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Abstract: An observable for nonabelian, higher-dimensional forms is introduced, its
properties are discussed and its expectation value in BF theory is described. This is
shown to produce potential and genuine invariants of higher-dimensional knots.

1. Introduction

Wilson loops play a very important role in gauge theories. They appear as natural observ-
ables, e.g., in Yang–Mills and in Chern–Simons theory; in the latter, their expectation
values lead to invariants for (framed) knots [19]. A generalization of Wilson loops in
the case where the connection is replaced by a form B of higher degree and the loop
by a higher-dimensional submanifold is then natural and might have applications to the
theories of D-branes, gerbes and—as we discuss in this paper—invariants of imbeddings.

In the abelian case, one assumes B to be an ordinary n-form on an m-dimensional
manifold M . The generalization of abelian gauge symmetries is in this case given by
transformations of the form B �→ B + dσ , σ ∈ �n−1(M). The obvious generalization
of a Wilson loop has then the form

O(B, f, λ) = e
i
�
λ

∫
N f

∗B, (1.1)

where λ is a coupling constant,N is an n-dimensional manifold and f is a mapN → M .
As an example of a theory where this observable is interesting, one has the so-called

abelian BF theory [16] which is defined by the action functional

S(A,B) =
∫

M

B dA, B ∈ �n(M), A ∈ �m−n−1(M).

The expectation value of the product O(B, f, λ)O(A, g, λ̃) (with f : N → M , g : Ñ →
M , dimN = n, dim Ñ = m− n− 1) is then an interesting topological invariant which
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in the case M = R
n turns out to be a function of the linking number of the images

of f and g (assuming that they do not intersect). For another generalization of abelian
Chern-Simons theory and Wilson loops in higher dimensions, see also [12].

A nonabelian generalization seems to require necessarily that along withB one has an
ordinary connection A on some principal bundle P → M . The field B is then assumed
to be a tensorial n-form on P .

If the map f (N) describes an (n− 1)-family of imbedded loops (viz., N = S1 ×X

and f (•, x) is an imbedding S1 ↪→ M ∀x ∈ X), then a generalization of (1.1) has been
introduced in [6] in the case n = 2 and, more generally, in [7, 9]. If such an observable
is then considered in the context of nonabelian BF theories (which implies that one has
to take n = m − 2), one gets cohomology classes of the Vassiliev type on the space of
imbeddings of a circle into M [7, 9, 5].

In the present paper we are however interested in the case where f is an imbedding1

of N into M . We assume throughout n = m − 2 and we choose B to be of the coad-
joint type. In particular, this will make our generalization of (1.1), the Wilson surface,
suitable for the so-called canonical BF theories, see Sect. 2. Since these theories are
topological, expectation values of Wilson surfaces should yield potential invariants of
imbeddings of codimension two, i.e., of higher-dimensional knots.

As an example, we discuss explicitly the case when M = R
m and N = R

m−2 and
the imbeddings are assumed to have a fixed linear behavior at infinity (long knots).
In this case, by studying the first orders in perturbation theory, we recover an invariant
proposed by Bott in [2] for m odd and introduce a new invariant for m = 4. More gen-
eral invariants may be obtained at higher orders. (These results have appeared in [15] to
which we will recurringly refer for more technical details.)

We believe that our Wilson surfaces may have broader applications in gauge theories.

Plan of the paper. In Sect. 2, we recall nonabelian canonicalBF theories and give a very
formal, but intuitively clear, definition of Wilson surfaces, see (2.4) and (2.5). We dis-
cuss their formal properties and, in particular, we clarify why we expect their expectation
values to yield invariants of higher-dimensional knots. (In this section by invariant we
mean a Diff 0(N)×Diff 0(M)-invariant function on the space of imbeddingsN ↪→ M .)

In Sect. 3, we give a more precise and at the same time more general definition
of Wilson surfaces under the simplifying assumption that we work on trivial principal
bundles. The properties of Wilson surfaces are here summarized in terms of descent
equations (3.3), the crucial point of the whole discussion being the modified quantum
master equation (3.6). Though we briefly recall here the fundamental facts about the
Batalin–Vilkovisky (BV) formalism [1], some previous exposure to it will certainly be
helpful.

In Sect. 4, we carefully describe the perturbative definition of Wilson surfaces—see
(4.5), (4.6) and (4.8)—in the case M = R

m and N = R
m−2 to which we will stick to

the end of the paper.
This perturbative definition of Wilson surfaces is finally rigorous, and in Sect. 5 we

are able to prove some of its properties, viz., the “semiclassical” version of the descent
equation, see (5.1) and Prop. 5.1. The “quantum” descent equation, on the other hand,
still relies on some formal arguments.

1 The necessity of considering imbeddings in the nonabelian theory, instead of more general smooth
maps, arises at the quantum level (just like in the nonabelian Chern–Simons theory) in order to avoid
singularities which make the observables ill-defined.
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In Sect. 6, we discuss the perturbative expansion of the expectation value of a Wilson
surface in BF theory. The main results we obtain by considering the first three orders
in perturbation theory are a generalization of the self-linking number (6.2), the Bott
invariant (6.3), and a new invariant for long 2-knots (6.4), see Prop. 6.3. (In this section
an invariant is understood as a locally constant function on the space of imbeddings.)
We also discuss the general behavior of higher orders as well as the expectation value
(6.5) of the product of a Wilson loop and a Wilson surface. The discussions in this sec-
tion require some knowledge on the compactification of configuration spaces relative to
imbeddings described in [3]. We refer for more details on this part to [15].

Finally, in Sect. 7, we discuss some possible extensions of our work.

2. Canonical BF Theories and Wilson Surfaces

We begin by fixing some notations that we will use throughout. Let G be a Lie group,
g its Lie algebra and P a G-principal bundle over an m-dimensional manifold M . We
will denote by A and G the affine space of connection 1-forms and the group of gauge
transformations, respectively. Given a connection A and a gauge transformation g, we
will denote by Ag the transformed connection. The next ingredients are the spaces
�k(M, adP) and �k(M, ad∗P) of tensorial k-forms of the adjoint and coadjoint type
respectively. Given a connection A, we will denote by dA the corresponding covariant
derivatives on �•(M, adP) and on �•(M, ad∗P).

2.1. Canonical BF theories. Given A ∈ A and B ∈ �m−2(M, ad∗P), one defines the
canonical BF action functional by

S(A,B) :=
∫

M

〈B , FA 〉 , (2.1)

where FA is the curvature 2-form of A and 〈 , 〉 denotes the extension to forms of the
adjoint and coadjoint type of the canonical pairing between g and g∗. The critical points
of S are pairs (A,B) ∈ A × �m−2(M, ad∗P), where A is flat and B is covariantly
closed, i.e., solutions to FA = 0 = dAB.

