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ABSTRACT 

We prove a resul t  on l inear equa t ions  over mul t ip l ica t ive  groups  in pos- 

itive character is t ic .  T h i s  is applied to set t le  a conjecture  abou t  h igher  

order  mix ing  proper t ies  of algebraic Zd-act ions .  

1. I n t r o d u c t i o n  

The main purpose of the present article is to prove a result about equations over 

multiplicative groups in positive characteristic. This is a version of Conjecture 

2.12 (p. 550) in some notes [$2] of Klaus Schmidt, who intended to provide a 

substitute for the classical result in zero characteristic. As observed there, the 

combination of both results suffices to solve Problem 2.11 (p. 550) on mixing 

properties of algebraic Zd-actions. 

We begin by stating our result. Let G be a multiplicative abelian group. For 

a positive integer n we are interested in subsets of the Cartesian product G n, 

and we say that  such a subset E is broad if 

(i) E is infinite, 

(ii) for each g in G and each i (1 < i < n) there are at most finitely many 

( x l , . . . , x n )  in E with xi = g, 

(iii) if n _> 2, then for each g in G and each i, j (1 _< i < j _< n) there are at 

most finitely many ( x l , . . . ,  Xn) in E with x i / x j  = g. 
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THEOREM: Let K be a field of  positive characteristic, and let G be a finitely 

generated subgroup of the set of  non-zero elements of K .  Suppose that there 

are al , . . . , an in K such that the equation 

(1) alX1 + . . .  + anXn = 1 

has a broad set of  solutions (X1, . . . ,  Xn)  = ( X l , . . . ,  Xn) in G n. Then there are 

b l , . . . , b n  in K and gl , . . . , gn  in G, with 

(2) g i r  ( l < i < n ) ,  

and i f  n > 2 

(3) g J g j # l  ( l < i < j _ < n ) ,  

such that the equation 

(4) blgkl +""-[ -  bngkn : 1 

has infinitely many  solutions in positive integers k. 

In view of the strong hypothesis on (1), the conclusions (2), (3) and (4) 

may seem disappointingly weak, but we have deliberately chosen a formulation 
minimal for applications. As mentioned above, this suffices to solve Problem 

2.11 of [$2], which we therefore state more affirmatively as 

COROLLARY: For a positive integer d let a be an algebraic Zd-action on a 

compact abelian group, and let r k 2 be an integer. I f  every subset S in Z d of  

cardinality r is a-mixing, then a is r-mixing. 

We sketch here how the Theorem implies the Corollary, using Schmidt's book 

[$1] as a basic reference. Write ~ for the Laurent ring 

Z[ul , . . . ,  Ud, 1 / u l , . . . ,  1/Ud] 

in d variables. As in Lemma 5.1 of [S1] (p. 36), the action a corresponds to a 

TO-module M.  By Theorem 27.2 of [$1] (p. 264) the mixing properties of a are 

determined by the mixing properties of the actions a n /p  corresponding to the 

prime ideals P of Tr associated with M.  Thus it suffices to prove the Corollary 

for a = a ~ / p .  

Let K be the quotient field of 7~/P, with group 14" of non-zero elements, and 

let G be the subgroup of K* generated by u l , . . . ,  Ud. For n = (n l , . . . ,  rid) in Z d 

write for brevity u(n) = u~ 1 . .. Udn'~" If a is not r-mixing as in the Corollary then 
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there exist a l , . . . ,  ar in K,  not all zero, together with a sequence (n~e),. . . ,  n (e)) 

(2 = 1, 2 , . . . )  in (zd) r such that  

(5) nl e ) - n ~  ~) -~ec  ( l < i < j _ < r )  

and 

(6) alu(n~ e)) + . . .  + aru(n~ t)) = 0 

blu(kml) + . . .  + bnu(kmn) = 1 

for infinitely many positive integers k. But this implies - -  see, for example, 

equation (27.5) of IS1] (p. 263) - -  that  the set S = { m l , . . . ,  mn, 0} is not a- 

mixing, again contradicting the hypothesis of the Corollary. Note that  (2) and 

for every ~ > 1. See, for example, equation (27.4) of [S1] (p. 263). 

