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Abstract In this paper we will prove saturation estimates
for the adaptive hp-finite element method for linear, sec-
ond order partial differential equations. More specifically we
will consider a sequence of nested finite element discretiza-
tions where we allow for both, local mesh refinement and
locally increasing the polynomial order. We will prove that
the energy norm of the error on the finer level can be esti-
mated by the sum of a contraction of the old error and data
oscillations. We will derive estimates of the contraction fac-
tor which are explicit with respect to the local mesh width and
the local polynomial degree. In order to cover p-refinement
of finite element spaces new polynomial projection operators
will be introduced and new polynomial inverse estimates will
be derived.
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1 Introduction

In this paper, we will consider the discretization of linear,
second order elliptic partial differential equations by finite
elements. Nowadays, adaptive techniques based on a pos-
teriori error estimation have been established to set up a
sequence of finite element approximations which should
converge towards the exact solution. The advantage com-
pared to uniform mesh refinement is that the finite element
spaces are enriched from level to level in a problem oriented
way.

A posteriori error estimation and adaptivity are well
established methodologies for the numerical solution of
partial differential equations by finite elements (cf. [2,4—
6,11,18,25,32,36,38]).

Some types of error estimators as, e.g., hierarchical
error estimators (see, e.g., [9,10,12]) require explicitly or
implicitly the saturation assumption which states that the
error on the refined mesh and/or with higher polynomial
degree is strictly smaller than the error on the previous
mesh/polynomial degree. In the pioneering paper [19] the
saturation assumption is proved for the P;-finite element
method for the Poisson problem in two spatial dimensions
under the assumption that the data oscillations are small.
In [25] the convergence of adaptive finite element meth-
ods (AFEM) for general (nonsymmetric) second order lin-
ear elliptic partial differential equations is proved, where the
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term “adaptivity” is understood in the sense of adaptive mesh
refinement and the polynomial degree stays fixed. The theory
in [25] also generalizes the proof of the saturation property
to quite general 2nd order elliptic problems and estimate the
error on the refined mesh by the error of the coarser mesh
plus a data oscillation term.

In this paper, we will focus on adaptive hp-refinement,
i.e., the finite element space is enriched by increasing locally
the polynomial degree of the ansatz functions while we allow
also for conventional local i-refinement, where the elements
of the finite element mesh are geometrically subdivided. We
will show (and quantify) that, for residual a posteriori error
estimation, the saturation property, i.e., the error contrac-

tion from level to level behaves like (1 — #) provided

the data oscillations are sufficiently well resolved. Hence, p-
refinement should be combined with A-refinement in order
to guarantee that the numerical solution converges towards
the exact solution. Common strategies for 2p-refinement are
based on the estimation of the local regularity of the solu-
tion on a triangle by using error estimators for different local
polynomial orders in order to decide for /- or p-refinement;
for details we refer to [3,14,17,21,29,33,34,37]. The hp-
refinement indicator which is implemented in the software
package PLTMG (cf. [7]) is based on the superconvergence
result that recovered derivatives for elements of degree p
have higher order accuracy, provided the true solution has
the required smoothness (cf. [8]).

Our a posteriori error estimation takes into account data
oscillations but does not incorporate errors due to numerical
quadrature [1], to iterative approximations of the solution of
the linear system [22], and to approximations of the domain
[15,20].

The paper is organised as follows. In Sect. 2 we will
introduce the elliptic boundary value problem and formu-
late appropriate assumptions to ensure the well-posedness of
this problem.

The hp-finite element method will be defined in Sect. 3 and
standard assumptions on mesh refinment, shape regularity,
and the polynomial degree distribution will be introduced.

In Sect. 4 we will recall the definition of the residual a pos-
teriori error estimator for 4 p-finite elements and its reliability
estimate.

In Sect. 5 we will introduce some polynomial projection
operator which maps global polynomials on triangle patches
to piecewise polynomials of lower degree. This allows to
localize projected residuals by multiplying the resulting
piecewise polynomials with appropriate bubble functions.
We will investigate the stability constant of the projection
operator while its explicit dependence on the polynomial
degree for p-refinement will be analysed numerically in
“Appendix 1.

The saturation estimate will be proved in Sect. 6.
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In “Appendix 2” we will derive polynomial inverse esti-
mates containing those bubble functions as weights which
have been used in Sect. 6 to prove the saturation property.