The BF action functional is invariant under the action of an extension of the group G
of gauge transformations, viz., the semidirect product G̃ := G��m−3(M, ad∗P), where
G acts on the abelian group�m−3(M, ad∗P) via the coadjoint action. A pair (g, σ ) ∈ G̃
acts on a pair (A,B) ∈ A ×�m−2(M, ad∗P) by

A �→ Ag, (2.2a)

B �→ B(g,σ) = Ad∗
g−1 B + dAgσ, (2.2b)

and it is not difficult to prove that S(Ag, B(g,σ )) = S(A,B).
By definition an observable is a G̃-invariant function on A × �m−2(M, ad∗P). In

the quantum theory, one defines the expectation value2 of an observable by

〈 O 〉 =
∫

DADB e
i
�
S(A,B) O(A,B), (2.3)

where the formal measure DADB is assumed to be G̃-invariant.
2 For notational simplicity, throughout the paper we assume the functional measures to be normalized.
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2.2. Wilson surfaces. We are now going to define an observable for BF theories asso-
ciated to an imbedding f : N ↪→ M , whereN is a fixed (m− 2)-dimensional manifold.
The first observation is that, using f , one can pull back the principal bundle P to N ;
let us denote by f ∗P the principal bundle over N obtained this way. Given a con-
nection one-form A on P , we denote by f ∗A the induced connection one-form on
f ∗P ; moreover, given B ∈ �m−2(M, ad∗P) we denote by f ∗B the induced element of
�m−2(N, ad∗f ∗P). We then define

�(ξ, β,A,B, f ) :=
∫

N

〈
ξ , df ∗Aβ + f ∗B

〉
, (2.4)

for ξ ∈ �0(N, adf ∗P) and β ∈ �m−3(N, ad∗f ∗P). Our observable, which we will
call the Wilson surface, is then defined as the following functional integral:

O(A,B, f ) :=
∫

DξDβ e
i
�
�(ξ,β,A,B,f ). (2.5)

There are two important observations at this point:

(1) At first sight we have a Gaussian integral where the quadratic part pairs ξ with β
but there is no linear term in β; so it seems that one could omit the linear term
in ξ as well. As a consequence O would not depend on B and would then have a
rather trivial expectation value in BF theory. The point however is that (2.4) has
in general zero modes. One has then to expand around each zero mode and then
integrate over them (with some measure “hidden” in the notation DξDβ). This
makes things more interesting as we will see in the rest of the paper; in particular,
the dependency of O on B will be nontrivial.

(2) The action functional (2.4) may have symmetries (depending on A and B) which
make the quadratic part around critical points degenerate. So in the computation of
O the choice of some adapted gauge fixing is understood. We defer a more precise
discussion to the following sections.

We want now to show that (formally) O is an observable. First observe that an element
(g, σ ) of the symmetry group G̃ of canonical BF theories, induces a pair (g̃, σ̃ ), where
g̃ is a gauge transformation for f ∗P and σ̃ = f ∗σ ∈ �m−3(N, ad∗f ∗P). It is not
difficult to show that

�(ξ, β,Ag, B(g,σ ), f ) = �(Adg̃ ξ,Ad∗
g̃(β + σ̃ ), A, B, f ).

Thus, by making a change of variables in (2.5), we see that O is G̃-invariant if we make
the following

Assumption 1. We assume that the measure DξDβ is invariant under i) the action of
gauge transformation on�0(N, adf ∗P)×�m−3(N, ad∗f ∗P) and ii) translations of β.

In the following we will see examples where these conditions are met; observe that this
will in particular imply conditions on the measure on zero modes.
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2.3. Invariance properties. Next we want to discuss invariance of O under the group
Diff 0(N) of diffeomorphisms of N connected to the identity. For ψ ∈ Diff 0(N), one
can now prove that3

�(ξ, β,A,B, f ◦ ψ−1) = �(ψ∗ξ, ψ∗β,A,B, f ).

If we now further assume that the measure DξDβ is invariant4 underψ∗, we obtain that

O(A,B, f ◦ ψ−1) = O(A,B, f ).
Finally, we want to prove that 〈 O 〉 is also Diff 0(M)-invariant. For φ ∈ Diff 0(M),

the relevant identity is now5

�(ξ, β,A,B, φ ◦ f ) = �(ξ, β, φ∗A, φ∗B, f ).

After integrating out ξ and β, we get then

O(A,B, φ ◦ f ) = O(φ∗A, φ∗B, f ).

Observe now that the BF action (2.1) is Diff 0(M)-invariant, viz.,

S(A,B) = S(φ∗A, φ∗B).

Thus, if we assume the measure DADB to be Diff 0(M)-invariant as well, we deduce
that 〈 O 〉(f ) = 〈 O 〉(φ ◦ f ) ∀φ ∈ Diff 0(M).

In conclusion, whenever we can make sense of the observable O and the expec-
tation value (2.3) together with Assumption 1, we may expect to obtain invariants of
higher-dimensional knots N ↪→ M . A caveat is that in the perturbative evaluation of
the functional integrals some regularizations have to be included (e.g., point splitting)
and this may spoil part of the result (analogously to what happens in Chern–Simons
theory where expectation values of Wilson loops do not actually yield knot invariants
but invariants of framed knots6).

2.4. The abelian case. As a simple example we discuss now the case g = R. The action
� simplifies to

�(ξ, β,A,B, f ) :=
∫

N

ξ(dβ + f ∗B).

The critical points are solutions to dξ0 = dβ0 + f ∗B = 0. Since we want to treat B
perturbatively, we expand instead around a solution to dξ0 = dβ0 = 0. For simplicity

3 To be more precise, observe that the l.h.s. is now defined on tensorial forms on (f ◦ψ−1)∗P instead
of f ∗P . Byψ∗ we mean then the isomorphism between N (f ) := �0(N, adf ∗P)×�m−3(N, ad∗f ∗P)
and N (f ◦ ψ−1) := �0(N, ad(f ◦ ψ−1)∗P)×�m−3(N, ad∗(f ◦ ψ−1)∗P).

4 More precisely, we assume that the measure Dξ̃Dβ̃ on N (f ◦ ψ−1) is equal to the pullback of the
measure DξDβ by ψ∗ whenever ξ̃ = ψ∗ξ and β̃ = ψ∗β.

5 Observe that now we are moving fromP toφ∗P , and in the r.h.s.φ∗ denotes the induced isomorphism
between A(P )×�m−2(M, ad∗P) and A(φ∗P)×�m−2(M, ad∗ φ∗P).

6 Genuine knot invariants may also be obtained by subtracting suitable multiples of the self-linking
number [3]. We will see in Subsect. 6.4 that a similar strategy—viz., taking the linear combination of
potential invariants coming from expectation values in order to obtain genuine invariant—may be used
in the case of long higher-dimensional knots.
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we consider only the case β0 = 0.7 On the other hand ξ0 has to be a constant function;
we will denote by � its value. We get then

O(A,B, f ) = Z

∫

�∈R

µ(�) e
i
�
�

∫
N f

∗B,

where µ is a measure on the moduli space R of solutions to dξ0 = 0, and

Z =
∫

DαDβ e
i
�

∫
N α(dβ+f ∗B) =

∫
DαDβ e

i
�

∫
N αdβ,

where we have denoted by α the perturbation of ξ around �. Observe that Z is inde-
pendent of f , of A and of B.8 If we take the measure µ to be a delta function peaked at
some value λ, we recover, apart from the constant Z, the observable displayed in (1.1).

