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Abstract Regression testing is an important software
maintenance activity to ensure the integrity of a soft-
ware after modification. However, most methods and
tools developed for software testing today do not work
well for database applications; these tools only work
well if applications are stateless or tests can be designed
in such a way that they do not alter the state. To execute
tests for database applications efficiently, the challenge
is to control the state of the database during testing
and to order the test runs such that expensive database
reset operations that bring the database into the right
state need to be executed as seldom as possible. This
work devises a regression testing framework for data-
base applications so that test runs can be executed in
parallel. The goal is to achieve linear speed-up and/or
exploit the available resources as well as possible. This
problem is challenging because parallel testing needs to
consider both load balancing and controlling the state
of the database. Experimental results show that test
run execution can achieve linear speed-up by using the
proposed framework.
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1 Introduction

Database applications are becoming increasingly
complex. They are composed of many components and
stacked in several layers. Furthermore, most database
applications are subject to constant change; for instance,
business processes are re-engineered, authorization
rules are changed, components are replaced by other
more powerful components, or optimizations are added
in order to achieve better performance for a growing
number of users and data. The more complex an appli-
cation becomes, the more frequently the application and
its configuration must be changed.

Unfortunately, changing a database application is
very costly. The most expensive part is to carry out tests
after a new version of the release software has been
developed. As an example, large software vendors like
Microsoft spend 50% of their development cost on test-
ing. As another example, SAP has currently a product
release cycle of 18 months of which 6 months are used
only to execute tests. Typically, larger-scale system tests
that cover the whole application must be carried out
every night or at least once a week. Furthermore, to
ensure the integrity of the application after the change,
regression tests [22] must be carried out with every
check-in of new code to check whether the modifica-
tions have adversely affected the overall functionality.

In order to carry out regression tests, most orga-
nizations have test installations of all their software
components and special test database instances. Fur-
thermore, companies make use of a variety of tools
that support regression testing; the most popular tool
is the JUnit framework that was developed to carry out
regression tests for Java applications [3,14]. The advan-
tages of regression testing have also been quantified
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in several empirical studies [2,22,15]. Unfortunately,
testing a database application cannot be carried out
automatically using these tools and, thus, requires a
great deal of manual work today. The reason for the
need of manual work is that the current generation of
regression test tools has not been designed for data-
base applications. All these tools have been designed for
stateless applications. In other words, these tools assume
that test runs can be executed in any order. For data-
base applications this important assumption does not
hold: a test might change the test database and, thus,
impact the result of another test. For example, a test
that checks the reporting component of an order man-
agement application must always be executed against
the same test database in order to make sure that the
report shows the same orders every time this test is exe-
cuted. As a result, it is necessary to manually control the
database state at the beginning of each test.

Controlling the state of the test database during
regression testing is a daunting task, if many tests (possi-
bly thousands) need to be executed and if some of these
tests involve updates to the database (e.g., tests that test
the insertion of a new order). This work devises a frame-
work to automate this task and gives strategies to exe-
cute regression tests in the most efficient way. The goal
of this work is to exploit the available resources for test-
ing as well as possible. If several machines are available,
the goal is to achieve linear speed-up; that is, the run-
ning time of executing all tests decreases linearly with
the number of machines. Furthermore, to fully utilize
the resources of a machine (e.g., disks, multiple CPUs
and co-processors), test runs are executed concurrently
by different threads using the same database instance on
the same machine. In order to achieve the overall speed-
up, it is important to balance the load on all machines –
just as in all parallel applications [8]. At the same time,
however, it is also important to control the state of the
test database(s) and to execute the test runs in such a way
that the number of expensive database reset operations
is minimized. As a result, testing database applications
involves solving a two-dimensional optimization prob-
lem: (a) partitioning: deciding which test runs to execute
on which machine; and (b) ordering: deciding in which
order to execute the test runs on each machine.

Another interesting problem about database appli-
cation testing is that today there are no standard ways
to benchmark testing frameworks for database applica-
tions. In the software engineering community, the most
common way to benchmark testing frameworks is to
execute tests against real database applications (e.g., [22,
13]). This approach, however, cannot effectively eval-
uate the performance of the frameworks in different
aspects. For example, it is not possible to increase the

number of real test runs in order to examine the scalability
of the testing frameworks.

In order to tackle the above problems, this work
makes the following contributions:

– A framework for database application regression
tests is proposed. The framework includes tools to
record and automate test run execution for database
applications. To execute tests efficiently, the frame-
work generalizes our earlier work in [11,12] such
that tests can be executed on multiple machines in
parallel and each machine can execute tests by multi-
ple threads concurrently. In addition, the framework
allows machines to join or leave the test farm during
test run execution.

– Alternative scheduling strategies are presented in
order to determine which test runs are to be exe-
cuted on which machine/thread and in which order.

– A methodology to evaluate database application
testing frameworks is presented. It describes ways
to synthesize a database test application including a
test database and test runs. It also describes how to
simulate a database reset operation based on these
synthetic components.

– The efficiency of the proposed framework and the
trade-offs of the proposed scheduling strategies are
studied through comprehensive simulations.

The remainder of this paper is organized as follows:
Sect. 2 gives an overview of regression tests on database
applications. Section 3 describes the basic ideas for cen-
tralized testing (i.e., test runs are executed on one ma-
chine sequentially). Section 4 describes the framework
for parallel testing on multiple machines and multiple
threads. Section 5 describes various scheduling meth-
odologies for the parallel testing framework. Section 6
contains the details of the methodology to evaluate data-
base application testing frameworks. Section 7 includes
the results of performance experiments that compare
the trade-offs and effectiveness of the proposed tech-
niques. Section 8 gives an overview of related work.
Section 9 describes conclusions and possible avenues
for future work.

2 DB application regression tests

2.1 Overview

Figure 1 shows how users interact with a database appli-
cation. The application provides some kind of interface
through which the user issues requests, usually a GUI.
The application interprets a request, thereby issuing
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Fig. 1 Architecture of database applications

possibly several requests to the database. Some of these
requests might be updates so that the state of the data-
base changes; e.g., a purchase order is entered or a user
profile is updated. In any event, the user receives an
answer from the application; e.g., query results, acknowl-
edgments, or error messages.

The purpose of regression tests is to detect changes in
the behavior of an application after the application or its
configuration has been changed. This paper focuses on
the so-called black-box tests; i.e., there is no knowledge
of the implementation of the application available [20].
As shown in Fig. 2, the regression consists of two phases.
In the first phase (Fig. 2a), test engineers or a test case
generation tool create test cases. In other words, interest-
ing requests are generated and issued to a regression test
tool. The regression test tool forwards these requests to
the application and receives an answer from the appli-
cation for each request, just as in Fig. 1. During the first
phase, the application is expected to work correctly so
that the answers returned by the application are correct
and the new state of the test database is expected to be
correct, too. The regression test tool stores the requests
and the correct answers. For complex applications, many
thousands of such requests (and answers) are stored in
the repository. If desired, the regression test tool can
also record the new state of the test database, the re-
sponse times of the requests, and other quality param-
eters in the repository. The regression test tool handles
error messages that are returned by the application just
like any other answer; this way, regression tests can be
used in order to check that the right error messages are
returned.

Usually, several requests are bundled into test runs
and failures are reported in the granularity of test runs.
For instance, a test run could contain a set of requests
with different parameter settings that test a specific func-
tion of the application. Therefore, the requests of a test
run are always executed sequentially in the same order.
Bundling requests into test runs improves the manage-

ability of regression tests. If a function is flawed after
a software upgrade, then the corresponding test run is
reported, rather than reporting each individual failed
request. Furthermore, bundling series of requests into
test runs is important if a whole business process, a spe-
cific sequence of requests, is tested. The regression test
tool in this paper records test runs and stores them as
XML files. This way, management and evolution of test
runs are easier (e.g., a test engineer can modify a test
run directly).