There are now two cases. If 7) meets Z only trivially then K has zero charac- 

teristic. In this case (6) can be handled using a deep result due to Evertse, van 

der Poorten and Schlickewei as in [SW]. For example, these arguments establish 

Theorem 27.3 of IS1] (p. 265) and it follows that  a is not mixing; i.e. not 2- 

mixing. Then Theorem 6.5 of IS1] (p. 47) shows that  G is not torsion-free. Now 

an equation u(n) = 1 for n ~ 0 = (0 , . . . ,  0) implies u(kn) = 1 for every k _> 1, 

providing a set $2 = {n, 0} which is not a-mixing. Thus any S of cardinality 

r ___ 2 containing $2 is also not a-mixing, in contradiction to the hypothesis of 

the Corollary. 

The remaining case is when 7 ) meets Z non-trivially. Now K has positive 

characteristic and so the result of Evertse, van der Poorten and Schlickewei does 

not apply. And as far as I know there is no direct analogue in the literature 

for positive characteristic except in Voloch's recent paper IV2], which gives a 

lot of information about (1) for n = 2. See also Lemma 10 of Mason's book 

[Maso] (p. 97). Such an analogue would be complicated by the existence of the 

Frobenius operation, which can lead very easily to an infinite set of solutions. 

Anyway, if r _> 3 then (6) can be rewritten in the form (1) with n = r - 1 > 2. 

We could even assume aT. = -1 .  If G is not torsion-free we can argue as above 

in zero characteristic to get a contradiction. If G is torsion-free (so in particular 

infinite) the condition (5) implies that  the solution set of all 

(u(n~ e)-n~e)) , . . . ,u(n!e_ )]-n~e)))  (e = l, 2, . . .) 

is broad. Now the Theorem leads to b l , . . .  ,bn in K and gl = u ( m l ) , . . .  ,9n 

= u(mn) in G satisfying (4) or 
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(3) show that  S has cardinality exactly n + 1 = r. This completes our sketch of 

how the Theorem implies the Corollary. 

Sections 2, 3 and 4 of this paper are devoted to a proof of our Theorem. In 

Section 2 we record some preliminary observations about pth powers in charac- 

teristic p, which we apply in Section 3 to questions of linear dependence over the 

field of such pth powers. The main argument is in Section 4. Then in Section 5 

we sketch how our methods lead to an alternative proof of Theorem 28.1 of IS1] 

(p. 269), which also has applications to mixing problems; further, we comment 

on some possible directions for future research. 

ACKNOWLEDGEMENT: I am indebted to the Erwin Schr6dinger Institute for 

Mathematical Physics in Vienna, where the work for this article was done, for 

friendly and unbureaucratic hospitality. The work would not have been done at 

all without the continuous encouragement of Klaus Schmidt. In addition I thank 

him, as well as Hans Peter Schlickewei, for several conversations about mixing 

and linear equations. And after my return to Basel, Manfred Einsiedler and 

Thomas Ward were kind enough to send me their preprint [EW] from which I 

learned about Voloch's paper [V2]. In [EW] they develop some Newton polygon 

techniques and prove among other things the Corollary when d = 2 and r = 3. 

2. On  p th  powers  in cha rac te r i s t i c  p 

Let p be a rational prime, and write F = Fp for the field with p elements. We 

need two preliminary results. 

LEMMA 1: Suppose K is finitely generated over F. Then there is a height 

function h from K* to {0, 1 ,2 , . . .}  with the following properties: 

(i) h(xy) < h(x) + h(y), 
(ii) h(x p) = ph(x), 

(iii) for any real H, there are at most finitely many x in K* with h(x) <_ H. 

Proof: If Fq is the algebraic closure of F in K,  we can write K as the function 

field Fq (V) of some absolutely irreducible projective variety V defined over Fq. 

By Theorem 3 of ILl] (p. 131) we can assume that  V is normal. Thus by 

Theorem 3 of [Sh] (p. 111) it is non-singular in codimension 1. Now x in K 

gives rise to ~ = (1,x) in P I (K) ,  and the height H(~) can be defined using 

valuations associated with subvarieties W of codimension 1 as in [L2] (p. 62), 

with choice of constant c = exp(-1).  Defining h(x) = log H(~), we find that  

(7) h(x) = E max{0, - ordw x} deg W 
W 
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summed over all W, of degree deg W, defined over Fq. Thus h(x) is a non- 

negative rational integer. Now properties (i) and (ii) are easy; see [L2] (p. 51). 