Remark 1 The theory in [25] indicates how an adaptive finite
element procedure should be defined such that the sequence
of finite element solutions converges. Note that the rate of
convergence for adaptive finite elements is investigated in,
e.g., [11,35,36].

Besides the estimates derived for the saturation property,
the convergence theory requires a reduction of the data oscil-
lations which, for A-refinement, is (essentially) related to the
fact that the local mesh width shrinks by a fixed factor for
the marked elements. For p-refinement, the analogue condi-
tion is that the hp-weight of the data oscillations term also
shrinks by a factor smaller than one. Due to the non-robust
p-dependence of polynomial inverse estimates this cannot be
expected in a straightforward way. In order not to overload
this paper we decided to leave the convergence of an adap-
tive hp-finite element method as well as the detailed descrip-
tion of the hp-adaptive refinement strategy to a forthcoming
paper. We also emphasize that a posteriori error estimators
which are based on the hypercircle method (cf. [30]) such
as the equilibrated residual error estimates are p-robust (see

[13D).

2 Setting

Let 2 C R be a bounded Lipschitz domain. Consider the
Dirichlet problem for given f € L* (£2) :
—div (AVu) 4+ (b, Vu) +cu = f in§2,

u=0 onds 2.1)

with variational formulation: Find u € HO1 (£2) such that

a(u,v) :=/Q (AVu, Vv) + ((b, Vu) +cu)v:/gfv

= F(@) VYveH] (). (2.2)

Assumption 1 The coefficients in (2.2) satisfy A € C!
(2. RG:).be O (2.RY), c € L% (@), and

sym

(Av, v)
< sup sup
x€R2 peR4\ {0} (v, v)

0 <oa:=inf inf
xeRyeRd\(0} (v, V)

=B <00
. |
0 5;2& (c(x)— Edlvb(x)).

We set coo = llellpoey and  boo =
max{||b||Loo(_Q’Rd) , ||diVb||LOO(Q)}. The energy norm is

denoted by



Saturation estimates for /p-finite element methods

197

. 1/2
lvllppg = a (v, v)'/2,

where Assumption 1 implies that ||-||ppg 1S @ norm and
Friedrichs inequality implies

lvl3pg > / (AVv, V) = o [Vo72 o)
2

> Z )2 2.3)
— v , .
- CF Hl(.Q)

where cg denotes the Friedrichs constant. In fact, the norms
I-llppe and |||l ;71 are equivalent since also

. b
10l < Ca 0131 ) With Ca = == + max {coo. B}

2.4
For a subdomain o C §2 we set
101FpE.0 = do (v, V)

= / ((Avv, V) + (b, Vo) v + cv2) .

Remark 2 The constants in the estimates below possibly
depend (continuously) on «, B, ¢xo, and by, and might tend
to infinity with increasing B, boo, Coo, @~ '. We suppress the
dependence in the notation.

Note that these conditions ensure that problem (2.2) is
well posed and the coercivity estimate holds trivially

a(,v)=|vldpg Yve H] (2).

Assumption 1 implies the continuity of a (-, -), i.e.,

a(u,v) < Cs|vlppg lvllppe Vv € Hy (2) 2.5

with Cs := 1 + cple.

3 Conforming /ip-finite elements

Let 2 C R? be a polygonal domain and let 7 :=
{K; : 1 <i < N} denote a conforming simplicial finite ele-
ment mesh. With each element K € 7 we associate of poly-
nomial degree px € N> which are collected into the poly-
nomial degree vector p = (pk)ge7- Then, we define the
conforming hp-finite element space for the mesh 7 with
local polynomials of degree px by

sP = {ueH(}(Q)wKeT u|KeIP’pK}. G.1)

Here P, denote the space of bivariate polynomials of maxi-
mal total degree p. For a subset w C £2, we write P, (w) to
indicate explicitly that we consider u € P, (w) as a polyno-
mial on w. Formally we define P_; := {0}. We set

pr =max{px : K e€T}.

By convention the triangles K € 7 are open sets.
The boundaries of the triangles K € 7 consist of one-
dimensional edges which are collected in the set £. Fur-
thermore, let £ = {E € £ | E C £2}. The union & =
UEes, E forms the inner skeleton of the mesh 7. For each
E € & we fix one unit vector ng which is perpendicular to
E.If E C 052, the orientation is chosen such that ng points
to the exterior of 2. The £-piecewise constant vector field
n is given by n|g := ng. Finally we define the jump of
some piecewise smooth function g € [[xe7 H' (K) across
E € &g by

[g1z () o= lim (5 (x + eng) — g (v — enp)) Vo€ E.