After the application has changed (e.g., customization
or a software upgrade), the regression test tool is started
in order to find out how the changes have affected the
behavior of the application (Fig. 2a). Basically, there are
three steps in executing a test run: (1) Setup (2) Exe-
cute (3) Report and Clean-up. During the Setup step, the
regression test tool prepares necessary data (e.g., input
parameters) and the test database for a test run to be
executed in the next step. During the Execute step, the
test tool re-issues automatically the requests of a test run
recorded in its repository to the application and com-
pares the answers of the updated application with the
answers stored in the repository. Possibly, the tool also
looks for differences in response time and for inconsis-
tencies in the test database. In the last step (Report and
Clean-Up), the regression test tool reports whether the
executed test run failed or not; failed test runs are test
runs for which differences were found. Finally, the last
step also frees up all allocated resources for the executed
test run. After the execution of all test runs, an engi-
neer examines the failed test runs in order to find bugs
and misconfigurations in the application. If the differ-
ences are intended (no bugs), then the engineer updates
the repository of the regression test tool and records
the new (correct) behavior of the application. For tra-
ditional software testing tools like JUnit, the Setup step
and the Report and Clean-up step are coded by humans
manually.

For database applications, the test database plays an
important role during test run execution. The answers
to requests in a test run strongly depend on the par-
ticular test database instance. Typically, companies use
a version of their operational database as a test data-
base so that their test runs are as realistic as possi-
ble. As a result, test databases can become very large.
Logically, the test database must be reset after each
test run is recorded (Phase 1) and before each test
run is executed (the Setup step of Phase 2). This way,
it is guaranteed that all failures during Phase 2 are
due to updates at the application layer (possibly,
bugs). Again, the Setup step and the Report and Clean-
up step are coded by humans manually in traditional
database application testing. The regression test tool



148 F. Haftmann et al.

Fig. 2 Regression tests

(a) (b)

in this paper, however, includes built-in functions to
automate and optimize these two steps.

In theory, a test run is okay (does not fail), if all its
requests produce correct answers and the state of the
test database is correct after the execution of the test
run. In this work, we relax this criterion and only test
for correctness of answers. The reason is that checking
the state of the test database after each test run can be
prohibitively expensive and is difficult to implement for
black box regression tests. Furthermore, in our expe-
rience with real applications, this relaxed criterion is
sufficient in order to carry out meaningful regression
tests. For checking the integrity of the test database,
the interested reader is referred to previous work on
change detection of databases, e.g., [4]. If necessary, the
techniques presented in that work can be applied in
addition to the techniques proposed in this work.

2.2 Definitions

Based on the observations described in the previous sub-
section, the following terminology is used:

Test database D: The state of an application at the
beginning of each test. In general, this state can involve
several database instances, network connections, mes-
sage queues, etc.

Reset R: An operation that brings the application back
into state D. This operation is part of the Setup step as
described in the previous section. Since testing changes
the state of an application, this operation needs to be
carried out in order to be able to repeat tests. Depend-
ing on the database systems used (and possibly other
stateful components of the application), there are sev-
eral alternative ways to implement R; in any event, R
is an expensive operation. For example, in [11], reset-
ting the database of a real-life application takes about 2
min. Resetting a database involves reverting to a saved

copy of the database and restarting the database server
process, thereby flushing the database buffer pool.

Request Q: The execution of a function of the appli-
cation. The result of the function depends on the param-
eters of the function call (encapsulated in the request)
and the state of the test database at the time the request
is executed. A request can have side effects; i.e., change
the state of the test database.

Test run T: A sequence of requests Q1, . . . , Qn that are
always executed in the same order. For instance, a test
run tests a specific business process that is composed of
several actions (login, view product catalog, place order,
specify payment, etc.). The test run is the unit in which
failures are reported. It is assumed that the test data-
base is in state D at the beginning of the execution of
a test run. During the execution of a test run the state
may change due to the execution of requests with side
effects.

Schedule S: A set of test runs T and reset operations in
a particular order. Typically, regression testing involves
executing many test runs and reset operations are nec-
essary in order to put the application into state D before
a test run is executed.

Failed test run: An execution of a test run in which at
least one of the requests of the test run returns a different
answer than expected. Failed test runs typically indicate
bugs in the application (as mentioned in the previous
subsection, the state of the database at the end of a test
run is not inspected).

False negative: A test run fails although the behav-
ior of the application has not changed (and there is no
bug). One possible cause for a false negative is that the
application was in the wrong state at the beginning of
the execution of the test run. False negatives are very
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expensive because they trigger engineers looking for
bugs although the application works correctly.

False positive: A test run does not fail, although the
application has a bug. Again, a possible explanation for
false positives is that the application is in a wrong state
at the beginning.

The goal of this work is to find schedule S that exploit
the available hardware resources for testing, minimize
the number of reset operations, and avoid false negative
and false positive as much as possible.

3 Centralized scheduling strategies

This section presents basic scheduling strategies in a cen-
tralized setting. It repeats some of the finding of [11]. In
this setting, tests are run on only one machine and test
runs are executed sequentially (one-after-another). For
the same set of test runs T , the goal of these strategies
is to iteratively develop schedules for T such that later
iterations learn from prior ones and the number of data-
base resets (and the overall running time) of the sched-
ules decreases. In addition, the strategies guarantee that
there are no false negatives; false negatives arise, for
example, if no resets are executed and a test run is exe-
cuted and the test database is not in state D at the begin-
ning due to the prior execution of test runs with requests
that have side effects. A naive approach to avoid false
negatives is to carry out a reset before the execution of
each test run. Unfortunately, this approach has a very
poor performance (testing can take weeks instead of
hours). The following techniques were proposed in [11]
in order to find good schedules in a centralized setting.
They are generalized for parallel testing in Sect. 4.

3.1 Optimistic++

The Optimistic++ strategy executes the test runs in a
random order. The key idea is to apply resets lazily. If
a test run fails (i.e., a request returns an unexpected
result), then there are two possible explanations for this
failure: (a) the application program has a bug, or (b) the
test database was in a wrong state due to the earlier exe-
cution of other test runs. In order to make sure that only
bugs are reported, the Optimistic++ strategy proceeds
as follows in this event:

– Reset the test database (i.e., execute R).
– Re-execute the test run that failed.

If the test run fails again, then the test run is reported
so that engineers can look for a potential bug in the

application program. If not, then the first failure was
obviously due to the test database being in the wrong
state. In this case, the test run is not reported and Opti-
mistic++ remembers the test runs that were executed
before this test run and records a conflict in a conflict
database (Sect. 3.4 describes the conflict database in
details). Formally, a conflict is denoted as 〈Ti〉 → T,
with 〈Ti〉 a sequence of test runs that can be executed in
sequence without any database reset, and T a test run.
A conflict 〈Ti〉 → T indicates that if 〈Ti〉 is executed,
then the database must be reset before T can be exe-
cuted. For example, one of the test runs in 〈Ti〉 could
insert a purchase order and T could be a test run that
tests a report that counts all purchase orders. Based on
the collected conflicts in the conflict database, the Opti-
mistic++ strategy tries to avoid running a test run twice,
in all subsequent tests. For instance, if all or a superset
of the test runs in 〈Ti〉 have been executed, then Opti-
mistic++ will automatically reset the test database (i.e.,
execute R) before the execution of T, thereby avoiding
a failure of T due to a wrong state of the test database.

The Optimistic++ strategy (and all the following strat-
egies which extend Optimistic++) is susceptible to two
phenomena called false positives and spurious resets.
False positives means a test run does not fail although
it should fail (Sect. 2.2). However, this phenomenon is
rare in practice. Also, this risk is affordable because in re-
turn it is possible to execute a large number (thousands)
of test runs which would otherwise not be possible.
Spurious resets means that the strategy may carry out
unnecessary database resets. Given a conflict 〈Ti〉 → T,
Optimistic++ resets the test database before the execu-
tion of T if all or a superset of test runs in 〈Ti〉 precede
T. However, when one or more of the additional test
runs in a superset of 〈Ti〉 (i.e., those test runs that are
not part of 〈Ti〉) undoes those effects of 〈Ti〉 that are
in conflict with T, the reset triggered by Optimistic++
is unnecessary. Nevertheless, again, this phenomenon is
very rare in practice and the cost of such spurious resets
is tolerable.

3.2 Slice

Slice extends the Optimistic++ strategy. Rather than
executing the test runs in a random order, the Slice
heuristics use the conflict information in order to find
a schedule in which as few resets as possible are neces-
sary. For example, if test run T1 tests the insertion of a
purchase order into the database and T2 tests a report
that counts the number of purchase orders, then T2
should be executed before T1. The conflict information is
gathered in the same way as for the Optimistic++ strat-
egy. If there is a conflict between test runs 〈Ti〉 and T,
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and there are no known conflicts between T and any of
the test runs in 〈Ti〉, then Slice executes T before 〈Ti〉.
At the same time, however, Slice does not change the
order in which the test runs in 〈Ti〉 are executed because
those test runs can be executed in that order without
requiring a database reset. Such a sequence of test runs
that can be executed successfully between two resets is
called a slice.