3. BV Formalism

BF theories present symmetries that are reducible on shell.9 To deal with it, one resorts
to the Batalin–Vilkovisky (BV) formalism. We summarize here the results on BV for
canonical BF theories [9]. First we introduce the following spaces of superfields:

A := A ⊕
m⊕

i=0
i 
=1

�i(M, adP)[1 − i],

B :=
m⊕

i=0

�i(M, ad∗P)[m− 2 − i],

where the number in square brackets denotes the ghost number to be given to each com-
ponent. If we introduce the total degree as the sum of ghost number and form degree,
we see that elements of A have total degree equal to one and elements of B have total
degree equal to m− 2.

Remark 3.1. In the following, whenever we refer to some super algebraic structure (Lie
brackets, derivations, . . . ), it will always be understood that the grading is the total
degree.

Observe then that the space A of superconnections is modeled on the super vector
space

A0 :=
m⊕

i=0

�i(M, adP)[1 − i].

7 Observe that the action is invariant under the transformation β �→ β + dτ . So, if Hm−3(N) = {0},
there is no loss of generality in taking β0 = 0.

8 The explicit computation of Z, taking into account the symmetries with the BRST formalism, yields
the Ray–Singer torsion of N , see [16].

9 The infinitesimal form of the symmetries (2.2) consists of the usual infinitesimal gauge symmetries
and of the addition to B of the covariant derivative of an (m − 3)-form σ of the coadjoint type. On
shell, i.e. at the critical points of the action, the connection has to be flat. Thus, there is a huge kernel
of infinitesimal symmetries containing in particular all dA-exact forms. Off shell the kernel is in general
much smaller. Having completely different kernels on and off shell makes the BRST formalism, even
with ghosts for ghosts, not applicable to this case.
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The Lie algebra structure on g induces a super Lie algebra structure on A0 whose Lie
bracket will be denoted by [[ ; ]]. (We refer to [9] for more details and sign conventions.)10

Given A ∈ A, we define its curvature

FA = FA0 + dA0a + 1

2
[[a ; a]],

where A0 is any reference connection and a := A − A0 ∈ A0. Then we define the BV
action for the canonical BF theory by

S(A,B) =
∫

M

〈〈 B ; FA 〉〉 ,

where 〈〈 ; 〉〉 denotes the extension to forms of the adjoint and coadjoint type of the
canonical pairing between g and g∗ with shifted degree:

〈〈α ; β 〉〉 := (−1)gh α degβ 〈α , β 〉 .
Integration overM is assumed here to select the form component of degreem. Observe
that S(A,B) = S(A,B) as in (2.1).

The space A × B of superfields is isomorphic to T∗[−1]A and as such it has a
canonical odd symplectic structure whose corresponding BV bracket we will denote by
(( ; )). It can then be shown that S satisfies the classical master equation ((S ; S )) = 0.
This implies that the derivation (of total degree one) δ := ((S ; )) is a differential (the
BRST differential). It can be easily checked that

δA = (−1)m FA, δB = (−1)m dAB. (3.1)

As usual in the BV formalism one also introduces the BV Laplacian �. For this, one
assumes a measure which induces a divergence operator and defines �F by 1

2 divXF
with XF = (( F ; )) the Hamiltonian vector field of F . In the functional integral, the
measure is defined only formally. For us, the Laplace operator will have the property
that

�((Ak)a(x) (Bl )b(y)) = δk+l,−1 δ
a
b δ(x, y), (3.2)

where Ak (Bk) denotes the component of ghost number k of A (B), and we have chosen
a local trivialization of adP (ad∗ P ) to expand Ak (Bk) on a basis of g (g∗). One can
then show that �S = 0. As a consequence S satisfies the quantum master equation
((S ; S ))− 2i��S = 0, and the operator

� := δ − i��

is a coboundary operator (i.e., �2 = 0) of total degree one.
Given a function O on T∗[−1]A, one defines its expectation value by

〈 O 〉 :=
∫

L
DADB e

i
�

S(A,B) O(A,B),

where L is a Lagrangian submanifold (determined by a gauge fixing). The general prop-
erties of the BV formalism ensure that

10 It suffices here to say that (locally) the Lie bracket of g-valued forms α and β is defined by

[[α ;β]] = (−1)gh α degβ αaβb f cab Rc,

where {Rc} is a basis of g, f cab are the corresponding structure constants, gh denotes the ghost number
and deg the form degree.
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(1) the expectation value of an �-closed function (called a BV observable) is invariant
under deformations of L (“independence of the gauge fixing”); and

(2) the expectation value of an �-exact function vanishes (“Ward identities”).

3.1. Wilson surfaces in the BV formalism. We want now to extend the observable O to
a function O (of total degree zero) on T∗[−1]A ×�•(Imb(N,M)) (where Imb(N,M)
denotes the space of imbeddings N ↪→ M) that satisfies the “descent equations”

�O = (−1)m dO, (3.3)

where d is the de Rham differential on �•(Imb(N,M)). Observe that denoting by Oi

the i-form component, the descent equation implies in particular

�O0 = 0,

�O1 = (−1)m dO0.

Thus, O0 will be a BV observable satisfying d〈 O0 〉 = 0. We expect then that (apart
from regularization problems) 〈 O0 〉 should yield a higher-dimensional knot invariant.
Observe that, since O will be defined in terms of a gauge-fixed functional integral, we
will have to take care of the dependence of O under the gauge fixing. We will show that
the variation of O w.r.t. the gauge fixing is (d + (−1)m�)-exact. As a consequence, the
variation of O w.r.t. the gauge fixing will be d-exact and hence well defined in cohomol-
ogy. In particular, we should expect that 〈 O0 〉 should be gauge-fixing independent.

In order to define O properly and to show its properties we make from now on the
following simplifying

Assumption 2. We assume that the principal bundle P is trivial. As a consequence, from
now on, elements of A (B) will be regarded as forms on M taking values in g (g∗).

Our definition of O requires first the introduction of superfields on N . We set

Â :=
m−2⊕

i=0

�i(N; g)[−i],

B̂ :=
m−2⊕

i=0

�i(N; g∗)[m− 3 − i].

Elements of Â have then total degree zero, while elements of B̂ have total degreem−3.
Again we may regard Â × B̂ as T∗[−1]Â, which we endow with its canonical odd
symplectic structure. We will denote by (( ; ))̂ the corresponding BV bracket.

We are now in a position to give a first BV generalization of (2.4); viz., for ξ ∈ Â
and β ∈ B̂, we define

�0(ξ ,β,A,B)(f ) :=
∫

N

〈〈
ξ ; df ∗Aβ + f ∗B

〉〉
.

One can immediately verify that �0(ξ, β,A,B)(f ) = �(ξ, β,A,B, f ).
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The notation used suggests that we want to consider �0(ξ ,β,A,B) as a function on
Imb(N,M). More generally, we want to define a functional � taking values in forms
on Imb(N,M). To do so, we first introduce the evaluation map

ev : N × Imb(N,M) → M

(x, f ) �→ f (x),

and the projection π : N× Imb(N,M) → Imb(N,M). Denoting by π∗ the correspond-
ing integration along the fiber N , we define

�(ξ ,β,A,B) := π∗
〈〈
ξ ; dev∗Aβ + ev∗B

〉〉 ∈ �•(Imb(N,M)).