This defines the jump function [g]|z := [g]g forall E € &g
almost everywhere.

Let N, }2 denote the set of inner vertices of 7. For z € N},
we denote by b; € Sé— the canonical continuous, piecewise
affine basis function. The volume star for the node z is given
by w, := supp bzl and its measure is denoted by |w,|. For

e NL, weset &, = {EGS:ECGQﬁcSZ} and 7, =
{K € T : K C w;}. Let Vg denote the set of inner vertices
of K and let wg = UzEVK

We denote by V7 the trianglewise gradient and by divz
the trianglewise divergence operator. Let h7 denote the 7 -
piecewise constant function with values h7|g := diam K
for all K € 7. Similarly we define hg : S — R as the &-
piecewise constant function hg|g := diam E forall E € £g.
The maximal mesh width in 7 is defined by

RT max = max {diam K : K € T} .

If 7 is clear from the context we write /i short for A7 pax.
The shape regularity of 7 is described by the constant
diam K

pr=maxi —— K eT,

: 2
diam Bg (3-2)

where By is the maximal inscribed ball in K. Since 7
contains finitely many simplices the constant p7 is always
bounded but becomes large if the simplices are degenerate,
e.g., are flat or needle-shaped. The constants in the follow-
ing estimates depend on the mesh via the constant p7—they
are bounded for any fixed p7 but, possibly, become large for
large p7.

Concerning the polynomial degree distribution we assume
throughout the paper that the polynomial degrees of neigh-
bouring elements are comparable':

o7 (pk +1) < prr+1< pr (px + 1)

VK,K' €T withK N K’ # §. (3.3)

1 We use here the same constant p as for the shape regularity to simplify
the notation.
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Fig. 1 Refinement patterns of a triangle which satisfies the interior
node property. Second row, from left to right: Pic. 1: Regular refinement.
Pic. 2,3: Refinement patterns for the elimination of hanging nodes. Third
row if two triangles K, K, share an edge E and they will be both /-
refined, then the common edge E must get an interior point x g

The finite element solution is defined by:

Findu% € S§ such thata (u}-,v) = F (v) Vv e ST
(3.4)

In view of an adaptive solution process we generate a
sequence Sy := S%, £ € Ny, of finite element spaces, where
we require that all meshes 7, are conforming and the con-
stants pg corresponding to the shape regularity of the mesh 7,
and the polynomial degree vector p, are uniformly bounded
from above by some positive constant p. We also assume that
Ty+1 is a refinement of 7 in the sense that for any K € 7,
there is a subset sons (K) C 7y such that

J x

K'’esons(K)

K =

To reduce technicalities we make the following assump-
tion concerning the concrete refinement method (cf. Fig. 1).
As usual for conforming /-refinement, there exists two types
of refinements. Some triangles are marked for refinement
while this marking induces some additional refinement of
neighbouring triangles in order to avoid hanging nodes.

Assumption 2 (a) A triangle K, which is marked for refine-
ment, is regularly refined by connecting the midpoint of
the edges as well as the midpoint of the longest side with
the opposite vertex in K (cf. Fig. 1, Pic 1) so that the set
sons (K) contains six new triangles.

@ Springer
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Fig. 2 Definition of the polynomial degrees. From left to right: Picl:
regular refinement. Pic 2: K is h-refined, K is p-refined and pg > pg.
Pic 3: K is h-refined, K is p-refined and pg < pg.Pic 4: p-refinement

(b) To eliminate hanging nodes neighbouring triangles are
refined by inserting a line L from one hanging node to
the opposite vertex and connecting the vertices of K with
the midpoint of L (cf. Fig. 1, Pic 2). If there is a further
hanging node then this node is connected also with the
midpoint of L (cf. Fig. 1, Pic 3). If K contains three
hanging nodes or the shape regularity of the new triangles
exceeds some threshold it will be regularly refined.