A simple example would be K = F(t )  for a transcendental t over F; then 

V = P1 and one finds for x = A ( t ) / B ( t )  that  h(x) = max{degA, degB} if the 

polynomials A, B in F[t] are coprime. 

Property (iii) is a bit subtler and depends on the finiteness of the ground field 

F; for example, that  the number of polynomials in F[t] with bounded degree 

is finite. Generally it follows from (7); the fact that  there are at most finitely 

many W over Fq with bounded degree can be proved using Chow forms. See, 

for example, [Sh] (pp. 66-68) for the theory over algebraically closed fields. In 

fact the Chow form q~w of W can be normalized to lie over Fq. It involves a 

bounded number of variables and has bounded degree; thus there are at most 

finitely many possibilities for q~w. But Ow determines W. Therefore, if h(x) 

is bounded there are at most finitely many possibilities for the poles W with 

ordw x < 0 and then for the ordw x themselves. By considering 1/x  we get 

similar information about the zeros. Finally, according to Proposition 4 of ILl] 

(p. 157) the poles and zeros with multiplicities determine x up to a multiple in 

Fq. 

This completes the proof of the present lemma. Note that  it would become 

false without the hypothesis of finite generation. For example, with 

(8) K = F(t ,  t', t " , . . . )  

and t = t rp = t "p2 . . . .  we could deduce from (ii) 

h(t) = ph(t ')  = p2h(t") . . . .  . 

As h takes only integer values it follows that  

0 = h(t) = h(t') = h(t") . . . .  

contradicting (iii). 

The height function of Lemma 1 will be used only to prove the next lemma. 

If G is a subgroup of K*, we write ~ for its radical in K,  the group of all x 

in K for which there is a positive integer s with x s in G. 

LEMMA 2: Suppose K is finitely generated over F,  and let G be a finitely 

generated subgroup of K*. I f  a in K* is such that there exists an infinite 

sequence a', a ' , . . ,  in K* with arP/a, a"; /a ' ,  . .. in G, then a lies in vrG. 

Proof'. We use the fundamental fact, not for the last time, that  G modulo its 

subgroup G [p] of pth powers gP (g in G) is finite. This enables us to assume 
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that  the dP/a, a"P/d , . . ,  all lie in a fixed finite set. Namely, let 9 r in G be a 

finite set of representatives for the cosets of G [p] in G, and define bo = a. Now 

a'P/a = a'P/bo has the form flg~ for f l  in ~ and gl in G. Define bl = a'/gl," 
then b p = flbo. Next a"P/b~ = gla"P/a ' still lies in G, so has the form f2g p for 

f2 in ~ and g2 in G. Then b p = f2bl for b2 = a"/g2. And so on. We end up 

with bo, bl, b2,.. ,  in K* satisfying 

(9) = = biP+l fi+lbi (i 0,1 ,2 , . . . ) .  

We now prove that  the heights hi = h(bi) are bounded independently of i. 

For (9) and Lemma l(i),(ii) yield 

phi+l <_r ( i = 0 , 1 , 2 , . . . )  

with r = maxfc7  h(f).  It follows by induction that  

hi <_ H = max{ho, O / ( p -  1)} (i = 0 ,1 ,2 , . . . )  

(compare [L2] p. 67). For clearly ho _< H, and if hi _< H then 

hi+l <__ r  + hi/p < r  + Hip  <_ H 

because H >_ r  1). 

So indeed h(bo),h(bl),h(b2),..,  are bounded. By Lemma l(iii) the set 

{bo,bl,b2,.. .} must be finite. So there are i , j  with 0 _< i < j and bi = bj. 
From (9), bP+l/bi is in G and forward iteration shows that  bqj/bi is in G for 

q = pj-1 > 1. Thus b q-1 is in G and bi is in v ~ .  Now backward iteration from 

(9) shows that  b0 = a is in v ~ .  This completes the proof of the present lemma. 
| 

The lemma can also be deduced quickly from Lemma 3 of [V2] (p. 197). The 

proof given in IV2] is based on the fact that certain relative unit groups are 

finitely generated. 