The Slice heuristics can best be described by an exam-
ple with five test runs T1, . . . , T5. At the beginning, no
conflict information is available, so that the five test runs
are executed in a random order. Let us assume that this
execution results in the following schedule (R denotes
the database reset operation, Ti denotes the execution
of test run Ti):

R T1 T2 T3 R T3 T4 T5 R T5

From this schedule, we can derive the two conflicts:
〈T1T2〉 → T3 and 〈T3T4〉 → T5. Correspondingly, there
are three slices: 〈T1T2〉, 〈T3T4〉, and 〈T5〉. Based on
the conflicting information in the conflict database and
the collected slices, Slice executes T3 before 〈T1T2〉
and T5 before 〈T3T4〉 in the next iteration. In other
words, Slice executes the test runs in the following order:
T5T3T4T1T2. Let us assume that this execution results
in the following schedule:

R T5 T3 T4 T1 T2 R T2

In addition to the already known two conflicts, the fol-
lowing conflict is added to the conflict database:
〈T5T3T4T1〉 → T2. The slices after this iteration are:
〈T5T3T4T1〉 and 〈T2〉. As a result, the next time the test
runs are executed, the Slice heuristics try the following
order: T2T5T3T4T1.

The Slice heuristics reorder the test runs with every
iteration until reordering does not help anymore either
because the schedule is perfect (no resets after the ini-
tial reset) or because of cycles in the conflict data (e.g.,
〈T1〉 → T2, 〈T2〉 → T3, 〈T3〉 → T1).

Figure 3 shows the pseudocode of the Slice algorithm.
For each slice 〈sm〉, it tries to move it before one of its
predecessor slices in order to avoid the reset that must
be carried out between slice 〈sm−1〉 and 〈sm〉. The exact
criterion that determines whether a slice is moved before
another slice is given in Fig. 4. As mentioned earlier, slice
〈sm〉 can be moved before slice 〈sk〉 if it can be expected
that no reset will be needed between 〈sm〉 and 〈sk〉. More
precisely, slice 〈sm〉 is moved in front of the first slice that
precedes it that satisfies the movable criterion, if there
are any such slices.

It should be noted that the Slice heuristics are not per-
fect. There are situations in which the Slice heuristics
produce sub-optimal schedules. So far, no polynomial

Fig. 3 Slice algorithm

Fig. 4 Criterion to move 〈sm〉 before 〈sk〉

algorithm has been found that finds an optimal schedule
(minimum number of reset) given a set of test runs and
conflicts. Although it has not been proven yet, the prob-
lem is believed to be NP hard.

3.3 Graph-based heuristics

Graph-based heuristics are alternatives to the Slice heu-
ristics. These heuristics were inspired by the way dead-
lock resolution is carried out in database systems [21].
The idea is to model conflicts as a directed graph in
which the nodes are test runs and the edges Tj → Tk are
conflicts indicating that Tj might update the test data-
base in such a way that a reset (R) is necessary with
probability w in order to execute Tk after Tj.1

In [11], a set of graph-based heuristics was proposed
and the best heuristics, MaxWeightedDiff , is presented
here. In order to illustrate this approach, we apply it to
a very simple example. This example has three test runs
and one conflict T1 → T3 which is not known initially:

iteration conflict graph order schedule
(1) T1T2T3 RT1T2T3RT3
(2) T1 → T3,T2 → T3 T3T1T2 RT3T1T2

In the first iteration, the conflict graph has no edges.
As a result, a random order is used; e.g., T1T2T3. Using
the Optimistic++ approach, the database must be reset
to execute T3. As a result, two edges are inserted into the
conflict graph (T1 → T3,T2 → T3) because either T1 or

1 Similar to the Slice heuristics, in graph-based heuristics, conflicts
are detected and accumulated across iterations.
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Table 1 MaxWeightedDiff example. Conflict graph after first
iteration: RT1T2T3RT3

Test run Fan-in Fan-out Fan-in−fan-out

T3 1 0 1
T1 0 1/3 −1/3
T2 0 2/3 −2/3

T2 or both might be in conflict with T3 (no other infor-
mation is available). In other words, an edge Ti → Tj in
the conflict graph means that Ti possibly overwrites data
in the test database needed by Tj. MaxWeightedDiff
assigns weights to each edge and the weights assigned
are a measure for the probability that Ti is indeed in
conflict with Tj. In this example, without further knowl-
edge, it is more likely that T2 is in conflict with T3 rather
than T1 is in conflict with T3 because T1 does not hurt T2
and, therefore, is likely not to hurt T3, too. The further
left a test run is, the less weight is given to its out-going
edge. More precisely, the following function is used in
order to assign weights. For

R T1 T2 . . . Tn Tx R Tx

the following weights are assigned for edge Ti → Tx

(i = 1, . . . , n):

i
n∑

j=1
j

In the example, the weights for the edge T1 → T3 and
T2 → T3 are 1/(1 + 2) = 1/3 and 2/(1 + 2) = 2/3,
respectively. Weights of edges are accumulated across
iterations. Therefore it is possible that an edge has a
weight greater than 1. Weights are only accumulated if
new conflicts are recorded in the conflict database.

At the beginning of each iteration, MaxWeightedDiff
first calculates the difference between the fan-in and the
fan-out of each node in the conflict graph (i.e., fan − in
− fan-out). Then, it schedules the test runs according to
the difference in descending order. Thus, in the exam-
ple, MaxWeightedDiff will start with the order T3T1T2
in the second iteration. T3 is the first test run because it
has the maximum difference (i.e., fan-in − fan-out=1)
based on the weighted edges (see Table 1). Similarly, T1
follows T3 because it has the second largest difference
and so on. This criterion favors test runs that do not hurt
many other test runs but are potentially hurt by many
other test runs. As a result, this reordering results in a
perfect schedule with only one reset at the beginning.
Therefore, no new edges are inserted into the conflict
graph and, thus, the same order will be generated for all
future iterations, too.

3.4 Conflict management

Optimistic++, Slice, MaxWeightedDiff, and their exten-
sions for parallel testing (Sect. 5) require the manage-
ment of conflict information. As mentioned in Sects. 3.1
and 3.2, conflicts are recorded in the form 〈s〉 → t for
Slice and Optimistic++, with 〈s〉 a sequence of test runs
and t a test run. For the graph-based heuristics, edges
are represented in the form s → t which is a special case
of 〈s〉 → t so that the same management component can
be used.

Conflicts are recorded when regression tests are exe-
cuted and the control strategies learn. Conflict infor-
mation is needed by the control strategies in order to
determine in which order to execute test runs and when
to reset the test database. A conflict database that sup-
ports the various heuristics was proposed. Interested
readers are referred to [11]. Here, only one of the oper-
ations of the conflict database that is important to this
work is presented:

– testSub(〈s〉, t): Test whether there is a sequence of
test runs 〈s′〉 such that 〈s′〉 → t is recorded in the
conflict database and 〈s′〉 is a sub-sequence of 〈s〉.
Sub-sequence is defined as follows: all test runs of 〈s〉
are also in 〈s′〉 and they occur in both sequences in
the same order. The testSub operation is needed by
the Optimistic++ in order to decide where to place
resets and by Slice in order to decide if a slice is
movable. This operation is also needed when a new
conflict 〈s〉 → t is supposed to be inserted into the
conflict database. If testSub(〈s〉, t) returns true, then
the conflict 〈s〉 → t is not recorded in the conflict
database because 〈s′〉 → t which is recorded in the
conflict database superimposes 〈s〉 → t. As a result,
the conflict database can be more compact and use
less memory.

Staleness of the information in the conflict database
is not a problem. As a result, it is not necessary to ad-
just the conflict database if test runs are modified, test
runs are disabled, new test runs are added, or if the
application is upgraded. All these events impact con-
flicts between test runs. Nevertheless, those events need
not be propagated to the conflict database for two rea-
sons: (a) It does not hurt if a conflict is not recorded; for
example, all approaches work correctly even if the con-
flict database is empty. (b) It does not hurt if a phantom
conflict is recorded in the conflict database that does
not exist in reality. Such phantom conflicts might re-
sult in spurious resets or sub-optimal test run orderings,
but all approaches continue to work correctly. In order
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to deal with the staleness of the conflict database, we
recommend scratching it periodically (e.g., once a
month). Such an approach is much simpler than trying
to keep the conflict database up-to-date all the time.