(¢) For any triangle K € 7y, one of the following conditions
are satisfied (cf. Fig. 2):

(i) K will be p-refined, i.e., K € Zy4; and the polyno-
mial degree is raised by 1.
(ii) K will be h-refined, i.e., there exists a set of sons

0 (K) C Tyy1 withK = UK,ESOHS(K)F and at least

one vertex of each K’ lies in the interior of K. The
polynomial degree px defines the polynomial degree
on K’ € sons (K) as follows

PK if K is regularly refined,
3K €7, : K' N K is a full

. dge of K
N =+ 1if e~ P
PK P K is p — refined
PR = PK
PK otherwise.

Assumption 2 implies the interior node property (cf. [25,
Sec. 3.4)).

Definition 1 (interior node property) Any K € 7; which
will be regularly h-refined and the three adjacent triangles
T’ € T; as well as their common sides contain a node of the
finer mesh 7 in their interior and the resulting triangula-
tion 7y has no hanging nodes.

Remark 3 Let Ky, K, € 7y denote two triangles which share
an edge E and let p,, := pg,, m = 1,2. The condition
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u € Hj (£2) in the definition of s%f in (3.1) implies that
for any u € S, the one-dimensional polynomial degree of u
along E satisfies

deg (ulg) < pg :=min{p1, p2}.

Notation 3 7o reduce the number of indices we write uy
short for u%, be short for b7, dive short for divy,, pe short
for p1,, ./\/gl for the inner triangle vertices for the mesh Ty,
etc. The star w; corresponds always to the triangulation Ty
while we suppress this additional index in the notation of w;.

Definition 2 The saturation estimate for a sequence of finite
element solutions (uy), is an estimate of the form

lues1 — ullppg < x¢ llue — ullppg

oo
for some k; < 1 such that HK_IK[ =0.

It was proved in [19] that the saturation estimate holds
for the case of a bounded, two-dimensional domain §2 with
coefficients

A=Lb=0 and c=0, (3.5)

where I is the 2 x 2 unit matrix and the analysis was restricted
to Py finite elements with A-refinement. It was proved that it
is necessary and sufficient for the saturation estimate that the
data oscillations [which will be introduced in (6.5)] are con-
trolled. Here, we generalize this result to the setting described
in Sect. 2 and also derive p-explicit estimates for the con-
traction factor .

4 Residual a posteriori error estimation

The Galerkin error is denoted by ey := u — uy. In the follow-
ing, we will investigate under which condition the saturation
estimate of the form

llee+1llppe < k¢ lleellppE » 4.1

hold for some k, € ]0, 1[ depending only on the polynomial
degree p and the shape-regularity of the mesh but not on the
mesh width.

For the proof of the saturation estimate, we will use tools
from residual a posteriori error estimation which we briefly
recall: To obtain an a posteriori error estimate we obtain by
Galerkin’s orthogonality for every v € S;

leellppg = a (e, e — v) = /Q res (ug) (e — v)
+ / Res (ug) (eg — v), “4.2)
(S27)

where the volume residual res : S, — L2 (£2) is given by

res (v) := f + divg (AVv) — (b, Vv) — cv

and the edge residual Res : Sy — L? (Sg) is given by

Res (v) := — (An, [Vv]) ae.inGg.

By choosing v € S, as the Clément interpolation of e; and
using a trace inequality for the last term in (4.2), results in
the classical residual a posteriori error estimation. In [26,27]
the local and global residual a posteriori error estimator is
defined by

hi :
77%( v) == H —res (v)
PK L2(K)
2
hg
+ > —Res (v) YveS, VK eT;.
ECoKNS$2 sz L?
(E)
4.3)

The global error estimator is given by

ne) = | > nk .
KeT;

Due to the finite overlap of the stars w;,, the error estimator
(4.3) is equivalent to

™ (v) = z n? (v) with

ze./\/'e1

h 2

n? (v) = H —res (v)
Pz L2 ()
P 2
+ Z | < Res (v) (4.4)

E€E. Pz L2(E)
and
p, :=min{pg : K C w;} and
h, :=max{hg : K C w;}. 4.5)

Theorem 4 (Melenk, Wohlmuth) Ler 2 C R? be a bounded
Lipschitz domain. Let a (-, -) in (2.2) satisfy Assumption I
and let f € L?(2). The solution of (2.2) is denoted by
u and its Galerkin approximation by uy [see (3.4)]. There
exists a constant Cye independent of the local mesh width
and the local polynomial degree but, possibly, depending on
the constants in Assumption 1 such that

lu — ugllppg < Creine (ue) < Creamy™ (ug) .