Klaus Schmidt has shown me another proof of Lemma 3 of IV2] using standard 

facts about Pontryagin duality. 

We have kept our own heights proof with a view to quantitative refinements 

(see the discussion in Section 5). For example, given a in K* not in v ~ ,  it is 

possible to determine an upper bound for the length I of any finite sequence 

a r, a ' , . . ,  in Lemma 2. Refining the present argument would need estimates for 

the cardinalities in property (iii) above. But by using the Box Principle as, for 

example, in [Mass] (pp. 192-193) one can prove that  pI < (h(a)+h) e+l, where h 
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is the sum of the heights over any maximal set of ~ multiplicatively independent 

elements of G. With the help of the Geometry of Numbers this can be improved 

to p~ <_ (6 + 1)e+lh(a)H for the product H of these heights. 

As with the previous lemma, Lemma 2 also becomes false if K is not finitely 

generated over F; for example, a = t, a' = t', a" = t " , . . ,  in (8), with trivial G. 

A similar application of heights is to prove that  v/G itself is finitely generated. 

Thus the arguments of [L2] (pp. 128, 206) yield a positive integer s such that  

x s lies in G for every x in x/~. ~ o m  this the finite generation is immediate. 

One can take s _< (q - 1)h ~ or even s _< ge(q _ 1)H as above. 

3. L i ne a r  d e p e n d e n c e  over  t h e  field of  p th  powers  

Given a field K of characteristic p, we write C = K[p] for the subfield consisting 

of all pth powers x p (x in K). The main tool in the proof of our Theorem is the 

following result. 

LEMMA 3: Suppose K is finitely generated over F, let G be a finitely generated 

subgroup of K*, and let m ~_ 2 be an integer. Then there is a finite set ~ in K,  

depending only on K, G and m, with the following property. I f  c l , . . . ,  cm in C 

and Yl , . . . ,  Ym in G satisfy 

(10) e l Y 1  + " ' "  + C m Y m  : 1, 

then either 

(a) c l y l , . . . , c m y m  lie in jr, 

o r  

(b) Yl , . . - ,  Ym are linearly dependent over C. 

Proof: Equations like (10), at least with cl . . . . .  Cm = 1, are familiar in the 

context of function fields in one variable - -  see especially [Maso], [V2] for the 

case m -- 2 and IV1], [BM] for the general case in zero characteristic. There 

they are handled by means of logarithmic differentiation. In several variables it 

is known that  logarithmic partial differentiation is appropriate, at least in zero 

characteristic - -  see, for example, [SS] for C ( t l , . . . , t e )  and IN] for algebraic 

extensions of this. Here we treat algebraic extensions of F p ( t l , . . .  ,te) with a 

result that  is independent of the pth power coefficients Cl,.. �9 c,~. 

By Theorem 1 of [L1] (p. 53) our field K is separably generated over F = 

Fp. If K is algebraic over F,  the result holds trivially with 9 r = K in (a). 

Thus we can assume that  there is e > 1 together with t l , . . . ,  te algebraically 
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independent over F such that  K is separably algebraic over K0 = F ( t l , . . . ,  te). 
By Proposition 2 of [L1] (p. 186) the vector space of derivations of K over F 

has dimension e over K and indeed we can take 

(11) O/Ot l , . . . ,  O/Ore 

as basis elements. We can compose these to construct higher order differential 

operators. I cannot find an explicit reference for the fact that  these commute; 

but this is certainly well-known on K0. So the Lie bracket of any two of (11), 

which is also a derivation, vanishes on K0. Thus by Theorem 2 of [L1] (p. 185) 

it vanishes on the separable extension K,  and this is the desired commutativity. 

Therefore every composition of (11) has the shape 

(12) D ~- (O/Otl) i l . . .  (O/Ote) i', 

with non-negative integers i l , . . . , i e .  These integers might not be uniquely 

determined by D; for example, (O/Oh) p = (O/Otl) p+I (= 0) but at any rate we 

can define 79(i) as the set of operators (12) with il + "'" + ie < i. 