Observe that � is a sum of forms on Imb(N,M) of different ghost numbers with total
degree equal to zero and that �0 is the component of � of form degree zero (or, equiv-
alently, of ghost number zero). Now, by using (3.1) and the property dπ∗ = (−1)mπ∗d,
one can prove the identity11

d� = (−1)m δ� + 1

2
((� ; � ))̂ . (3.4)

We may also define the derivation δ̂ := ((� ; ))̂ which, by (3.4) is not a differential;
on generators it gives

δ̂ξ = (−1)m dev∗Aξ , δ̂β = (−1)m
(
dev∗Aβ + ev∗B

)
. (3.5)

Observe that for any given family of imbeddings, one gets a vector field on T∗[−1]Â.
We now introduce a formal measure DξDβ on this space. In terms of this measure,

we define the BV Laplacian �̂. We assume the formal measure to satisfy the following
generalization of Assumption 1 in Sect. 2:

Assumption 3. We assume the measure to be invariant under the vector fields defined by
(3.5); viz., we assume �̂� = 0.

Formally we can now improve (3.4) to the fundamental identity of this theory which we
will call the modified quantum master equation; viz,

d� = (−1)m
(

�� + 1

2
((� ; � ))

)

+ 1

2
Q̂ME(�) (3.6)

with

Q̂ME(�) := ((� ; � ))̂ − 2i��̂�.

This identity is a consequence of the following formal facts:

(1) �� vanishes since � is at most linear in A and B.
(2) �̂� vanishes by Assumption 3.
11 Observe that, in order to compute ((� ; � ))̂ , one has to “integrate by parts.” This is allowed since

〈〈 ξ ; β 〉〉 does not depend on the given imbedding.As a consequence,π∗ 〈〈 ξ ; β 〉〉 is a constant zero-form
on Imb(N,M), which implies the useful identity

0 = (−1)m dπ∗ 〈〈 ξ ; β 〉〉 = π∗ 〈〈 dAξ ; β 〉〉 + π∗ 〈〈 ξ ; dAβ 〉〉 .
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(3) ((� ; � )) is proportional to a delta function at coinciding points, but the coefficient
is proportional to 〈〈 [[ξ ; ξ ]] ; β 〉〉 which vanishes since ξ has total degree zero.

Observe finally that the modified quantum master equation can also be rewritten in the
form

(
d − (−1)m� + i��̂

)
e

i
�

� = 0. (3.7)

We are now in a position to define the observable O and to prove its formal properties.
We set

O� :=
∫

L�
DξDβ e

i
�

�,

where L� is the Lagrangian section determined by the gauge-fixing fermion �. Recall
that, as in general in the BV formalism, � is required to depend only on the fields.12

In this modified situation, we call good a gauge-fixing fermion that in addition satisfies
the equation

�� + ((� ; � )) = (−1)m d�.

In particular, gauge-fixing fermions independent of A, B and the imbedding are good.
Now let �t be a path of good gauge-fixing fermions. By the usual manipulations in

the BV formalism, the modified quantum master equation (3.6) implies that

d

dt
O�t = i

�
((−1)m� − d)Õ�t

with

Õ�t =
∫

L�t
DξDβ e

i
�

� d

dt
�t .

As a consequence, the expectation value of O� will be gauge-fixing independent modulo
exact forms on Imb(N,M) as long as we stay in the class of good gauge fixings. This
understood, from now on we will drop the label �.

Another consequence of the modified quantum master equation is the descent equa-
tions (3.3), which are immediately obtained by integrating (3.7) over the Lagrangian
section L� determined by a good gauge-fixing fermion �.

4. The Case of Long Higher-Dimensional Knots

We will concentrate from now on on the caseM = R
m andN = R

m−2,m > 3. We also
choose once and for all a reference linear imbedding σ : R

m−2 ↪→ R
m and we consider

only those imbeddings that outside a compact coincide with σ ; we denote by Imbσ the
corresponding space, whose elements are usually called long (m− 2)-knots.

12 As usual one has first to enlarge the space of fields and antifields by adding enough antighosts σ̄i and
Lagrange multipliers λi together with their antifields σ̄+

i and λ+
i . One then extends the action functional

� by adding the term
∑
i

∫
N σ̄

+
i λi . The extended action still satisfies the modified quantum master

equation. The gauge-fixing fermion is assumed to depend on the fields only, i.e., on the σ̄is, the λis, and
the components of nonnegative ghost number in ξ and β. See, e.g., Subsect. 4.3.
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On the trivial bundleP � R
m×G, we pick the trivial connection as a reference point.

Thus, we may identify A with the space of g-valued 1-forms. More generally, we think
of A and B as spaces of g- resp. g∗-valued forms. Observe that the pair (A,B) = (0, 0)
is now a critical point of BF theory. We will denote by a and B the perturbations around
the trivial critical point, but, in order to keep track that they are “small”, we will scale
them by

√
�. Observe that we assume the fields a and B to vanish at infinity. To simplify

the following computations, we also rescale ξ → �ξ . As a consequence, the super BF
action functional and the super � functional will now read as follows:

1

�
S(a,B) =

∫

M

〈〈

B ; da +
√

�

2
[[a ; a]]

〉〉

, (4.1a)

1

�
�(ξ ,β,a,B) = π∗ 〈〈 ξ ; dβ 〉〉 +

√
�π∗

〈〈
ξ ; [[ev∗a ; β]] + ev∗B

〉〉
. (4.1b)

4.1. Zero modes. We now consider the critical points of � for � = 0. The equations
of motions are simply dξ = dβ = 0. Using translations by exact forms (which are the
symmetries for � at � = 0), a critical point can always be put in the form β = 0 and
ξ a constant function, whose value we will denote by � ∈ g. We have now to choose a
measure µ on the space g of zero modes. Then we write ξ = �+ α with α assumed to
vanish at infinity. We also assume β to vanish at infinity and write

O(A,B) =
∫

�∈g
µ(�) U(A,B, �),

with

U(A,B, �) :=
∫

L�
DαDβ e

i
�

�(�+α,β,A,B). (4.2)

In the following, we will concentrate on U(A,B, •) which we will regard as an element
of the completion of the symmetric algebra of g∗.

Before starting the perturbative expansion of U, we comment briefly on the validity
of Assumption 3 at the end of Sect. 3. We assume the formal measure DαDβ to be
induced from a given constant measure on g. This means that �̂ will have the following
property (cf. with (3.2) for notations):

�̂((ξ k)
a(x) (β l )b(y)) = δk+l,−1 δ

a
b δ(x − y). (4.3)

Then, by a computation analogous to that for canonical BF theories, one obtains in �̂�
a combination of delta functions and its derivatives at coinciding points (!) but with a
vanishing coefficient. So, formally, Assumption 3 is satisfied.13

13 If we think in terms of the vector fields defined by (3.5), we should take care only of the terms con-
taining the covariant derivatives as the formal measure is, as usual, assumed to be translation invariant.
If the Lie algebra g were unimodular, then we would immediately conclude that, formally, the measure
is invariant under this generalized gauge transformation. However, even more formally, things work in
general as the contributions of different field components cancel each other.
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a

B

a B

Fig. 1. The four vertices coming from the second equation in (4.4)

4.2. The Feynman diagrams. We split the action �(� + α,β,A,B) into the sum of
�(0)(α,β) and the perturbation �

(1)
� (α,β,A,B):

1

�
�(0)(α,β) = π∗ 〈〈 α ; dβ 〉〉 =

∫

Rm−2
〈〈 α ; dβ 〉〉 ,

1

�
�
(1)
� (α,β,a,B) =

√
�π∗(

〈〈
α ; [[ev∗a ; β]]

〉〉 + 〈〈
α ; ev∗B

〉〉

+ 〈〈
� ; [[ev∗a ; β]]

〉〉 + 〈〈
� ; ev∗B

〉〉
).