The proof of this theorem is a slight modification of [27,
Theorem 3.6] and we include it here for completeness.

Proof The error u — uy can be estimated by using (4.2) and

by setting w = e, — ey with the 2p-Clément interpolation
operator [ as in [27, Section 2.1]:
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leclor = [ wres @+ [ wRes(wo)
2 (G1o)

< Creine (ue) lleellppg

for all v € Sy. Clearly we have

ne (V) < 0™ (v) < Cene (),

where C: depends only on the constant p, in (3.2) and
(3.3). O

5 Projection of polynomials onto piecewise polynomials

The proof of the saturation estimate is based on estimates
of some projection of the volume residual to the space of
piecewise polynomials locally on stars w,. In this section,
we will derive stability estimates for this projection.

We start with a result of a weighed L projection of global
polynomials of maximal total degree p to piecewise polyno-
mials of lower degree. The setting is as follows.

Let z € R? and let 7, ;== {K; : 1 <i < g} denote a trian-
gle patch around z, i.e., 7; is a set of (open) triangles which

— are pairwise disjoint,

— share z as a common vertex.

— Forall 1 <i < ¢, the triangles K;_1 and K; share one
common edge.’

3 . q - o q )

Let’ w; := int (Uile,) and let G := w,; N UizlaKl

denote the inner mesh skeleton. We denote by P, (7;) the
space of piecewise polynomials, i.e.,

]PP(TZ)::{f:wZ\G—)R|V1§i§q;
flK[ € ]P)p (Kl)} .

Next, we will introduce weighted scalar products and asso-

ciated norms. The weights are defined triangle- and edge-

wise and depend whether the triangle will be h-refined of
p-refined.

5.1

Definition 3 (a) p-refinement.
If K will be p-refined, then, the cubic weight function @;(3)
and quadratic edge bubble ®f are given, on the reference

element K := conv ((8), ((1)), ((1))) and on the reference
interval E := 0, 1), by

Q)g) (x1,x2) = (1 —x; —x2)x1x2 and

Pr(x) =x(1—-x), 5.2)

2 We use here the convention K¢ := K,. Clearly g > 3 holds.

3 For a subset @ C R?, we denote by int (w) the open interior of w.
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Fig. 3 Tllustration for the notation of a regulary h-refined triangle K.
The edge E = AMy splits K into the two triangles K| and K;. The
subtriangle K| has vertices A, Mc, xx while the vertices of K} are
A, xg, Mp

while on K and E we set
o) =P oAy and op=dpoA;.  (53)

where Ak : K — K and AfE : E — E are affine pull-
backs.*

(b) h-refinement.

The edge bubble @ for h-refinement is the same as for
p-refinement.

(bl) Let K be regularly refined (cf. Fig. 3). Then,
qﬁg),( is the piecewise linear function on the sub-
mesh sons (K) which has value 1 at xg and value
0 at all other vertices of the refined mesh. Let £
denote the edge as indicated in Fig. 3 which splits
K into the triangles K and K>.

Then @;?) is the product of the barycentric coor-
dinates for the two endpoints of E with respect to
the two triangles K1 and K».

(b2) If K is non-regularly h-refined (cf. Fig. 1, Pic.
2,3), then the weight function for K is the piece-
wise linear bubble function QD;(U which interpo-

lates @;(3) at the vertices of the submesh sons (K).

The weight function for a triangle K is

(1)5(3) if K will be p-refined,
(1)5(1) if K will be non-regularly

Pk = (5.4

h-refined,
<1>;(1)K + @;?) if K will be regularly i-refined.
For z € N, the function @, : w, — R is given by
®Z|K = ¢[(

VK € w, (5.5

and extended by zero to £2.

4 Note that the scalings compared to the scalings in [39, p. 83] differ
by fixed constants of order 1.
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These weight functions induce bilinear forms (-, -) ¢ and
('7 ')z Via

(u,v)g :=/ dguv and
K

(u,v), = Z (u,v)g =/

D .uv
KCow, @z

and a corresponding norm ||-||, := (-, -)2/2.

Next we define a projection
e : P, (K) > Pp_i (K)

by
/@K (ngu)wz/ Pxvw  YweP, ;1 (K), (5.6)
K K

where the definition of @ is asin (5.4), i.e., depends on how
K will be refined.

