shape pri-
ors such as statistical shape models (SSM) has proven to
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be quite effective to segment these challenging MRI im-
ages [27, 29]. Moreover, collision response and detection
techniques could prevent mesh inter-penetrations and hence
bring additional robustness. The implementation of SSM-
based forces in GPU may demand quite complex numerical
tools. In particular, Singular Value Decomposition (SVD) is
required to achieve the alignment of point sets [39] in order
to apply the SSM iterative regularization process [3]. Many
of these tools are common but demand effort to be efficiently
implemented into GPU formalism. Thankfully, they are pro-
gressively ported to CUDA, like the SVD implementation of
Lahabar and Narayanan [15]. However, their integration into
an existent framework is not always straightforward as spe-
cial data structures are often required. These structures do
not necessarily satisfy the requirements of our simulation,
and as a result this may demand a careful (re-)design of the
framework.

6.2 Speed and interactivity

The GPU approach was consistently about 25–70 times
faster than the CPU version to execute a single time step.
This was predicable since the GPU implementation ben-
efited from parallel processing while the CPU-based ap-
proach operated in a sequential manner. In all cases, the time
taken by a single GPU iteration is perfectly matching with
interactivity constraints. Indeed, update frequencies for the
GPU were about 47–162 Hz, thus easily supporting the min-
imum 10 Hz of refresh rates required for interactivity. On the
other hand, the CPU version was unable to fully support in-
teractivity, since update frequencies were about 0.6–6.7 Hz.
Having full support to interactivity paves the way to novel
segmentation approaches, in which the user is fully able to
interact with the segmentation loop.

Different steps in the simulation (i.e. mesh update, force
computation and numerical integration) are performed in a
sequential order for both GPU and CPU implementations.
For each step, we look for a parallelization at vertex level.
The speed-up found between both GPU and CPU versions is
thus essentially dictated by the number of particles involved
in the simulation.

We have measured that, in the GPU implementation,
force computation accounts for approximatively 99% of to-
tal time per iteration, mesh update and numerical integration
contributions being below 1%. Hence, an additional level of
parallelization could be achieved by computing all forces
in parallel. This force parallelism could be achieved with
atomic operations which would sum up the force contri-
butions in parallel in the force accumulation array. Since
atomic operators availability depends on the CUDA com-
pute capability of the GPU, an alternative approach consists
in using a proper array for each force to avoid memory writ-
ing conflicts and thus the use of atomic operations. However,

Fig. 9 Average time distribution for forces in GPU implementation

such an implementation is obtained at the expense of a larger
memory consumption.

In our segmentation context, effort should be instead
spent in speeding up image-based forces, and especially
those using intensity profile. In fact, Fig. 9 reports the time
taken by each type of force in the GPU implementation. IP-
based force clearly dominates with its 93% of the total force
computation time. Despite that we used an efficient compu-
tation of the NCC by caching invariant quantities only de-
pendent on the reference profiles and by using an iterative
summation of denominator terms, this force remains very
expensive. The main reason is that during the search for the
optimal target position y∗ with the lowest image energy, we
compute the IP-based energy m times in a sequential man-
ner. Hence, once again we could parallelize the computa-
tion of the energy for each position yi, i ∈ [1, m]. Before
considering such parallelization, special attention should be
paid in preserving a good trade-off between memory usage,
speed and implementation complexity.

Finally, it is certain that a multi-core CPU hardware ar-
chitecture, exploited with an efficient parallel implementa-
tion, will notably perform faster. Nevertheless, the speed-
up obtained is expected to be not as significant as the one
obtained with our GPU-based approach. However, CPU ar-
chitectures have some non-negligible advantages compared
to GPU’s, such as a greater flexibility in programming or a
universal support for double precision arithmetics.

7 Conclusions and future work

The goal of this work was to design a simple yet efficient
and extensible framework to allow the simulation, manipu-
lation and rendering of deformable models for segmentation
purpose. Since, to date, any segmentation approach is prone
to errors due to the extreme variety of segmentation condi-
tions, the focus of this work was to devise a fast approach
which provided an interactive control on the segmentation
evolution. Its performances were illustrated in a challeng-
ing segmentation scenario in which possible segmentation
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errors were interactively corrected. The GPU hardware re-
quirements were not very demanding, as a slightly outdated
CUDA compatible graphics board already demonstrated an
excellent interactivity.

Still, potential limitations of the GPU framework will
be overcome through extension mechanisms, we particu-
larly target better segmentation accuracy and robustness by
considering additional segmentation strategies such as inter-
nal forces based on statistical shapes models and collision–
detection techniques to prevent mesh inter-penetrations. Al-
though, this is not an easy task as many existing approaches
do not easily translate into GPU parallel formalism. Fur-
thermore, effort will be spent in finely tuning the CUDA
implementation to better address technical aspects such as
memory bank conflicts or multiprocessor occupancy. Fi-
nally, richer interactive visualization approaches will be also
explored, such as advanced volume rendering built upon ef-
ficient implementations able to handle larger volumetric im-
ages.
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