(4.4)

As a consequence, in the perturbative expansion of U, we will have a propagator of
order 1 in � (the inverse of d with some gauge fixing) and four vertices of order

√
�.

Graphically, we will denote the propagator by a dashed line oriented from β to α. The
four vertices are then represented as in Fig. 1, where the black and white strip represents
the zero mode �.

Observe that with these vertices one can construct two types of connected diagrams:
(1) Polygons consisting only of vertices of the first type, see Fig. 2 (observe that the

1-gon is a tadpole, so in general it will be removed by renormalization);
(2) “Snakes” with a B-field at the head and a zero mode at the tail; there is a very short

snake consisting of a vertex of the fourth type only; a longer snake consisting of
a vertex of the second type followed by a vertex of the third type; and a sequel of
longer snakes consisting of a vertex of the second type followed by vertices of the
first type and ending with a vertex of the third type. See Fig. 3.

We will denote by τn the n-gon and by σn the snake with n vertices beside the head.
Then, the combinatorial structure of U is given by

U = eσ+τ , (4.5)

with

τ =
∞∑

n=2

�
n
2

n
τn, σ =

∞∑

n=0

�
n+1

2 σn. (4.6)

(The factor n dividing τn is the order of the group of automorphisms of the polygon.)

Remark 4.1. Observe that setting B = 0 kills σ . On the other hand, the partition function
of �|B=0 is just the torsion of the connection dev∗A [16]. As a consequence, exp τ(a) is
the perturbative expression of the torsion for A = A0 + √

� a, where A0 is the trivial
connection.
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a

a

a 1

n−1

n a

an−2

a i+5

i+4

a i+3 a i+2

a i+1

a i

3a

a2

Fig. 2. The polygon τn with n vertices

4.3. The gauge fixing. To compute σ and τ explicitly, one has to choose a gauge fixing.
Our choice is the so-called covariant gauge fixing d�β = 0, where d� is defined in terms
of a Riemannian metric on R

m−2, e.g., the Euclidean metric.
In the BV formalism, one needs a gauge fixing also for some of the ghosts, and every-

thing has to be encoded into a gauge-fixing fermion. The first step consists in introducing
antighosts and Lagrange multipliers and to extend the BV action. We will denote by σ̄i,l
the antighosts and by λi,l the Lagrange multipliers (i = 1, . . . , m − 3, l = 1, . . . , i),
with the following properties:

• σ i,l is a g-valued form of degree m− 3 − i and ghost number −i + 2l − 2;
• λi,l is a g-valued form of degree m− 3 − i and ghost number −i + 2l − 1.

We then introduce the corresponding antifields σ̄+
i,l and λ+

i,l . To the BV action � we add
then the piece

a1
a2 a3 Bn+1an−1 an

Fig. 3. The “snake” σn with n+ 1 terms
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m−3∑

i=1

i∑

l=1

(−1)i
∫

R
m−2

〈〈
σ̄+
i,l ; λi,l

〉〉
.

By means of the Euclidean metric on R
m−2, we can construct the corresponding Hodge

� operator, which maps linearly forms on R
m−2 of degree k to forms of degreem−2−k;

moreover, we define the L2-duality between forms on R
m−2 with values in g and g∗ as

follows:

〈 η , ω 〉L2 :=
∫

Rm−2
〈〈ω ; �η 〉〉 , (4.7)

where the operator � acts on the form part of η. Finally, we choose the gauge-fixing
fermion to be

� = 〈〈
σ 1 ; d�β

〉〉
L2 +

m−4∑

i=1

〈〈
σ i+1,1 ; d�σi

〉〉
L2

+
m−4∑

i=1

i∑

l=2

〈〈
σ i+1,k+2−l ; d�σ i,l

〉〉
L2 .

Observe that this gauge fixing is independent of A, of B and of the imbedding; as a
consequence it is a good gauge fixing (according to the terminology introduced at the
end of Subsect. 3.1). With this choice of gauge fixing, the superpropagator is readily
computed. To avoid the singularity on the diagonal of R

m−2 × R
m−2, we prefer to work

on the (open) configuration space

C2(R
m−2) := {(x, y) ∈ R

m−2 | x 
= y}.
If we denote byπi , i=1, 2, the projection fromC2(R

m−2) onto the ith component, we get
〈
π∗

1

(
αa

)
π∗

2

(
βb

)〉
g.f. := η δab ,

where η is the pullback of the normalized, SO(m− 2)-invariant volume form wm−3 on
Sm−3 via the map

φ : C2(R
m−2) → Sm−3,

(x, y) �→ y − x

||y − x|| ,

where || || denotes the Euclidean norm.

4.4. Explicit expressions. We are now in a position to write down σ and τ in an explicit
way. We only need a few more pieces of notation. First, we introduce the (open) config-
uration space Cn(Rm−2) as the space of n distinct points on R

m−2:

Cn(R
m−2) := {(x1, . . . , xn) ∈ (Rm−2)n | i 
= j ⇒ xi 
= xj }.

For a given Cn, we introduce the projections

πi : Cn(R
m−2) → R

m−2,

(x1, . . . , xn) �→ xi,
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and, for i 
= j ,

πij : Cn(R
m−2) → C2(R

m−2),

(x1, . . . , xn) �→ (xi, xj ).

Then we set

ai := (ev ◦ (id × πi))
∗ a, Bi := (ev ◦ (id × πi))

∗ B,

and

ηij := π∗
ij η.

Finally, we may write

τn(a) = πn∗ Tr
[
ad(a1)η12 ad(a2)η23 · · · ηn−1,n ad(an)ηn1

]
, (4.8a)

σn(a,B;�) = iπn+1
∗

〈
ad∗(a1)η12 ad∗(a2)η23 · · · ad∗(an)ηn,n+1Bn+1 , �

〉
, (4.8b)

where πn∗ denotes the integration along the fiber corresponding to the projection
πn : Cn(Rm−2)× Imbσ → Imbσ , and Tr is the trace in the adjoint representation.

5. Properties of the Wilson Surface for Long Knots

In this section we discuss the properties of the functions τ and σ introduced in (4.8).

Proposition 5.1. The functions τ and σ are well-defined and satisfy

δτ = (−1)m dτ, δσ = (−1)m dσ.