Choose any operators Di in ~D(i) (1 < i < m) and apply these to (10). Because 

all derivations vanish on C, we obtain 

m 

E(Diy j / y j ) c j y j  -- Di l  (1 < i < m). 
j = l  

This can be regarded as a system of linear equations in the cjyj (1 _< j _< m). 

If the associated determinant A = det(Diyj/yj) is non-zero, then we can solve 

for the cjyj (1 _< j _< m) as fixed rational functions of the Diyj/yj (1 _< i, 

j <_ rn). We claim that  these latter expressions lie in a fixed set independent of 

Yl , . . . ,  Ym in G. As mentioned above, GIG [p] is finite, and so each y in G has 

the form fc  for f in a finite set and c in G [p] C C. Therefore Dy/y  = D f / f  
lies in a finite set as claimed. Thus if A r 0 for some choice of D 1 , . . . ,  Dm we 

obtain the conclusion (a) of the present lemma. 

If, on the other hand, A = 0 for all choices of D1 , . . . ,  D,~ then all generalized 

Wronskians Yl""YmA = det(Diyj) vanish. This implies that  Yl, . . . ,Ym are 

linearly dependent over the field of differential constants of K with respect to 

(11). Strangely enough the only characteristic-free reference I can find for this 

is Proposition 6.1 of [L2] (p. 174); it is here that  the above commutativity is 

important. Finally, by Proposition 1 of [L1] (p. 185) we know that  C is this 

constant field. So we obtain the conclusion (b); and this completes the proof of 

the present lemma. | 
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The generalized Wronskians could be avoided as in [V2] by using a result of 

Baer to the effect that there is a single derivation c3 whose field of constants is 

C. 

From this result we see that C-dependence plays a key role, just as in, [KS] 

(p. 708). The next lemma helps to fix the coefficients in a C-dependence relation, 

provided the relation is essentially unique. 

LEMMA 4: Suppose K is finitely generated over F, let G be a finitely gen- 

erated subgroup of K*, and let m > 2 be an integer. Then there is a finite 

set ~ in K ,  depending only on K, G and m, with the following property. I f  

Zo, Z l , . . . ,  Zm in G are linearly dependent over C but z l , . . . ,  Zm are not, then 

there is a relation 

(13) C I Z 1  -[- . . . -1- Cruz m -~ Z 0 

with c l , . . . ,  c,~ in C and ClZl/ZO,... ,  c,~zm/zo in .P. 

Proof: There is certainly a relation (13) with c1, . . .  ,Cm in C, and we apply 

Lemma 3 with yj = zj /zo (1 < j <_ m). As Zl , . . .  ,zm are linearly independent 

over C, conclusion (b) cannot hold. Now conclusion (a) is just  what we need, 

and this completes the proof of the present lemma. | 

4. P r o o f  of  T h e o r e m  

Suppose K is finitely generated over F,  and let G be a finitely generated sub- 

group of K*. We recall the notion of a broad subset of G n, and for future 

convenience we list the following easily verified properties: 

(p) any non-trivial coordinate projection of a broad set is broad, 

(q) as ( x l , . . . ,  xn) runs through a broad set, so does ( l /x1,  X 2 / X l , . . . ,  X n / X l ) ,  

(r) if the powers (xlP,..., x p) of a set E of elements ( x l , . . . ,  xn) form a broad 

set, then E is broad, 

(s) any infinite subset of a broad set is broad, 

(t) if ( g l , . . . ,  gn) in G n and ( x l , . . . ,  x~) runs through a broad set, then the 

translated elements ( g l x l , . . . ,  gnXn) run through a broad set. 

We start with the following result, which prepares the way for a proof by 

induction on n. 

LEMMA 5: For n >>_ 2 suppose there are a l , . . . ,  an in K* such that the equation 

(14) alX1 + . . .  + anXn = 1 
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has a broad set of  solutions in G n. Then either 

(aa) there is m with 1 <_ m < n together with b l , . . . ,  bm in K such tha t  the 

equation 

(15) blX1 + . . .  + bmXm = 1 

has a broad set of  solutions in G m, 

or  
ip 

' ' in K* such that a j / a y  (1 <_ j <_ n) axein  G and the (bb) there are a 1 . . . .  , a n 

equation 

(16) a'lXl + " "  + a 'Xn  = 1 

has a broad set of  solutions in G n. 