4 Parallel testing

4.1 Architecture

This section generalizes the basic techniques presented
in Sect. 3 to parallel testing, i.e., execute tests on N
machines (N ≥ 1) and execute several test runs concur-
rently on each machine. The goal is to devise an effi-
cient test run execution framework that could exploit the
available machines as well as possible. Figure 5 shows the
architecture of the framework. In the figure, there are
N separate and independent installations of the appli-
cation. Each installation consists of one application on
top of a database and both the application tier and the
database tier are installed on the same machine. Note
that the framework indeed supports different kinds of
setup. For example, it is possible that several installa-
tions are on a single machine or that a single instal-
lation spans several machines (i.e., the application tier
and/or the database tier could be distributed on a clus-
ter of machines). What is important is that the installa-
tions do not share the underlying database(s) and, thus,
do not interfere. For presentation purposes, the term
machine is used to denote an installation of the appli-
cation and its underlying database(s) in the remainder
of this paper. In order to better exploit the hardware
resources, the framework allows test runs to be exe-
cuted concurrently on different threads using the same
database instance on the same machine (i.e., same instal-
lation) locally. However, this time, the concurrent test
runs do share the same database and might interfere.
How to control the multi-programming level (i.e., the
number of test threads n on each installation in Fig. 5)
depends on the available resources of the hardware. In
this work, this multi-programming level is fixed for the
duration of the test execution. In future work, we plan
to investigate ways to dynamically adjust the multi-pro-
gramming level according to the load of the machines
and the degree of conflicts between concurrent test runs.

As mentioned in the introduction, parallel testing
is a two-dimensional scheduling problem. In addition
to deciding in which order to execute the test runs, a
scheduling strategy must partition the test runs. In the
case of multiple machines, parallel testing can decrease
the number of resets by executing test runs that are
in conflict on different machines. On the other hand,
test runs interfere if they are executed concurrently on

the same machine (i.e., test database). Interference can
increase the number of resets. As a result, conflict infor-
mation ought to be taken into account in order to decide
on which machine to execute which test run. Further-
more, it is important to balance the load on all machines
so that the resources are used as well as possible. Load
balancing should be carried out taking the current load
of machines and the estimated length of test runs into
account.

To support the execution of test runs in a general way,
the framework uses a two-step scheduling architecture
(see Fig. 5). There is a global scheduler to coordinate the
whole test run execution; and there is a local scheduler
on each machine to coordinate the local test run execu-
tion. The global scheduler has a global input queue of
test runs; how to order the test runs in the global input
queue depends on the scheduling strategy (Sect. 5).

Each machine is installed with a local scheduler which
communicates with the global scheduler and coordi-
nates the local test run execution. Figure 6 describes
the basic operations of the local scheduler. In order to
achieve load balancing, the local scheduler simply asks
the global scheduler for a new test run whenever a thread
is free. For example, at the beginning, if a machine Mi

has two free threads, Pj and Pk, the local scheduler of
Mi first sends a request to the global scheduler for a
new test run Tj for Pj. Then, the local scheduler sends
another request to the global scheduler for a test run
Tk for Pk. The principle applies to all machines/threads
until all N machines (and their corresponding threads)
are busy. Sometimes, the global scheduler replies to the
local scheduler with a reset-database signal followed by
a test run Tk due to the parallel Optimistic++ policy in
Sect. 5.1; in this case, the local scheduler first resets the
database and then executes Tk (the details of scheduling
a database reset will be described shortly; in Sect. 4.2).
The local scheduler continues the execution until the
global scheduler replies to the local scheduler with a fin-
ished signal that indicates no more test runs are left in
the global input queue.

The global scheduler keeps a history of test runs that
are dispatched to machine Mi. When a machine Mi has
completed the execution of a test run Tk, the local sched-
uler Li of machine Mi notifies the global scheduler it
has executed Tk and is ready to execute a new test run.
The global scheduler selects the next test run to be dis-
patched to machine Mi from the global input queue. In
most cases, the global scheduler selects the first test run
from the global input queue, but there are occasions in
which it is beneficial not to select the first test run from
the queue. For example, if it is known that T12 and T7 are
in conflict in Fig. 5, then it might be beneficial not to exe-
cute T12 on M1 if T7 is in M1’s execution history. Instead,
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Fig. 5 Architecture of the
database application testing
framework
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Fig. 6 Local scheduling

T5 (the next test run in the global input queue) is dis-
patched to M1 and T12 will wait until another machine
becomes available. In order to decide which test run
to execute next, the global scheduler takes the conflict
database, the history, and the order in the input queue
into account. Alternative policies for such optimizations
for global scheduling are described in Sect. 5.

If a reset has been carried out by Mi in order to
execute Tk, the local scheduler Li informs the global
scheduler and the global scheduler updates its history
information and the conflict database in the following
ways:

– Conflict database: A conflict HMi → Tk is inserted
into the conflict database. Here HMi represents the
sequence of test runs (except Tk) recorded in the his-
tory of Mi. This conflict follows directly from
the definition of a conflict and the fact that a reset
was necessary in order to execute Tk after the exe-
cution of the test runs in HMi .

– History: The history for Mi is flushed; i.e., HMi :=
Tk. The updates of all test runs that were executed
on Mi before Tk are undone due to the reset so that
these test runs need not be recorded in the history
anymore.

Consider an example in which seven test runs have
been executed by two threads on one machine locally.
Assume that the following schedule is obtained from the
machine: (A database reset terminates the execution of
test runs in both threads in a machine. How to schedule
such resets is described in Sect. 4.2.)

Thread 1: R T1 T2 R T2 T3 R
Thread 2: T5 T6 T7 T8 T8

In this schedule, T2 is the first test run that fails
because the database was in a wrong state for T2. At
this point, the local scheduler notifies the global sched-
uler that T2 has caused a database reset. By considering
the history of the machine, the global scheduler inserts
a conflict 〈T1T5T6〉 → T2 into the conflict database. The
second test run that fails is T8. Again, by considering
the history of the machine, the global scheduler inserts
the conflict 〈T2T7T3〉 → T8 into the conflict database.
These collected information would be used for reorder-
ing the test runs in the global input queue and for global
scheduling of future regression tests (Sect. 5).

The architecture in Fig. 5 is applicable to any num-
ber of machines and any number of threads on each
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machine. A machine can join or leave the test run exe-
cution seamlessly during runtime. To join the execution,
a machine just simply starts its local scheduler and the
local scheduler will ask the global scheduler for a new
test run. A machine can leave by simply not asking the
global scheduler for more test runs to execute. In partic-
ular, the system degrades gracefully if a machine breaks
during the execution of tests; in this event, the global
scheduler must reschedule active test runs from the
broken machine.

4.2 Scheduling database resets

A question that is specific to local scheduling is how to
schedule a database reset when a test run fails, poten-
tially due to a wrong state of the test database. The ques-
tion is what happens to the test runs that are executed
in concurrent threads? This question does not arise in
global scheduling because a reset caused by a failure of a
test run on one machine does not impact the concurrent
execution of test runs on other machines.

Conceptually, scheduling a reset in a machine is
related to the problem of scheduling a check point for
database recovery in a database engine [9]. There are
several options:

– lazy: Concurrent test runs that have started are com-
pleted, but no new test runs are started as soon as a
test run fails and a database reset becomes necessary.

– eager: Concurrent test runs are aborted and the data-
base reset is carried out immediately. After the data-
base has been reset, all test runs that have not
completed must be restarted.

– deferred: The database reset is deferred and the failed
test run is re-scheduled to be executed at the end. In
other words, the first reset is carried out after every
test run has been tried once. After that, a database
reset is carried out and the test runs that failed in
the first round are re-scheduled (using one of the
heuristics presented in Sect. 5).

The trade-offs between these three alternatives are fairly
complex and the choice for the best approach depends
on the number of conflicts between test runs. Exploring
these trade-offs is one avenue for the future work. For
the purpose of this work, the lazy strategy was chosen
because it is very robust and minimizes the amount of
wasted work by failed test runs.