Proof. We have first to prove that the integrals defining σ and τ converge. This is easily
done by introducing the compactifications Cn[Rm−2] of the (open) configuration spaces
Cn(R

m−2) defined in [3]. These compactified configuration spaces are manifolds with
corners, with the property that all projections to configuration spaces with less points
may be lifted to smooth maps. Moreover, the form η defined in the previous subsection
extends to a smooth, closed (m − 3)-form on C2[Rm−2]. As a consequence, σ and τ
may be expressed by integrating along the compactification. In other words, we take the
same expressions but we interpret πn∗ as the integration along the fiber corresponding to
the projection πn : Cn[Rm−2] × Imbσ → Imbσ .

To prove the properties, we use the generalized StokesTheorem dπn∗ = (−1)mn(πn∗ d−
π
n,∂∗ ), where πn,∂∗ denotes integration along the (codimension-one) boundary of Cn

[Rm−2]. Since the forms ηij are closed, the first term produces a sum of integrals where
d is applied, one at a time, to a form a or B. The boundary terms may be divided into prin-
cipal and hidden faces, the former corresponding to the collapse of exactly two points.
If the two points are not consecutive, they are not joined by an η and the integral along
the fiber vanishes by dimensional reasons. If on the other hand they are consecutive, the
integral along the fiber of η is normalized; we get then contributions of the form [[a ; a]]
or ad∗(a)B. Collecting all the terms and using (3.1), we get the formulae displayed in
the proposition, up to hidden faces.
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a1
a2 a3 Bn+1an−1 an

a2

a1

a

a3

m

Fig. 4. The typical term in (( σ ; σ ))

The vanishing of the hidden faces (corresponding to more points collapsing together
and/or escaping to infinity) is due partly to dimensional reasons, partly to slight modifi-
cations of the Kontsevich Lemma (see [14]). We refer the reader to [15] for the detailed
proof.14 ��
An immediate consequence of the proposition is that the Wilson surface U, defined in
(4.2), satisfies the “semiclassical” descent equation

δU = (−1)m dU. (5.1)

In order to prove the “quantum” descent equation �U = (−1)m dU, we must now show
that, formally, U is �-closed. To do so, we first observe that, by the formal properties of
the BV Laplacian,

�U = U
(

�σ + �τ + 1

2
(( σ ; σ ))+ (( σ ; τ ))+ 1

2
(( τ ; τ ))

)

.

The second and last terms in parentheses vanish since τ depends only on a (and not on
B). In [15], it is proved that also the third term vanishes and that �σ + (( σ ; τ )) = 0.
Graphically, these terms are represented in Figs. 4 and 5.15

We observe that the proof in [15] is rather formal in the sense that, in the computation
of �σ , it ignores the term coming from B and the adjacent a, as this term produces a
tadpole. However, if g is unimodular, the Lie algebraic coefficient of this term vanishes.
In the general case, one has to introduce a suitable counterterm τ1 in the torsion to
compensate for it in (( σ ; τ )).

Our final comment is that it does not make much sense to spend efforts in making the
proof of the quantum descent equation more rigorous. In any case, the descent equation

14 It should be remarked that in the proof we never make use of the fact that the form wm−3 appearing
in the definition of η (see the end of Subsect. 4.3) is SO(m − 2)-invariant; what is needed is just that
wm−3 has the same parity of m under the action of the antipodal map x �→ −x. Hence the proposition
is still valid if, in the definition of η, we choose wm−3 to be any normalized top form with the required
parity under the antipodal map.

15 The Y-shaped vertex with no labels in the figures is the result of the contraction of an a with a B
determined by the BV bracket or the BV Laplacian.
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Fig. 5. The typical term in �σ or in (( σ ; τ ))

implies only formally that 〈 U0 〉 should be an invariant, where U0 denotes the piece
of U of degree 0 (hence, of ghost number 0). What one has to do instead is to take the
perturbative expression of 〈 U0 〉 and directly either prove that it produces invariants of
long knots or compute its failure (“anomaly” in the language of [3]) and understand how
to correct it. We will see examples of this in the next section.

6. Perturbative Invariants of Long Higher-Dimensional Knots

In this section we compute the first terms of the perturbative expansion of 〈 U0 〉 and
briefly discuss the expectation value of the product of U0 with a Wilson loop. First we
have, however, to describe the Feynman rules for BF theory. According to the action as
written in (4.1a), there is a superpropagator between a and B, which we will denote by
a solid line oriented from B to a, and a trivalent vertex as in Fig. 6 of weight

√
�.

In the covariant gauge, the superpropagator can easily be described as follows (see
[9] for details). Let us denote by πi , i = 1, 2, the projection from C2(R

m) onto the ith

component. Then

〈
π∗

1

(
Aa

)
π∗

2 (Bb)
〉
g.f. := θ δab ,

;

Fig. 6. The propagator and the interaction vertex
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where θ is the pullback of the normalized, SO(m)-invariant volume formwm−1 on Sm−1

via the map

ψ : C2(R
m) → Sm−1,

(x, y) �→ y − x

||y − x|| ,

with || || denoting the Euclidean norm.
In order to proceed with the discussion of the perturbative expansion, we have to

introduce some pieces of notation. Given f ∈ Imbσ , we denote by Cs,t (f ) the config-
uration space of s + t points on R

m, the first s of which are constrained to lie on the
image of f ; in other words,

Cs,t (f ) =




(x1, . . . , xs) ∈ (Rm−2)s

(ys+1, . . . , ys+t ) ∈ (Rm)t
∣
∣
∣
∣

xi 
= xj , 1 ≤ i < j ≤ s

yi 
= yj , s < i < j ≤ s + t

f (xi) 
= yj , 1 ≤ i ≤ s < j ≤ s + t





.

Observe that Cs,0(f ) = Cs(R
m−2) and C0,t (f ) = Ct(R

m). For i, j = 1, . . . , s, i 
= j ,
we have projections

πij : Cs,t (f ) → C2(R
m−2)

(x1, . . . , xs; y1, . . . , yt ) �→ (xi, xj ).

We will denote by ηij the pullback of η by πij . Moreover, for i, j = 1, . . . , s+ t , i 
= j ,
we have projections

�ij : Cs,t (f ) → C2(R
m)

(x1, . . . , xs; ys+1, . . . , ys+t ) �→






(f (xi), f (xj )) i, j ≤ s

(f (xi), yj ) i ≤ s < j

(yi, f (xj )) j ≤ s < i

(yi, yj ) i, j > s

.

(6.1)

We will then denote by θij the pullback of θ by �ij .
As for the convergence of the integrals appearing in the perturbative expansion, we

make the two following observations:

(1) There are certainly divergences when a superfield a is paired to a superfield B in the
same interaction term (“tadpoles”). The Lie algebra coefficient of tadpoles vanishes
if g is unimodular. In general tadpoles are removed by finite renormalization.

(2) The remaining terms are integrals over configuration spacesCs,t (f ). There exists a
compactificationCs,t [f ] of these spaces [3] such that the above projections are still
smooth maps. The integrals over the compactification then automatically converge
(but do not differ from the original ones as one has simply added a measure-zero
set).

For notational convenience in the following we will simply writeCs,t instead ofCs,t [f ].
In the organization of the perturbative expansion, it is quite convenient to make use

of the following combinatorial

Lemma 6.1. The order in � equals the degree in �.