Proof: Let E be the broad  set of solutions of (14). For a = ( X l , . . . ,  Xn) 

in E write r(a) for the dimension over C of the vector space generated by 

a l x l , . . .  ,anXn over C. Then  1 < r(a) <_ n. By proper ty  (s), there is an integer 

r with 1 < r < n such tha t  r(a) = r for all a in some broad  subset of  E. Making 

E smaller if necessary, we can assume tha t  r(a) = r for all a in E itself. 

First  we claim tha t  the case r = n is impossible. To see this apply L e m m a  3 to 

(14) with ( X 1 , . . .  , X n )  = o'. We take m = n and cl . . . . .  Cm = 1 in L e m m a  

3; this means tha t  we have to  enlarge G to contain a l , .  �9 an. The  conclusion 

(a) says tha t  n i x 1 , . . . ,  anXn lie in a finite set independent  of a = ( x l , . . . ,  xn). 

So outside this set conclusion (b) holds, and this means r 7~ n as claimed. 

If  n = 2 then only the case r = 1 is left, and we will see later on tha t  this 

leads to conclusion (bb) of  the present lemma. Otherwise,  we consider now the 

cases 2 < r < n - 1. These will lead to conclusion (aa) with m = n - r + 1 < n. 

By means of a pe rmuta t ion  we m a y  assume tha t  zl = a l X l , . . . ,  Zr = arXr 

are linearly independent  over C. Take any k with r + 1 < k < n; then we can 

apply L e m m a  4 with m = r and zo = akxk, G being enlarged as above. We find 

relations 

(17) ~ Ckjajx j ~- akX k (r + 1 < k < n) 
j = l  

w i t h  Ckj in C and the quotients  

(18) fk j  =ck jayXj /akXk  ( l < j _ < r ,  r - t - l < k < n )  
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lying in a fixed set independent of a. We use (17) to eliminate the akXk 

(r + 1 < k < n) in (14) with ( X 1 , . . . , X n )  = a. We find 

(19) C l a l X l  �9 �9 �9 �9 -b C r a r X r  ---- 1 

with 

(20) cj = l + ~ ckj ( l<j_<r) 
k = r + l  

also in C. 

Next apply Lemma 3 with m = r to (19) and yj -~ ajxj (1 _~ j < r) also in 

the enlarged G. Now conclusion (b) is impossible. It follows that  the 

(21) f j = c j a j x y  ( l _ < j _ < r )  

also lie in a finite set independent of a. 

So in (18) certain quotients Xj/Xk a r e  fixed modulo C whereas in (21) certain 

xj themselves are fixed modulo C. This is enough to get an equation (15) with 

many solutions. Namely, we substitute (20) into (21) and use (18) to get 

n 

f j = a j x j +  E fkjakxk ( l _ < j _ < r ) .  
k = r + l  

We need just one of these relations, say with j = 1; then dividing by alXl gives 

an equation 

n 

(22) ( f l /a l )X1 - ~ (fklak/al)Xk-~+l = 1 
k = r + l  

with solutions 

( X l ,  X 2 ,  . . . , X n - r + l )  : ( l / x 1 ,  x~+l/xl,..., X n / X l  ) 

in G n-r+l. By properties (p) and (q) these solutions make up a broad set. 

Now there are only finitely many equations (22), and so by property (s) at 

least one of these also has a broad set of solutions in G n-~+l. This we take as 

(15), leading to conclusion (aa) with m = n - r + 1 as promised. 

Finally, we examine the case r = 1. Now a lx l , . . .  ,anXn generate a one- 

dimensional space over C. By (14) with (X1 , . . . ,  Xn) = a this space contains 1 

and so must be C itself. Thus a lx l , . . .  ,anXn themselves lie in C. By property 
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(s) we can assume that  all the a lie in a fixed coset of (G[P]) n in G n. Let 

a0 = (x l0 , . . .  ,Xn0) be one of these; then 

ajXjo = alf ( l _ < j _ < n )  

! I p  
for some aj in K* (1 _< j <_ n). In particular each aj /a j  lies in G (1 _< j _< n), 

which is part  of conclusion (bb) also as promised. 