Definition 4 For a triangle patch 7, let p, be as in (4.5). The
star-wise polynomial projection I1, is applied to polynomials
v € P, 1 (w;) and given by

4)5(3)1_[;1?—1 if K is p-refined,
d);(l)v if K is non-

(Iv)[g = regularly h-refined,
q);(]’)Kv + Pk I'III’;_1 v if K is regularly

h-refined,

Theorem 5 Let p > 1. Forallu € P, (w;), the condition

Z/@Quw:o Vw e P, 1 (T;).
KeT, K

5.7

implies u = 0.

For a proof we refer to [24, Theorem 1.1]. A consequence
of Theorem 5 is the following corollary. To reduce technicali-
ties we make an assumption on the minimal local polynomial
degree.

Assumption 6 For all £ and z € /\/el itholds: If all K C w,
will be p-refined then p, > 2 otherwise p, > 1.

Corollary 1 Let Assumption 6 be valid. The projection T1,
is injective.

Proof If all triangles in w, are p-refined, then the injectivity
follows from Theorem 5.

If, atleast, one triangle is -refined we distinguish between
two cases:

(a) K isnon-regularly h-refined. Then, the positivity of @;{1)
implies (IT;v)|x =0 = v =0.

(b) K is regularly h-refined. We use the notation as intro-
duced in Fig. 3. Note that (II; v)|1<;u1<§

= ((D%?K (v + H’,?_lv))

’ A
K UK,

(bl) If the degree of v satisfies degv =

it holds % "o =

205(1) v
K.K" | xruk

Pz — 29

U|K Thel‘l, HZ‘U'K{UKé =

.- The positivity of ¢2?K on Kj UK}
together with the analytic continuation principle, i.e.,
le{UKé =0 = v = 0, imply the injectivity of
I1, for this case.

(b2) If degv = p, — 1, it holds v + l'[’;("_lv # 0. The
positivity of @g),( again implies (I v)|1<;u1<§ # 0.

[m]

Corollary 2 Let Assumption 6 be valid. For all z € N}, the
estimates

) v, IT;v) 124,
i # > cr. (5.8)
veP, 1 (:)\[0} lvll2

c 45;1/21-[20

1/2
Py S T, < ol

< vl 2@, - 5.9)
hold. The constant c in (5.8) satisfies 0 < ¢y < 1 and
depends, possibly, on the polynomial degree p and the shape
regularity of the mesh.

Proof For the proof of (5.8), we distinguish between the fol-
lowing cases.

(a) If all triangles in w, are p-refined, estimate (5.8) for
some constant ¢; > 0 follows from the injectivity of
[T, via the compactness argument in [24, Theorem 6.4]
and the equivalence of norms on the finite dimensional
space P, 1 (w;).

(b) At least one triangle in w, is h-refined. Let K C w;.

. i 1)
(b1) K isnon-regularly h-refined. Then, the positivity of @

> O forallv €

implies (v, IT;v) 2k = H(bl/zv ’
(K) T s
Py, -1 (K)\{0}.

(b2) K is regularly h-refined. We use the notation as intro-

duced in Fig. 3. Then,

(U, sz)Lz(K)
_ (1 p—1
= (v, Q)K’KU)LZ(K) + (v, P Iy v)

_ (1) pz—1 pz—1
= (v, Q)K,Kv)LZ(K) + (HK v, P Iy v)
0P 1%
= H,/cb;?Kv + H\/GDKHI;(’_ v
L2(K)
/(D :
<DK’KU

LX(K)

L% (K)

L% (K)

L*(K)

>

Again, the positivity of @g?K on K| U K} implies
(v, )2k > Oforallv e P, 1 (K)\{0}.
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For the estimate (5.9) we again consider the different
refinement options separately. It is easy to check that point-
wise on K, we have @ < 1 so that 45%( < Pg.