Proof. Let us consider a Feynman diagram produced by sn snakes σn, tn n-gons τn and
v interaction vertices. We recall that σn is of degree n in a and of degree one in B and in
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1 2

Fig. 7. Order 1

�; τn is of degree n in a and contains no Bs or �s; each interaction vertex is of degree
two in a and of degree one in B and contains no�. Thus, the degree in� of the diagram
is

∑
sn. Moreover,

degree in a =
∑

nsn +
∑

ntn + 2v,

degree in B =
∑

sn + v.

By Wick’s theorem these degrees must be equal, so we get the identity
∑

(n− 1)sn +
∑

ntn + v = 0.

Recall now that the order in � of σn is (n+ 1)/2, whereas the order of τn is n/2. As the
order of each interaction vertex in 1/2, the total order of the diagram is

1

2

(∑
(n+ 1)sn +

∑
ntn + v

)
,

which by the previous identity is equal to
∑
sn. But this is also the degree in �. ��

6.1. Order 1. The only possible term at order 1 has the form �1 Tr(ad�) with

�1 =
∫

C2,0

θ12 η12. (6.2)

Observe that this term does not appear if g is unimodular. It is also possible to prove
(considering the involution (x1, x2) �→ (x2, x1) of C2,0) that �1 vanishes if m is odd.
The graphical representation of �1 is displayed in Fig. 7. (From now on we omit in
diagrams the black and white strip representing �. In Fig. 7 it would be attached to
vertex 1.)

In even dimensions, �1 furnishes a function on Imbσ which is a generalization of
the self-linking number for ordinary knots. This function is not an invariant. It can be
easily proved that, in computing the differential of �1, the only boundary contribution
corresponds to the collapse of the two points. One obtains then

d�1 = −p1∗(�∗wm−1 p
∗
3wm−3),

where

� : Imbσ ×R
m−2 × Sm−3 → Sm−1.

(f, x, v) �→ df (x)v

||df (x)v||
and pi denotes the projection to the ith factor.16

16 It may be observed that the expression for d�1 is well-defined also when f is just an immersion
(and not an imbedding). As a consequence, d�1 may be regarded as a 1-form on the space of immersions
of R

m−2 into R
m (that coincide with σ outside a compact set).
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6.2. Order 2. The contributions corresponding to connected diagrams may be written
as �2 Tr((ad�)2), where �2 is graphically represented in Fig. 8 (where white circles
denote vertices in R

m not constrained to lie on the image of the imbedding) and has the
following analytical expression:

�2 =
∫

C4,0

θ13θ24η12η23 + 1

2

∫

C4,0

θ13θ24η12η34 −
∫

C3,1

θ14θ24θ34η12. (6.3)

It is not difficult to prove that�2 vanishes if m is even (consider the involutions that
exchange point 1 with point 3 in the first term, point 1 with point 2 in the last term, and
the pair of points (1, 3) with the pair (2, 4) in the second term). In odd dimensions, �2
may be rewritten as

�2 = 1

8

∫

C4,0

θ13θ24η
2
1234 − 1

3

∫

C3,1

θ14θ24θ34η123,

where η1234 and η123 are the cyclic sums,

η1234 = η12 + η23 + η34 + η41, η123 = η12 + η23 + η31.

In this form it is clear that�2 is the long-knot version of the invariant of knots introduced
by Bott in [2].

Proposition 6.2. �2 is an invariant.

Proof. In the computation of d�2, the contributions of the principal faces of the three
terms cancel each other as can be easily verified. The vanishing of hidden faces may be
easily proved, see [15].17 ��

6.3. Order 3. Connected diagrams sum up to yield a term of the form�3 Tr((ad�)3)—
which clearly vanishes if the Lie algebra is unimodular—where �3 corresponds to the
sum of the eight Feynman diagrams displayed in Fig. 9. Its analytical expression is the
following:

�3 = 1

3

∫

C6,0

θ14θ26θ35η12η34η56 +
∫

C6,0

θ14θ26θ35η12η23η45

−
∫

C6,0

θ14θ26θ35η12η23η34 + 1

3

∫

C6,0

θ14θ25θ36η12η23η31

17 Observe that also in the Chern–Simons knot invariants it is easy to prove that hidden faces do not
contribute to diagrams of even order.
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Fig. 9. Order 3

+
∫

C5,1

θ16θ36θ56θ24η12η34 −
∫

C5,1

θ16θ36θ56θ24η12η23

−
∫

C4,2

θ16θ36θ56θ25θ45η12 + 1

3

∫

C3,3

θ14θ25θ36θ45θ46θ56. (6.4)

In [15] it is proved (by considering suitable involutions) that�3 vanishes ifm is odd.
In even dimensions,18 the differential of �3 is explicitly computed in [15] and it is

proved that the only boundary contribution that may survive in each term is the most
degenerate face, i.e., the one corresponding to the collapse of all vertices (and with some
more effort it is moreover proved that only the seventh term may yield a nonvanishing
contribution). To describe d�3, we first introduce the space Im,m−2 of linear injective
maps from R

m−2 into R
m. Next we consider the map

T : Imbσ ×R
m−2 → Im,m−2.

(f, x) �→ df (x)

Then we may write

d�3 = p1∗T ∗�̂3,

18 In this case �3 may also be written as

�3 = − 1

24

∫

C6,0

θ14θ25θ36η1245η1346η2356 − 1

6

∫

C5,1

θ16θ36θ56θ24η1234η2345

−1

4

∫

C4,2

θ16θ36θ56θ25θ45η1234 + 1

3

∫

C3,3

θ14θ25θ36θ45θ46θ56,

with ηijkl : = ηij − ηjk + ηkl − ηli , for any 4-tuple of distinct indices. In this form, �3 may easily be
reinterpreted as a function on the space of imbeddings of Sm−2 into R

m.
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where p1 is the projection onto the first factor and the “anomaly” �̂3 is an (m−1)-form
that can be explicitly described as follows. Given α ∈ Im,m−2, one defines the fol-
lowing action on Cs,t (α) of the group I = R

+∗ � R
m−2 of dilations and translations

of R
m−2:

xi �→ λxi, i = 1, . . . , s, yi �→ λyi, i = 1, . . . , t, λ ∈ R
+
∗ ,

xi �→ xi + a, i = 1, . . . , s, yi �→ yi + α(a), i = 1, . . . , t, a ∈ R
m−2.

One then defines Ĉs,t (α) as the quotient ofCs,t (α) by I . Denoting by Ĉm,m−2
s,t → Im,m−2

the fiber bundle with fiber Ĉs,t (α) over α, one may write �̂3 as a sum of integrals along
the fibers of Ĉm,m−2

s,t , where the integrand form is given by the same products of propa-
gators ηij and θij as before, with the only modification that�ij , see (6.1), is now defined
in terms of the linear map α (instead of f ), over which the fiber lies.

In general, we do not know if �3 is an invariant. We briefly describe however a
possible strategy to correct it.