To check the rest, take any other solution a = ( x t , . . .  ,Xn) of (14); then 

ip t p t p  
(23)  a xj = a t (x j /x jo )  = "5 +J (1 < j < n) 

for x~ also in G (1 _< j < n), by the eoset assumption above. Thus the equation 
X t (16) has solutions ( X 1 , . . . , X n )  = a '  = (x~ , . . . ,  n) for each a. As a runs 

through our broad set, it follows from (23) and properties (r), (t) that  a '  also 

runs through a broad set. This gives conclusion (bb) and completes the proof 

of the present lemma. | 

We can now prove the Theorem. Clearly we may assume that  K is finitely 

generated over F.  We use induction on n, the case n = 1 being without content. 

So we assume it is proved for equations like (1) with fewer than n _> 2 terms on 

the left-hand side, and we proceed to deal with (1) itself. In particular we can 

suppose a l , .  �9 an in K*. 

We apply Lemma 5. The conclusion (aa) leads by induction to b l , . . . ,  bm in K 

and g l , . . . ,  gm in G satisfying the analogues of (2), (3) and (4). So (2), (3) and 

(4) themselves follow on defining bm+l . . . . .  b~ = 0 with suitable g+~+l, �9 �9 �9 gn 
(note that  G must be infinite, otherwise G n could not have any broad subset at 

all). 

So we can suppose that  conclusion (bb) holds. Now Lemma 5 may be applied 

to (16) instead of (14). The conclusion (aa) leads to the inductive situation; 
I I  l i p  I I and the conclusion (bb) leads to aj in K* with aj /aj in G (1 _< j < n) and a 

new equation in n variables. 

Now we can simply keep on going. If we never fall back to the inductive 

situation, then we obtain infinite sequences as in Lemma 2. There may appear 

to be "one infinity too much" here, but any use of the Axiom of Choice can 

be avoided with the finite version of Lemma 2 mentioned earlier. Anyway, we 

deduce that  a l , . . . , a n  all lie in the radical v/G. This sort of conclusion for 

n = 2 also occurs in [EW], where it comes from [V2]. 

Let s be a positive integer such that  x s lies in G for every x in v ~ .  Then for 

each solution a = (Xl , . . . ,  xn) of (1) the point 

8 8 8 $ 
= = (axxl,...,anx ) 
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lies in G n, and it is easy to see that  we can choose a in our broad set such that  

7 = ( g l , . . . ,  gn) satisfies the conditions (2) and (3). Of course we could secure 

much more than this. 

Now there is a congruence class (mod s) containing infinitely many powers q 

of p; that  is, there is r such that  q = r (mod s) for these q. Writing q = ks  + r 

we deduce from (1) 

1 q q.-~- q q b l g k l  + k . . . .  a l x  1 q- a n X n  = " " " + b n g n  

with bj = ( a j x j )  r (1 _< j < n); and this is none other than the desired equation 

(4). Therefore our Theorem is proved. | 

5. A d d i t i o n a l  r e m a r k s  

The last congruence trick was used in [KS] (p. 710) in the proof of Theorem 2.1 

(p. 707), which is also Theorem 28.1 of [S1] (p. 269). However, we can use the 

techniques of the present paper to give a new proof of this result. We content 

ourselves here with a sketch that  (1) of Theorem 2.1 implies (2) of Theorem 2.1. 

Suppose x0 , . . .  ,xT~ in K* are such that  

(24) aox o + . . .  + = 0 

for some a o , . . . , a n  in K,  not all zero, and infinitely many positive integers 

k. We can suppose ao ~ 0 then a0 = - 1 ,  and dividing by x0 k gives an 

equation (14) with infinitely many solutions in G ~, where G is generated by 

gl = X l / X o , . . . ,  gn = x n / x o .  But in fact the solutions are diagonally situated in 

the subgroup generated by (gl,- - �9 gn).  The arguments of Lemma 5 respect this 

situation. They yield as in (aa) a shorter equation to which induction can be 
ip 

, ' in K* with aj / a j  in G and a applied, or as in (bb) new coefficients a l , . . .  , a n 

new equation having similar properties. In fact these quotients lie in the group 

r ,p for an integer r G j  generated by gj ,  and we can even ensure that  aj  = g j a j  

with 0 <_ r < p independent of j .  