Another related question is how to restart the execu-
tion of test runs after a database reset. Again, there are
several options:

– single-threaded: Execute the failed test run again in
isolation; i.e., without starting any other test runs
concurrently. The advantage of this approach is that
if the test run fails again, it is guaranteed that this
failure is due to a potential bug in the application
and not due to the database being in a wrong state at
the time of the failure due to the execution of update
requests by concurrent test runs.2 The disadvantage
is that parallelism is lost.

– multi-threaded: Execute the failed test run concur-
rently with other test runs. Clearly, the advantage
of this approach is that no parallelism is lost. The
disadvantage is that if the test run fails again, that
test run must be executed yet another time until it is
successful or fails in a single-threaded environment.

– mix: Many other strategies are conceivable. For in-
stance, it is possible to restart with a lower degree
of parallelism and/or in single-threaded mode after
another failure.

Again, the choice between these alternatives depends
on the number of conflicts and the probability that a
test run fails after a restart due to other concurrent test
runs. We plan to study these effects in detail as part of
future work. For the purpose of this work, the single-
threaded approach was chosen because this approach is
robust and minimizes the amount of wasted work due
to re-executing failed test runs.

5 Global scheduling strategies

This section presents how the centralized scheduling
strategies of Sect. 3 can be extended for the parallel
testing framework of Sect. 4. As shown in Fig. 5 and
described in Sect. 4, there are two decisions that need
to be made by the global scheduler in order to schedule
test runs for parallel execution:

– Determine the order of test runs in the global sched-
uler’s input queue of test runs.

– Define a criterion that specifies the situations in
which the global scheduler will not select the test

2 A test run is not a transaction and can span several database
transactions. Typically, every request or a small number of requests
are implemented by the application as a single database transac-
tion in order to achieve recoverability of long running business
transactions. As a result, test runs (which represent such long run-
ning business transactions) do see updates carried out by other,
concurrent test runs.
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run at the head of its input queue for execution in
reply to a request by a local scheduler.

The remainder of this section describes how the Opti-
mistic++, Slice, and MaxWeightedDiff heuristics from
Sect. 3 are extended to make these two global schedul-
ing decisions for the parallel testing framework. There
are similar heuristics proposed in [12], however, those
heuristics are not applicable to the parallel framework
of Sect. 4. More precisely, the heuristics in [12] are
not applicable to support parallel test run execution on
multiple machines and multiple test threads on each
machine.

For all heuristics, the local scheduler also works
exactly the same way as described in Fig. 6. Thus, when-
ever a test run Tk has caused a database reset in Mi, the
local scheduler informs the global scheduler such that
the global scheduler updates the conflict database and
flushes the history for Mi, as described in Sect. 4.

5.1 Parallel Optimistic++

The parallel Optimistic++ strategy takes a simplistic
scheduling approach. Figure 7 shows the algorithm
details. The key ideas are as follows:

– The test runs are put into the global scheduler’s input
queue in random order.

– Upon receiving a request from a local scheduler Li,
the global scheduler always dispatches the first test
run in the global input queue to Li.

– Before a test run Tk is dispatched to a machine Mi

by the global scheduler, if Tk is known to be in con-
flict with a subset of the test runs in Mi’s history, in
other words, if the testSub(〈HMi〉, Tk) operation3 in
Figure 7 returns true, then the global scheduler
replies to the local scheduler of machine Mi with
a reset-database signal followed by Tk. As a result,
the local scheduler first resets Mi’s database and then
executes Tk after the database has been reset. This
way, the parallel Optimistic++ strategy avoids unnec-
essarily executing a test run twice as a result of the
test database of Mi being in the wrong state.

Since the parallel Optimistic++ policy needs to detect
conflicts between test runs during execution, the global
scheduler maintains a history and a conflict database as
presented in Sect. 4.

3 It is the operation mentioned in Section 3.4

Fig. 7 Global scheduling (Parallel Optimistic++)

5.2 Parallel Slice heuristics

The parallel Slice heuristics extend the parallel Opti-
mistic++ strategy. The key idea is to schedule a whole
slice rather than individual test runs in the global sched-
uler. Recall from Sect. 3 that a slice is a sequence of test
runs that can be executed without a database reset; i.e.,
there are no conflicts within a slice. A slice is defined as
a sequence of test runs that was executed successfully
between two resets. Thus, during global scheduling, the
global scheduler dispatches test runs in the same slice to
the same machine.

Figure 8 shows the details of a global scheduler. This
global scheduler is designed to work for both the par-
allel Slice heuristics and the parallel MaxWeightedDiff
heuristics presented in Sect. 5.3. At the beginning, the
parallel Slice heuristics behave exactly like the paral-
lel Optimistic++ heuristics; that is, the order of test
runs in the scheduler’s input queue is random and the
next test run is selected whenever a local scheduler
requests a test run. Consider an example with eight
test runs (T1, . . . , T8) and two machines M1 and M2 and
assume the following schedules are the results of the first
iteration (for presentation purposes, the schedule of a
multi-threaded machine is flattened according to the
timestamps of test runs in the history):

M1 : R T1 T2 T3 R T3

M2 : R T5 T6 R T6 T7 T8

From these schedules, four slices can be identified:
〈T1T2〉, 〈T3〉, 〈T5〉, and 〈T6T7T8〉. Accordingly, the
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Fig. 8 Global scheduling (Slice/MaxWeightedDiff)

following conflicts are detected: 〈T1T2〉 → T3 and 〈T5〉 →
T6.

After each iteration, the parallel Slice heuristics pre-
pares the global input queue for the next iteration as
follows:

– Re-order the slices collected from each machine sep-
arately. The reordering procedure is the same as the
centralized Slice algorithm in Fig. 3.

– Merge the re-ordered slices of each machine into one
total order in a round-robin fashion. This total order
would serve as the order of test runs of the global
input queue in the next iteration.

Continuing the example, after the first iteration, the
test runs executed on M1 and the test runs executed
on M2 are re-ordered by the centralized Slice algorithm
separately. As a result, there are two re-orderings, one
for each machine (〈s〉 denotes the delimiters of slices):

O1 : 〈s〉T3〈s〉T1T2〈s〉
O2 : 〈s〉T6T7T8〈s〉T5〈s〉

These two (partial) orders of test runs are merged to one
(total) order of all test runs which serves as the order for
the input queue of the global scheduler in the next itera-
tion. This merge is carried out in a round-robin fashion.

Fig. 9 isGoodMatch function (parallel Slice)

That is, the total order is:

〈s〉T3〈s〉T6T7T8〈s〉T1T2〈s〉T5〈s〉
In the next iteration, the global scheduler starts with

this re-ordered queue as input. Upon receiving a test run
request from a local scheduler Li, the global scheduler
selects the next test run in the global input queue for M1
based on the following rules:

– Rule 1: Dispatch test runs of the same slice to the
same machine.

– Rule 2: Do not dispatch a test run Tk of a slice 〈s〉
to a machine Mi if any sub-subsequence 〈s′〉 in 〈s〉 is
known to be in conflict with test runs in Mi’s history.
In other words, do not dispatch Tk to Mi if the test-
Sub(〈s〉, t) operation (Sect. 3.4) returns true for any
test run t in HMi .

The two rules above are implemented in the function
isGoodMatchwhich is called in the algorithm of Fig. 8.
Figure 9 shows the pseudocode of the isGoodMatch
algorithm. If a candidate test run violates any of the two
rules above, the isGoodMatch function returns false
and the global scheduler considers the next test run in
the global queue.

Back to the example: At the beginning of the sec-
ond iteration, the global scheduler dispatches T3 to M1
and T6 to M2. If a third machine were available in this
iteration of testing, then the global scheduler would not
select T7 because T7 is in the slice of 〈T6T7T8〉 and T7
should be executed on M2 (Rule 1); instead, the global
scheduler would select T1. Likewise, if there are only
two machines and M1 has completed the execution of
T3, then the global scheduler would select T1 for execu-
tion on M1. Assume that indeed only two machines are
available in this iteration and the following schedules
are obtained on these two machines after the execution:

M1 : R T3 T1 R T1 T2

M2 : R T6 T7 T8 T5 R T5
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As a result, there are still the same four slices as after
the first iteration. Two conflicts are added to the conflict
database (in addition to the two conflicts detected in the
first iteration): 〈T3〉 → T1 and 〈T6T7T8〉 → T5. At this
point, there is a cyclic conflict between 〈T3〉 and 〈T1T2〉
so that no reordering is attempted for these two traces.
Likewise, there is a cyclic conflict between 〈T6T7T8〉 and
〈T5〉 so that those two slices are not reordered either.
As a consequence, the order in which the test runs are
put into the global scheduler’s input queue for the third
iteration is the same as in the second iteration (after a
round-robin merge).