(a) K is p-refined, i.e., @ = <1§;<3). Estimate

2

(v, TLV) 120 =/ oy v = | Vax
K

L*(K)
(5.10a)

holds since H[I’g_l is a projection. On the other hand,

2
—1
(U, HZU)LZ(K) = /K @K (HI;{@ U)

2
= H(DI;I/ZHZU

. (5.11a)

(b) K is non-regularly A-refined. Then,

2

(0, TLv) 2y = H\/QBKU (5.10b)

L2(K)

From (5.10b) we get

2
(=Y

2

= H (PIEI/ZHZU

. 5.11b
LK) ( )
(c) K isregularly h-refined. Then,
(U, HZU)LZ(K)
(1
= ’ W/CDK,KU
=\ (pg,)KU

<2|an

2
2
n H\/@n’,’g”v
L2(K)

2 2

+ H\/ @KU’

L*(K)

LZ(K) LZ(K)

2
(5.10c)

L2(K)

For the first estimate in (5.9) we use the pointwise estimate
on K

_ 2
(M,v)? = (@g’),(v + @ TIE 1v)
2 2
<2 ((@}Q}Kv) + (@xmf ) )
2
=2 (@ +ox) (q)ﬁ(”,(vz + ok (M) )
M 2 pe=1\?
< 4ox (D 0? + ok (o)
to get

@ Springer

/ @ ! (M,v)? (5.11c)
K

54(”,@}(‘},@

= 4 (U, HZU)LZ(K) .

2 2
Jorml! ’
* H Kk v L2(K)

L%(K)

The second estimate in (5.9) follows by summing the
inequality (5.11c) over all K C w; while the third one is
a consequence of [[v]l; < [[vllz2(,,) since 0 < &, < 1.

The first estimate in (5.9) also follows by summation over
all K C w, the inequalities (5.11). O

The derivation of a sharp positive lower bound for ¢,
seems to rather involved. Instead we have performed numer-
ical experiments (cf. “Appendix 17) to support the following
conjecture.

Conjecture 1 The constant c; is bounded from below by a
constant cy > 0 which only depends on the shape regularity
of the mesh but neither on the mesh width nor on the polyno-
mial degree p.

Forz € ./\/ll, we introduce the subspaces for K € 7y (recall
Notation 3)

Se+1.x = {u € Sey1 | suppu C K} and

Set1,z :={u € Sg41 | suppu C wg}. (5.12)

Theorem 7 Let Assumptions 2 and 6 be satisfied. For z €
NLE €&, andw e Sy, let Jg (w) := (Ang, [Vw]g). Set
p = p; [cf. (4.5)]. For any v € Pp_1 (w,), there exists a
©e+1,z € Se41,z such that

> [ =% [ seeini (5.130)
E€€; E E€€; E
cx thevll = | [ v (b} = o). (5.13b)
Wz
—1/2 1
Hq§z (bz _§0€+1,z) L2(.)
bl H (b‘ — 0 Z) ‘ < Cih,. (5.13¢)
p z “JIIPDE,w, —

The constant ¢, > 0 only depends on «, 8, bso, Coo, and the
shape-regularity of the mesh while Cy is a number.

Proof We make the ansatz

Yotz =b — Y1z,
for some 41 ; with 1//5+1,Z|K € Sy41,x forall K C w;.
Hence Y41, | x vanishes on all edges and condition (5.13a)
trivially is satisfied.
Statement (5.13b) is trivial for v = 0 and we consider here
veP, 1(w;)\{0}. Let
IT;v

vl

wﬁJrl,z = hz
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and observe that ¥p41 ; € S¢+1.;. Hence, by Corollary 2 we
obtain

/w v (b; - <P£+1,z) =

Z

(v, TT2v) 12|
lvll,

> cxhz vl

Z

Finally, we consider estimate (5.13c) and get

—1/2

[t ot o
—1/2 (11 o;
o (01 )| =
” z 7 Pe+lz L2(02) z ol
172
5.9) h, (v, TTzv) 59) -
OO0 T e O (5.14)
c vl
For the H'-seminorm we get
IT;v
[v (ot = 0], =2 |7 (70)] - 599
L2 () vl L2(w;)

We distinguish again three cases.

Casea Let K C w, be a triangle which will be p-refined.
Hence, &g = 45;(3) (cf. Definition 3).

We apply Lemma 3 to obtain

2 2
2 ) P 1/2 4 p:—1
IV (Meo)lyaqe, = Coi |0} % ”’Lzm (5.16a)
2 2
p 1/2
- Oh% LI V109

The last inequality in (5.16a) is trivial for px > p since
(IT;v)|x = v, while, for px = p, we employ (5.10a) and
(5.11a).