Let Vm,m−2 be the Stiefel manifold (regarded as the space of linear isometries from
R
m−2 into R

m w.r.t. the Euclidean metrics). Observe that Vm,m−2 is equipped with a
left action of SO(m) and a free, right action of SO(m − 2). Let us denote by ι the
inclusion of Vm,m−2 into Im,m−2 and by r some deformation retract; viz., r is a map
from Im,m−2 to Vm,m−2 such that ι◦ r is homotopic to the identity (the existence of such
a retract may be proved, e.g., by Gram–Schmidt orthogonalization procedure). Let h be
a given homotopy, i.e., a map [0, 1] × Im,m−2 → Im,m−2 such that h(0, α) = α and
h(1, α) = ι(r(α)). Define

�̃3 = pr2∗h∗�̂3,

where pr2 denotes the projection onto the second factor. Given the explicit form of �̂3,
one can prove that it is closed. Thus, we obtain

d�̃3 = −�̂3 + r∗ι∗�̂3.

It is now possible to show that �3 := ι∗�̂3 is SO(m − 2) × SO(m)-invariant.19 If
m = 4, we can moreover prove that �3 is also SO(m − 2)-horizontal; hence it is the
pullback of an SO(4)-invariant 3-form on the Grassmannian Gr4,2. Since the only such
form is zero, it follows that in four dimensions �3 = 0 and we get the following

Proposition 6.3. �3 := �3 + p1∗T ∗�̃3 is an invariant of long 2-knots.

As far as we know, this invariant is new.
Observe that also for m > 4 one may define �3. It turns out from the previous

considerations that d�3 = p1∗T ∗r∗�3. Thus, though in general we cannot claim that
�3 is an invariant, we can compute its differential in terms of an invariant form on the
Stiefel manifold. This implies that, when d�3 does not vanish, we may use it to correct
the potential invariants coming from higher-orders in perturbation theory, as explained
in the next subsection.

19 Briefly, this is true since it is possible to extend the actions of SO(m) and SO(m − 2) on Vm,m−2

to the whole (restricted) bundle ι∗Ĉm,m−2
s,t → Vm,m−2 in such a way that the projection as well as the

maps to Sm−1 and Sm−3 used in the definitions of the propagators are all equivariant. Recall finally that
the volume forms wm−3 and wm−1 are invariant.
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6.4. Higher orders. Higher-order terms may be explicitly computed. In [15] some van-
ishing lemmata are proved which imply that only the most degenerate faces (i.e., when
all points collapse) contribute to the differential of the corresponding functions on Imbσ .
One can then prove that in odd dimensions also these contributions vanish. One then
obtains genuine invariants of long (m− 2)-knots with m odd.

In even dimensions, one may repeat the considerations of the previous subsection. In
particular, in four dimensions one may construct genuine invariants of long 2-knots. For
m > 4, this construction yields an infinite set of functions on Imbσ whose differentials
are pullbacks of SO(m − 2) × SO(m)-invariant (m − 1)-forms on Vm,m−2. Since the
space of such forms is finite dimensional [13], one may produce an infinite set of invar-
iants by taking suitable linear combinations. This is the higher-dimensional analogue of
the procedure used in [3] to kill the (possible) anomalies in the perturbative expansion
of Chern–Simons theory with covariant gauge fixing.20

6.5. Other observables. The new observable we have introduced in this paper is not the
only known observable for BF theories. For example, the usual Wilson loop

Wρ(γ )(A) = Tr(ρ(Hol(A, γ )),

where ρ is a representation of the Lie group G and γ an imbedding of S1, is an observ-
able; more generally, one also has the generalized Wilson loops introduced in [7, 9],
whose expectation values yield cohomology classes on the space of imbeddings of S1.

The expectation value of the usual Wilson loop is rather trivial (the dimension of the
representation space) since the degree in a cannot be matched by the degree in B. The
mixed expectation value of U0 and Wρ is more interesting. If γ does not intersect f ,
the product defines an observable, and one can show that

〈
U0(f )Wρ(γ )

〉 = 〈 U0(f ) 〉 Tr e−� lk(f,γ ) ρ∗(�), (6.5)

where ρ∗ is the induced representation of g and lk(f, γ ) is the linking number between
(the images of) f and γ . It can be written as

lk(f, γ ) =
∫

Rm−2×S1
ϕ∗θ12,

where

ϕ : R
m−2 × S1 → C2(R

m)

(x, t) �→ (f (x), γ (t)).

The result in (6.5) is tantamount to saying that the only connected diagram arising
from the nth order in Wρ expanded in powers of a is the one obtained by joining each
of these n as to a short snake σ0. This result is purely combinatorial after observing that
either joining the last a of a snake to the B of a σ0 or joining the two as of an interaction
vertex to the Bs of two σ0s yields a factor [� , � ] which clearly vanishes.

20 In this three-dimensional case, the anomaly is an SO(3)-invariant 2-form on the Stiefel manifold
V3,1, which may be identified with the 2-sphere. Since the space of such forms is 1-dimensional, a single
potential invariant—e.g., the self-linking number—is enough to correct all others.
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7. Final Comments

In this paper we have introduced a new observable for BF theories that is associated to
imbeddings of codimension two. We list here some possible follow-ups of our work.

7.1. Yang–Mills theory. In [4], Yang–Mills theory is regarded as a deformation, called
BFYM theory, ofBF theory with deformation parameter the coupling constant gYM. In
this setting O(A,B, f ) becomes an observable for the BFYM theory in the topological
limit gYM → 0. Moreover, in this limit the expectation value of this observable times a
Wilson loop is still given by (6.5). Thus, O might constitute the topological limit of a
dual ’t Hooft variable [18].

7.2. Nonabelian gerbes. Assume B to be a two form (in the context of BF theories, we
assume then that we are working in four dimensions). In the abelian case, the observable
(1.1) defines a connection for the gerbe defined by B [17]; in this case, it is interesting
to consider also the case when N has boundary. A suitable extension of our observable
O to this case would then be a candidate for a connection on a nonabelian gerbe.

7.3. Classical Hamiltonian viewpoint. For M of the form M0 × R, the reduced phase
space of BF theory is the space of pairs (A,B), with A a flat connection on M0 and B
a covariantly closed (m− 2)-form of the coadjoint type, modulo symmetries. The Pois-
son algebra generated by generalized Wilson loops is considered in [8] and, in the case
G = GLn it is proved to be related to the Chas–Sullivan string topology [11]. It would
be interesting to see which new structure one may obtain by considering the Poisson
algebra generated by generalized Wilson loops and, in addition, our new observables.

7.4. Cohomology classes of imbeddings of even codimension. In Sect. 6 we have de-
scribed how the perturbative expansion produces (potential) invariants of long knots. The
same formulae may be used to define forms on the space of imbeddings Imbsσ of R

m−2s

into R
m (with fixed linear behavior σ at infinity) with s > 1; up to hidden faces, these

forms are closed (they certainly are so for m odd). This way, we produce cohomology
classes on Imbsσ .

7.5. Graph cohomology. Generalizing [5], one can define a graph cohomology for
graphs with two types of vertices (corresponding to points on the imbedding and in
the ambient space) and two types of edges (corresponding to the two types of propaga-
tors) such that the “integration map” that associates to a graph the corresponding integral
over configuration spaces is a chain map up to hidden faces. The Feynman diagrams
discussed in this paper produce then nontrivial classes in this graph cohomology. We
plan to discuss all this in detail in [10].
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