Now iteration of (bb) leads to equations 

aj  ~r(i)l~(i)~q(i) (i 1,2, .) : y j  ~t~j / " :  . .  

_(i) in K*. By the height arguments for r( i )  in Z with 0 _< r( i )  < q(i)  = pi and tej 

used in the proof of Lemma 2 there are at most finitely many possibilities for 

the vectors a( i )  = (a~0, . . . ,  a(~ )) (i = 1, 2 , . . . ) .  Now a(i)  = a ( i ' )  for i ~ i' leads 

to equations 
s _  z ( l < j < n )  aj  - gj  _ _ 
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for s > 1 and e in Z independent of j .  These equations would also come directly 

from a suitable analogue of Lemma 2 for G n instead of G. 

Now take yj  = x~/s in the algebraic closure /~*. We can choose k in (24) 

_ re.gk~S = (y j /yo) tS .  Thus ajg]  = )~j (y j /yo)  t such that  t = k s + g  > 1, and then ~ j j j  

for roots of unity ,~j in Fp. Now the equation (24) implies that  y t , . . .  ,yt n are 

linearly dependent over ~'p as desired in (2) of Theorem 2.1. This completes the 

sketch of the proof. | 

As mentioned in the Introduction, much more can be said about the solutions 

of 

(25) a l X 1  + . . .  + a n X n  -= 1 

in zero characteristic. Namely, it was proved by Evertse [E] and van der Poorten 

and Schlickewei [PS] that  if a l , . . . ,  a~ are non-zero then (25) has at most finitely 

many "non-degenerate" solutions (X1, . . .  ,X,~) = ( x l , . . . , x n )  in any G~; this 

means that  no proper subsum of a l x l , . . . , a n X n  vanishes. Such a result is 

certainly false in positive characteristic p; for example, the equation 

(26) X + Y = 1 

in the group G generated by t and 1 - t in Fp(t)* has the solutions (t q, (1 - t) q) 

for all powers q of p. In other words, the existence of Frobenius leads to infinitely 

many solutions. If n = 2 a Structure Theorem taking this into account can be 

proved (compare Voloch IV2]); but if n > 2 the situation is more complicated. 

For example, the equation 

X + Y - Z = I  

has non-degenerate solutions 

X -= t (q-1)q', Y = (1 - t )  qq', Z = t(q-1)q'(1 - t )  q' 

in G 3 for any powers q, qr of p. In general there are similar examples showing 

that  the solution set of (25) can involve n - 1 independent "nested Frobeniuses", 

mixed up with suitable "translations". And indeed it may not be too difficult 

to prove a corresponding Structure Theorem using the methods of this article. 

Thus conclusion (bb) of Lemma 5 leads to Frobenius and conclusion (aa) leads 

to more of them by induction. 

But in zero characteristic the study of (25) can be taken even further. For 

example, Evertse, Schlickewei and W. M. Schmidt in lESS] prove that  there are 

at most e x p { ( 6 n ) 3 n ( n r  + 1)} non-degenerate solutions. Here it is not assumed 
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that G is finitely generated, only of finite rank r. So the number of such solutions 

is bounded independently of the field K and the coefficients a l , . . . ,  an. 

Such a uniform bound cannot hold in characteristic p. For example, the 

algebraic closure ~'p contains the group G = ~'~ of rank zero. So (26) has 

infinitely many solutions (X, Y) = (x, 1 - x) in G2; and most of these are not 

related by Frobenius (which in this situation is a Galois action). 

Nevertheless, it can be hoped that  the methods of this paper will lead to an 

Effective Structure Theorem. Certainly Voloch [V2] has elegant results for 

n = 2. In the most optimistic scenario one would obtain bounds even for 

the solutions themselves and not just their number, a situation considered 

unattainable today in the case of zero characteristic, even for simple examples 

like 3 a + 5 b - 7 c = 1. 
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