Even though the order of test runs in the global in-
put queue did not change, the dynamic behavior of the
global scheduler is different due to the additional con-
flicts recorded in the conflict database. At the beginning
of the third iteration, T3 is scheduled for execution on
M1 and T6 is scheduled for execution on M2. At this
point, the state of the global input queue is as follows
(again, using 〈s〉 in order to depict beginnings and end-
ings of slices for presentation purposes):

T7T8〈s〉T1T2〈s〉T5〈s〉
When M1 completes the execution of T3, the global
scheduler selects the next test run in the global input
queue for M1. According to the rules of the isGood-
Match function:

– T7 and T8 are not selected because they are part of a
slice that is currently executed on another machine,
M2 (Rule 1).

– T1 is not selected because there is a conflict 〈T3〉 →
T1 and T3 is in the history of M1 (Rule 2).

– T2 is not selected because it is part of the same slice
as T1, and T1 has a conflict (Rule 2).

– T5 is selected because it does not violate any of the
two rules.

As a consequence, T5 is dispatched to M1. This is in
the spirit of the Slice heuristics (keeping slices intact)
and at the same time gives the biggest hope to minimize
the total number of database resets.

Now what happens next when M1 completes the exe-
cution of T5? At this point, there are no more candidate
test runs for M1 left in the global input queue. Rather
than letting M1 go idle, the parallel Slice heuristics sim-
ply send a reset-database signal to M1 (a parallel Opti-
mistic++ reset), and then dispatches the first test run
from the global scheduler’s input queue; i.e., T7 in this
example. Another possible approach in this case is to
select the first test run in the queue that does not violate
Rule 1. As a result, T7 and T8 are not selected because

T6 has been executed on M2. Instead, T1 is selected
in this example. For the purpose of this work, the first
approach was chosen (i.e., select the first test run in the
queue) because it is simple and as robust as the second
approach.

In summary, the global scheduler of the parallel Slice
heuristics in Fig. 8 has four ideas: (a) The order of test
runs in the global scheduler’s input queue is determined
by applying the central Slice heuristics to each machine
individually and then merging the partial orders (us-
ing a round-robin approach). (b) The global scheduler
dispatches all test runs of the same slice to the same
machine. (c) The global scheduler dynamically uses the
history and conflict information in order to make sure
that conflicting test runs are executed on different ma-
chines as much as possible. (d) Utilizing all available
machine resources has higher priority than minimizing
the number of database resets. In other words, if no
suitable test run is found in the global input queue, the
global scheduler selects the first test run from the queue,
thereby causing an addition reset, rather than letting the
machine go idle.

5.3 Parallel MaxWeightedDiff heuristics

The global scheduler in Fig.8 is also applicable to the
parallel MaxWeightedDiff heuristics. Compared to the
parallel Slice heuristics, the parallel MaxWeightedDiff
heuristics use a different approach to determine the ini-
tial order of test runs in the global input queue (i.e., the
order of test runs in Q in Fig. 8); and use a different
criterion to select a test run from the global input queue
for a machine (i.e., a different implementation for the
isGoodMatch function).

The parallel MaxWeightedDiff heuristics work as fol-
lows: After each iteration, the parallel MaxWeighted-
Diff heuristics prepare the global input queue for the
next iteration in exactly the same way as the MaxWeight-
edDiff heuristics for the centralized setting in Sect. 3.3.
As a result, the test runs in the global input queue are
ordered according to the weighted differences of the
conflict edges.

When the global scheduler receives a request for a test
run from, say, machine Mi, the global scheduler selects
the first test run Tk from the global input queue, only if
for every test run t contained in the history of Mi, the
sum of the weights of the edges from t to Tk, summed
over all t, is less than a threshold. Otherwise, this crite-
rion is tested for the second test run, third test run and
so on, until a suitable test run is found. The isGood-
Match function shown in Fig. 10 captures the above
semantics. The idea is to avoid dispatching a test run Tk
that has high probability of causing an additional reset
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Fig. 10 isGoodMatch function (MaxWeightedDiff)

on Mi as much as possible. In other words, the isGood-
Match function in Fig. 10 returns false if the cumulated
weights of edges exceeds the threshold. For instance,
assume Mi’s history has three test runs T1, T2 and T3,
and T4 is the next candidate test run in the global input
queue, if the cumulated weights of T1 → T4, T2 → T4
and T3 → T4 is greater than the threshold, the global
scheduler would not select T4 for Mi and try the next
test run in the queue. All experiments reported in this
paper used 1 as the threshold because this setting was
very good in all situations. As part of future work, we
plan to study how to set the threshold as a ratio that
depends on the conflicting information rather than a
static value.

If there are no test runs in the global input queue
with cumulated weights less than the threshold (i.e., the
isGoodMatch function returns false for all test runs
in the global input queue), one approach is to select
the first test run in the input queue. Another possible
approach is to select the test run in the input queue with
the smallest cumulated weights as calculated above. For
the purpose of this work, the first approach was cho-
sen (i.e., select the first test run) because this approach
is robust and minimizes the overhead of keeping the
weights of all test runs in the global input queue.

6 Methodology to evaluate database application
testing frameworks

In the software engineering community, a database
application testing tool is usually evaluated by executing
tests against real database applications (e.g., [22,13]).
This approach can demonstrate the practicability of a
tool for a certain class of applications. However, it can-
not effectively evaluate the tool in different aspects. For
example, the scalability with the number of real test runs
cannot be studied because the number of test runs is

Fig. 11 Parameterized queries in the synthetic database applica-
tion

limited by the application. Furthermore, it is impossible
to control the number of conflicts between test runs
using such an approach.

In order to effectively evaluate a database application
testing framework in various aspects, this work is based
on the following methodology:

– A synthetic database application: A synthetic
database application is developed. The synthetic
database application follows the typical database
application model as shown in Fig. 1. It provides
an interface for a user or an external program to
issue application requests. Each application request
invokes a parameterized database query to a back-
end database. The synthetic database application in
this work consists of three parameterized queries as
shown in Fig. 11.

– A synthetic database: A synthetic database that
interacts with the above synthetic application is
setup. It is a relational database with two relational
tables,Test-Run-Detail (Fig. 12) andConflict
(Fig. 13). Both tables are accessed by the queries in
the synthetic application.

– Synthetic test runs: A set of test runs are synthe-
sized based on the above synthetic database applica-
tion and database. The running time of a test run is
adjustable by users. A longer test run bundles more
application requests (a test run can issue the three
application requests more than once) and a shorter
test run bundles less. In addition, test runs are syn-
thesized to have conflicts with some other test runs.
The degree of conflict between test runs is adjustable.

The evaluation methodology is best described by an
example. Consider the evaluation of a testing tool based
on the execution of five synthetic test runs. The table
test-run-detail in the test database is setup to
have one tuple for each test run (see Fig. 12). The first
tuple 〈1, 1, 8〉 in the table test-run-detail repre-
sents a synthetic test run T1 (denoted by the attribute
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Fig. 12 Relational table: test-run-detail

Fig. 13 Relational table: conflict

testrun) with 8 database requests (denoted by the attri-
bute num-of-request). Initially, the value of the attribute
state of a test run is the same as the value of the attribute
testrun. In the example, there are six synthetic conflicts
between the test runs and this conflict information is
stored in the table Conflict in Fig. 13. The first tuple
〈1, 2〉 in the table Conflict denotes T1 is in conflict
with T2, i.e., executing T1 then T2 requires a database
reset.

