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Abstract. External free convection boundary-layer flows are usually treated by neglecting the effect
of viscous dissipation. This assumption always results in a non-parallel flow, besides a strong parallel
component also a weak transversal component of the (steady) velocity field occurs. The present paper
shows, however, that the weak opposing effect of the buoyancy forces due to heat release by viscous
dissipation, can give rise along a cold vertical plate adjacent to a fluid saturated porous medium to a
strictly parallel steady free convection flow. This boundary-layer flow is described by an algebraically
decaying exact analytical solution of the basic balance equations.
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1. Introduction

In recent years much effort has been directed on the effect of viscous dissipation
in porous media. The familiar u2-model of this effect for Darcy flows (Ene and
Sanchez-Palencia, 1982; Bejan, 1995), as a counterpart of the (∂u/∂y)2)-model of
clear fluids, has been extended by Murthy and Singh (1997) to the case of non-
Darcy free convection flows. A paradox occurring in the approach of Murthy and
Singh (1997) has been resolved by Nield (2000). An attempt to extend the method
of Murthy and Singh (1997) to the case of mixed convection flows, was undertaken
recently by Tashtoush (2000) and Murthy (2001). The corresponding transform-
ation of energy equation in a pseudo-similar form, as well as the transferability
of the boundary condition T (x, y → ∞) = const. = T∞, which in the case of
a mixed convection contradicts the energy equation, were discussed by Magyari
et al. (2002a). The excess temperature due to heat release by viscous dissipation in
a quasi-parallel free convection flow over a hot vertical plate has been calculated
recently by Magyari and Keller (2002b).

The aim of the present paper is to further contribute to this open research field
by describing a surprising effect of viscous dissipation, namely, as summarized
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already in the title, its ability to give rise along a cold vertical plate to a strictly
parallel free convection boundary-layer flow.

2. Basic Equations and Solution

Following Nield and Bejan (1999), we write the mass, momentum and energy con-
servation equations (of a Darcy-Boussinesq free convection boundary-layer flow)
in the form:

ux + vy = 0, (1)

uy = −gβK

υ
Ty, (2)

uTx + vTy = αTyy + υ

Kcp

u2. (3)

Here x and y are the Cartesian coordinates along and normal to the plate, respect-
ively, u and v are the velocity components along x and y axes, T is the fluid
temperature, K is the permeability of the porous medium, g is the acceleration
due to gravity, cp is the specific heat at constant pressure, α, β and υ = µ/ρ

are the effective thermal diffusivity, thermal expansion coefficient and kinematic
viscosity, respectively, and the subscripts x and y indicate partial derivatives. The
positive x-axis, with its origin on the leading edge, points vertically downwards
in the direction of g. The second term on the right-hand side of Equation (3) is
proportional to the volumetric heat generation rate q ′′′ ≡ µu2/K by viscous dis-
sipation. The aim of the present paper is to examine the possibility of a parallel free
convection boundary-layer flow over a vertical flat plate of constant temperature Tw
when the effect of viscous dissipation is taken into account. The plate is assumed
to be ‘cold’, that is, Tw < T∞, where T∞ denotes the ambient temperature of the
fluid. The minus sign on the right-hand side of Equation (2), as well as the choice
of the coordinate system are correlated with this assumption. Under ‘parallel’ we
mean (as usual) a plane boundary-layer flow with identically vanishing transversal
velocity, that is,

(u, v) = (u, 0). (4)

Hence, our boundary conditions accompanying Equations (1)–(3) read:

On y = 0 : T = Tw, (5a)

As y → ∞: u = 0, T = T∞ > Tw. (5b)

Equation (2) and the boundary condition (5b) imply immediately:

u = gβK

υ
(T∞ − T ). (6)
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As a consequence of assumption (4), all the physical quantities will depend only
on the coordinate y. Thus, having in mind (3) and (6), the problem reduces to solve
equation

d2

dy2

(
T∞ − T

T∞ − Tw

)
= RaGe

L2

(
T∞ − T

T∞ − Tw

)2

(7)

along with the boundary conditions (5). In Equation (7), L denotes a reference
length and the Rayleigh and Gebhart numbers have been defined as follows:

Ra = gβK|Tw − T∞|L
υα

, Ge = gβL

cp

. (8)

The effect of viscous dissipation is controlled by the Gebhart number. For Ge = 0,
Equation (7) does not admit solutions satisfying all the boundary conditions (5).
Thus, we recover the well-known result that in the absence of viscous dissipation
no parallel boundary-layer solution exists. If, however, Ge 
= 0, the problem admits
the exact solution:

T (y) = T∞ − T∞ − Tw

(1 + √
(RaGe/6)(y/L))2

,

u(y) = α

L

Ra

(1 + √
(RaGe/6)(y/L))2

. (9a, b)

The corresponding wall heat flux and Nusselt number are given by:

qw = −λ
∂T

∂y

∣∣∣∣
y=0

= λ(T∞ − Tw)

L
Nu, Nu = −

√
2RaGe

3
. (10)

Both the temperature and velocity profiles (9) are quadratically decreasing func-
tions of the distance y from the plate. The Nusselt number depends only on the
product of the Rayleigh and Gebhart numbers and it is negative. Therefore, in full
agreement with physical expectation, heat is transferred in this case everywhere
from the fluid to the surface. With increasing value of the Gebhart number, the
amount of heat transferred increases as Ge1/2.

3. Discussion and Conclusions

The main result of the present paper (as already summarized in its title) is the pre-
diction that owing to viscous dissipation, in certain free convection boundary-layer
flows a ‘selfparallelization’ effect of the velocity field can occur. The necessary
condition of this phenomenon is that the buoyancy forces induced by viscous dis-
sipation are opposing to the ‘main’ buoyancy forces sustained by the wall temper-
ature gradient. Having in mind that the former forces always are directed vertically
upwards, the parallel flow described in this paper is only possible along a cold
plate, that is, as a descending free convection flow. Along a hot vertical plate, the
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heat release by viscous dissipation does assist the ascending flow induced by the
wall temperature gradient, amplifying both of its parallel and transversal velocity
components. Thus, in the latter case no self-parallelization of the velocity field is
possible.

We may conclude, therefore, that, although the buoyancy forces induced by heat
release by viscous dissipation in general are much too weak to exert a substantial
influence on the strong parallel component, they can throughout be able to prevent
the occurrence of a weak transversal velocity component of a descending free
convection boundary layer flow.
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