Assume that the five test runs in this example are
going to be executed in this order: T1T2T3T4T5. To exe-
cute test run T1, the test tool first requests the synthetic
application to select the set of test runs that are in con-
flict with T1(Query A). In the example, T2 and T4 are in
conflict with T1. Then for each test run that is in conflict
with T1, the test tool requests the application to increase
their state value by one (Query B). Thus now, the state
values of T2 and T4 are 3 and 5, respectively. Finally, the
test tool requests the application to compare T1’s state
value with its testrun value (Query C). If the two values
are different, this means there is at least one test run
that conflicts with T1 has been executed and thus T1 has
to trigger a database reset. In this example, since T1 is
the first test run, its state value is the same as its testrun
value, thus T1 does not fail. In order to model test runs
with different workloads (and thus different execution
time), the test tool repeatedly requests the application
to execute Query A (with random parameter settings)
until the pre-defined number of database requests of a
test run has been reached. For T1, the test tool repeat-
edly requests the application to execute Query A five
additional times in order to reach 8 requests. After T1
finished, T2 is executed in a similar way. First, the test
tool invokes the synthetic application to execute Query
A and it finds that T4 is hurt by T2 (see Fig. 13). Then, the
test tool requests the application to increase T4’s state

value by one using Query B. As a result, the state value
of T4 becomes 6 (note that T1 has updated the state
value T4 once). Afterwards, the test tool requests the
application to execute Query C for T2 and it would get
different values on state (value is 3) and testrun (value
is 2) because T1 is in conflict with T2 (T1 updated T2’s
state value). Therefore, T2 triggers a database reset and
is re-executed after the reset.

When a database reset is carried out, the test tool
resets the tabletest-run-detail by setting the value
of state to the value of testrun. If the database reset pro-
cess is shorter than the user-specific time, the test tool
suspends the execution until the database reset running
time is over.

7 Performance experiments and results

This section presents the results of performance experi-
ments in order to study the effectiveness of the alterna-
tive scheduling strategies for the framework. The
experiments were carried out in order to answer the
following questions:

– How well does the framework scale if the number of
machines is increased? This question is answered by
varying the number of machines in Sect. 7.2.

– How well does the framework scale if the number
of threads (multi-programming level) is increased?
This question is answered by varying the number of
threads on five machines in Sect. 7.3.

– How well do the scheduling strategies improve by
learning conflicts? This question is answered in
Sect. 7.4.

7.1 Experimental environment

The experiments were done on six Linux AMD Opter-
on 2.2 GHz machines with 4 GB of main memory each.
All machines were connected by a 1 G bit Ethernet. In
all experiments, the global scheduler and the conflict
database were installed on one dedicated machine. For
the remaining five machines, each of them was installed
with a local scheduler, a synthetic database application
as described in Sect. 6, and a backend relational database
for the synthetic database application. As the backend
databases, IBM DB2 databases were used. This setup
simulated the case of five installations on five separate
machines. The framework components (e.g., schedulers,
conflict database and algorithms) and the synthetic data-
base applications were implemented in Java 1.4.

Table 2 summarizes the synthetic test runs character-
istics. In all experiments, 1,000 synthetic test runs were
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Table 2 Synthetic test runs

Number of test runs 1,000
Length of test runs 0 min (3 requests) to 3 min (12 K requests)
Number of conflicts 1,000 (low) to 100,000 (high)
Conflict distribution Uniform

used. The length of a test run was chosen randomly in
the range of 0 min (just three requests) to 3 min (around
12,000 requests) using a uniform distribution. These set-
tings were inspired by the real testing environment in
[12]. The number of conflicts between the test runs was
varied from 1,000 (low) to 100,000 (high) and a uniform
distribution was used in order to randomly generate con-
flicts between test runs when the test runs were synthe-
sized. The simulated database reset was configured to
be a 2 min process.

The running time and the number of resets of the
parallel Optimistic++, parallel Slice and parallel Max-
WeightedDiff heuristics in Sect. 5 were studied. In all
experiments, the conflict database was initially empty.
A total of thirty regression iterations was executed,
thereby incrementally building up conflict information
and improving the scheduling decisions. If not stated
otherwise, this section reports on the average running
time and average number of resets of the last ten iter-
ations. The CPU overhead of the schedulers was also
studied. This overhead, however, was negligible (only a
few seconds) in all experiments so that it is not reported
in this paper.

7.2 Varying the number of machines (one thread)

The first question is to study how well the framework
scales with the number of machines. This experiment
varied the number of machines from one to five and the
number of threads on each machine was fixed to one.
Low Conflict: Table 3a shows the running times (in
hours) and the number of resets for synthetic test runs
with a low number of conflicts (1,000). Table 3b shows
the number of executed test runs per hour per machine
for the same set of experiments.

First, from Table 3a, all three strategies achieve a
almost linear speed-up with a growing number of ma-
chines. The running time is almost five times as high if
only one machine is available than if five machines are
available. If only one machine is available, the test runs
take about 1 day; if five machines are available, the test
runs can be carried out within 5.5 h. Table 3b also shows
that all three strategies execute a fairly stable number
of test runs (34 – 40 test runs) per hour per machine,
when the number of machines was varied from 1 to 5.
Although not shown in this experiment, this scalability

would easily go beyond 5 machines up to the point at
which load balancing and bin packing of test runs with
different lengths actually matters or the scheduler itself
becomes a bottleneck.

Second, all three strategies have roughly the same
running times (see Table 3a). They only differ in the
number of resets (parallel Slice and parallel MaxWeight-
edDiff outperform parallel Optimistic++ in this respect;
the parallel MaxWeightedDiff heuristics are slightly bet-
ter than the parallel Slice heuristics, but the margins are
small). However, for the low conflict synthetic test runs,
the number of resets is fairly low for all three strategies
and executing resets does not impact the overall running
time significantly. (Note that resets are executed in par-
allel with test runs and other resets on other machines.)
High conflict: Table 4a shows the results of the experi-
ments carried out with a high number of conflicts
(100,000) between the test runs. Table 4b shows the num-
ber of executed test runs per hour per machine for the
same set of experiments.

Again, from Table 4a, it can be observed that all three
strategies scale well with an increasing number of ma-
chines. In general, a regression test takes about 1.5 days
for one machine and it takes less than 9 h if five machines
are available.

Table 4b also shows that all three strategies execute a
fairly stable number of test runs (24 – 30 test runs) per
hour per machine, when the number of machines were
varied from 1 to 5.

With a high number of conflicts, the parallel Slice
heuristics are the winner with regard to the number of
resets and running time. In the best case, the running
time of the parallel Slice heuristics outperforms the par-
allel Optimistic++ and the parallel MaxWeightedDiff
heuristics by 25%. This shows that the global schedul-
ing of the parallel Slice heuristics successfully sched-
ules conflicting test runs to different machines such that
the number of resets are significantly reduced. The par-
allel MaxWeightedDiff heuristics also outperform the
parallel Optimistic++ heuristics, however, the margins
are smaller.

7.3 Varying the number of threads (five machines)

This experiment studied how well the framework scales
if the multi-programming level is increased on all
machines. The number of machines was fixed to five
machines.
Low conflict: Table 5a shows the running times (in
hours) and the number of resets of the alternative strat-
egies with a varying numbers of threads on five ma-
chines and a low conflict scenario. Table 5b shows the
number of executed test runs per hour for the same
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Table 3 Low conflict, uniform, vary machines

Strategy 1 machine 2 machines 3 machines 4 machines 5 machines

Time Reset Time Reset Time Reset Time Reset Time Reset

(a) Running time (hours), resets
Par. Opt++ 27.6 26 13.3 21 9.8 22 6.8 25 5.5 28
Par. Slice 24.9 7 13.1 9 9.7 8 6.3 9 5.4 7
Par. MWD 25.1 7 12.8 8 9.6 8 6.3 7 5.4 6
Strategy 1 machine 2 machines 3 machines 4 machines 5 machines

(b) Test runs per hour per machine
Par. Opt++ 36.2 37.6 34.0 36.8 36.4
Par. Slice 40.2 38.2 34.4 39.7 37.0
Par. MWD 39.8 39.1 34.7 39.7 37.0

Table 4 High conflict, uniform, vary Machines

Strategy 1 machine 2 machines 3 machines 4 machines 5 machines

Time Reset Time Reset Time Reset Time Reset Time Reset

(a) Running time (hours), resets
Par. Opt++ 41.5 266 19.9 251 13.2 240 10.2 245 8.4 262
Par. Slice 33.8 167 16.4 138 10.8 124 8.3 117 6.3 115
Par. MWD 39.5 250 19.7 239 13.1 233 10.1 244 8.1 246
Strategy 1 machine 2 machines 3 machines 4 machines 5 machines

(b) Test runs per hour per machine
Par. Opt++ 24.1 25.1 25.3 24.5 23.8
Par. Slice 29.6 30.5 30.9 30.1 31.7
Par. MWD 25.3 25.4 25.4 24.8 24.7

set of experiments. Table 5a shows the running time of
all three strategies scale well with an increasing num-
ber of test threads. Interference is not an issue if the
number of conflicts is low. In particular, Table 5b shows
that the throughput (number of executed test runs per
hour) increases with an increasing number of threads.
This observation holds for up to 50 concurrent threads.

Since the number of conflicts is low, all three schedul-
ing strategies have almost the same performance: from
Table 5a, both Parallel Slice and Parallel MaxWeighte-
Diff have the lowest number of resets, but in terms of
response time, all three strategies are almost identical.
High conflict: Table 6a shows the running times (in
hours) and number of resets of the alternative strate-
gies with different numbers of threads on five machines
and on a high conflict scenario. Table 6b shows the
number of executed test runs per hour for the same
set of experiments. If the number of conflicts is high,
interference matters. Comparing Table 5a and Table 6a,
it can be seen that both the number of resets and the
running time are much higher with a high number of
conflicts. From Table 6b, the throughput (number of
test runs executed per hour) of the three strategies
increases with an increasing number of test threads.
With 50 concurrent test threads, interference matters
and the throughput of parallel Optimistic++ and parallel

MaxWeightedDiff drops. The parallel Slice heuristics, on
the other hand, have a constant throughput even if the
number of threads is increased to 100 (not shown in the
tables).

In terms of response time, from Table 6a, parallel Slice
is the winner as it has a significantly smaller number of
resets.

7.4 Improvement with the number of iterations

As mentioned in the description of the test environ-
ment, we carried out 30 regression iterations for each
set of experiments and reported the performance aver-
aged over the last 10 out of these 30 iterations. This
section studys how the three alternative strategies
improve in these 30 iterations. Figure 14 shows the num-
ber of resets of each iteration in the experiments of exe-
cuting 1,000 test runs with 5 machines and each machine
has 10 test threads. This experiment was carried out with
1,000 conflicts (low) and a uniform distribution.

In the first iteration, all strategies behaved in the
same way: all of them caused 17 database resets. The
parallel Optimistic++ did not improve with the num-
ber of iterations because it does not learn and does not
re-order test runs. Both parallel Slice and parallel Max-
WeightedDiff improved with the number of iterations,
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Table 5 Low conflict, uniform, five machines, vary threads

Strategy 1 thread 10 threads 20 threads 30 threads 40 threads 50 threads

Time Reset Time Reset Time Reset Time Reset Time Reset Time Reset

(a) Running time (hours), resets
Par. Opt++ 5.5 28 1.0 17 0.8 13 0.7 11 0.5 8 0.5 10
Par. Slice 5.4 7 0.9 5 0.6 4 0.5 4 0.4 4 0.4 4
Par. MWD 5.4 6 0.9 5 0.6 5 0.5 4 0.4 4 0.4 4
Strategy 1 thread 10 threads 20 threads 30 threads 40 threads 50 threads

(b) Test runs per hour
Par. Opt++ 181.8 1000.0 1250.0 1428.6 2000.0 2000.0
Par. Slice 185.2 1111.1 1666.7 2000.0 2500.0 2500.0
Par. MWD 185.2 1111.1 1666.7 2000.0 2500.0 2500.0

Table 6 High conflict, uniform, five machines, vary threads

Strategy 1 thread 10 threads 20 threads 30 threads 40 threads 50 threads

Time Reset Time Reset Time Reset Time Reset Time Reset Time Reset

Par. Opt++ 8.4 262 3.2 111 3.2 92 3.1 89 2.3 75 3.0 80
Par. Slice 6.3 115 3.0 94 2.8 80 2.6 79 2.3 67 2.3 66
Par. MWD 8.1 246 3.1 108 2.9 89 2.8 81 2.8 83 3.1 88
Strategy 1 thread 10 threads 20 threads 30 threads 40 threads 50 threads

(b) Test runs per hour
Par. Opt++ 119.0 312.5 312.5 322.6 434.8 333.3
Par. Slice 158.7 333.3 357.1 384.6 434.8 434.8
Par. MWD 123.5 322.6 344.8 357.1 357.1 322.6

thereby learning more and more conflicts and adjusting
the order correspondingly. In this experiment, parallel
Slice improved the fastest; it took only a few iterations
before a good schedule was found. Parallel MaxWeight-
edDiff, on the other hand, learnt much slower and was
bumpy; it sometimes needed more resets than in the pre-
vious iteration. Nevertheless, parallel MaxWeightedDiff
improved gradually and had comparable performance
to parallel Slice after 20 iterations.

8 Related work

Regression testing is a well-studied technique in soft-
ware engineering. The most prominent framework is
JUnit [3] for Java applications. JUnit is not directly
applicable to testing database applications or more gen-
erally stateful applications. DBUnit [7] is an extension of
JUnit, which facilitates the steps of setting up and
resetting the test database during testing. Furthermore,
products that support a parallel test environment for
stateless applications are beginning to appear on the
marketplace; e.g., TestStand [1]. These products can
directly benefit from the results of this work. In the
software engineering community, there has been a great
deal of work in the general area of testing; e.g., white
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box and black box testing, analysis of the coverage of
test cases, and methodologies to plan and integrate the
test phase into the software development life cycle [20].
In order to speed up the execution of testing, the selec-
tive execution of test runs has gained a great deal of
attention (e.g., [18]). The idea is to execute only those
test cases that are potentially affected by a change in the
application. Clearly, all that work is orthogonal to the
work presented in this paper.
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In another aspect, the scheduling problem in this
paper is related to compiler design for multi-CPU
machines or CPUs with hyper-threading (e.g., [6]), but
with totally different assumptions (CPU needs to know
and analyze the code) and performance trade-off con-
siderations.

In the database community, there is only very little
work on testing. The most relevant work is the work
described in [11] and [12]. This work generalizes the
framework and algorithms of [11] and [12] for a par-
allel execution of test runs on multiple machines with
multiple test threads. The RAGS system [19] generates
a large number of SQL queries in order to test a rela-
tional database system. There has also been work on
the generation of test databases based on integrity con-
straints defined in the database schema [5,17]. Further-
more, there has been work on quickly generating large
databases with certain attribute value distributions in
order to test the performance and scalability of a data-
base system [10]. Again, all this work is orthogonal to
the work presented in this paper.

9 Conclusion

This paper proposed a framework to speed-up the exe-
cution of a potentially large number of tests for data-
base applications. In this framework, several machines
are available for testing in parallel. To better exploit the
resources of a single machine (e.g., multiple processors,
disks, and co-processors), test runs can be executed by
multiple threads on the same machine concurrently. A
two-step scheduling architecture was proposed to exe-
cute tests on this framework. This approach has several
advantages. First, it controls the state of the database
and applies expensive database reset operations lazily,
thereby minimizing the number of times that expensive
database reset operations need to be carried out. Sec-
ond, it makes dynamic decisions to carry out load bal-
ancing and schedule conflicting tests in the best possible
way. Based on this general approach, three scheduling
strategies were devised that differ in the way that they
order the test runs and make dynamic scheduling deci-
sions for concurrent test runs.

A careful methodology to benchmark various testing
frameworks and testing tools for database applications
was designed. It allows users to control the testing envi-
ronment (e.g., the number of test runs and the number of
conflicts between test runs) so as to test various aspects
of a database application testing tool. By the means of
simulation, it could be shown that all the three proposed
strategies, parallel Optimistic++, parallel Slice and par-
allel MaxWeightedDiff could achieve linear speed-up

in test run execution time. If the number of threads
increases, all of them could also achieve super-linear
speed-up. Only for a very high degree of concurrency
(40 or more test threads) and under a high number of
conflicts between test runs, the performance of paral-
lel Optimistic++ and parallel MaxWeightedDiff deteri-
orate due to interference. Parallel Slice, on the other
hand, is able to maintain linear speed-ups under all cir-
cumstances tested by the experiments.

The initial results obtained in this study are encour-
aging. Nevertheless, there is need for future work. First,
it is possible to think of more sophisticated schedul-
ing strategies (e.g., based on machine learning tech-
niques). That way it might be possible to get even better
results. Second, there is room for improvement with
respect to the scheduling of the reset operation in lo-
cal scheduling (Sect. 4.2). In addition, an important
open question is how to dynamically control the multi-
programming level (number of concurrent test threads)
for local scheduling; we plan to adopt ideas from adap-
tive load control techniques to avoid lock contention
thrashing in databases [16]. Finally, we still believe that
the whole field of testing database applications is still in
its infancy. There are still several aspects that nobody
has ever studied; an example is testing non functional
requirements such as scalability of a database applica-
tion.
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