Case b Let K C w; be a triangle which is non-regularly
h-refined. Hence, @ = @g). We introduce the function®
dg : K — Rby

dg =dg o A" with dg (x) := dist (x, 9K),

where Ak is as in (5.3). Since both, <1§§<1) and dg are piece-
wise linear bubble functions with maximal value O (1) in the
interior it is easy to verify that the pointwise estimates hold

cdg = @ < Cdg ] .,

1
cIVdk| = |[vo| = clivax|

with fixed constants 0 < ¢, C = O (1). Estimates (5.17)
imply the pointwise estimate

1
3 IV w@r)I? < &% IVVlI*> + Vi 1> v?

= C* (&} IVoI? + 2 |Vak IP) .

5 The function d differs from the function @k in [27, (27)] only by a
scaling constant which is of order 1.

Hence, we may use [27, (23) with § = 1 and (22) witha = 0
and S = 1] to obtain

1
IV (T,v)|13 (5.16b)

1
LZ(K) = 5 ”V(U(DK)HZ

L2(K)

CZ

< (Lo

hK

2P
2
hK

2 2
L2(K) + ”UHLZ(K))

12 |2

e oy

LK)
Case ¢ Let K C w, be a triangle which is regularly &-

refined. We employ the notation as explained in Definition
3(bl); illustrated in Fig. 3. It holds

—1
V(M) = V (@ v + okl ')

=V (e (v 1E0)) + v (e mE ).

For the first term and the piecewise linear bubble @}(1) x We
can argue as in Case b to obtain

2
(1) pz—1
HV (CbKvK (U + g U)) ‘ L2(K)

(5.18a)

r ’

<C?
h

®§{1’)K (v + H%_lv)

LX(K) 7

while we employ Lemma 4 for

2
) ppe—1
v (e ny v)’
” KK L2(K)

Jol (n‘,’g‘lv)

(5.18b)

2

L%(K)

Thus,

IV (M) ) |72k, (5.16¢)

<2 (Hv (2 (v+ 1))
2
LZ(K))

2

LX(K)

+ |V (emg ")

2 2
s (4 &) P_z( ol (v 1)
h ’ L2(K)
2
+ H,/@}? (nz"v)
12(K)
2
<4 (62 + 62) L
Ik
2 2
x (H,/@}Q}KU + ” NS, [
L2(K) L%(K)

@ Springer



204

R. E. Bank et al.

+ HJ@T?(H;;Z‘U)
Y

h2

K
/(D
X (H @K’Kv

(5.16a)

2
L2(K)

2 2
v
L2(K)

L%(K)

h2
(1
x W Pg gV
(H K.k LZ(K) Lz(K)

K
2
5(c ) 2 | o
K

2
sa(+)
2 2
+[Vor| )

2

LK)
The combination of (5.16) with (5.15) leads to

”V‘WH,ZH L2(w;) = é()p.

6 The saturation property

Note that the Pythagoras theorem

2 2 2
”eK”pDE = |leg11 ”PDE + llue — Ml+1||PDE

only holds for symmetric bilinear forms, i.e., b = 0 in (2.2).
For non-symmetric bilinear forms one can prove a quasi-
orthogonality and we follow here [25, Proof of Lemma 2.1.].
One ingredient in the proof is an Aubin-Nitsche argument
(see, e.g., [16]) which we recall here. For 0 < s < 1, we say
that the adjoint problem

For giveng € L*(£2) findy, € Hy (£2) such that
a (v, ¥g) :=/ gv  Vve H}(2)
2

is H'*S (§2)-regular if, for any right-hand side g € L2 (2),
the solution v/, is in H 145 (£2) and there exists a constant C;
independent of g € L% (£2) such that

[ Vel o) = Cs gl -

We introduce the adjoint approximation property for a sub-

space S C H(} (£2) by

ng - U”PDE

n(S) = sup  inf
lgllz2(2)

geL2(2)\(0) V€S
In our context, we obtain, e.g., from [16] the estimate
leerillz22) = Csn (Se+1) llee+1llppE -

If the adjoint problem is H ' (£2)-regular, standard approx-
imation results for finite elements lead to

@ Springer

-V
n (SZ) S Cll Sup lnf M

eer2noyvese  lgll2e)

=Ca Capproxhi sup ”wg”flﬂ

gEL(S)\{0}
<Cq Capprox Cs h; >

llg ”LZ(Q)

where Cypprox only depends on the shape regularity of the
mesh. Hence,

||€g+1||L2(_Q) = Cdualh;_H lleet1llppg  With

Cayal := CsC,y Capprox Cs. (6.1)

Lemma 1 Let Assumption 1 be satisfied and let the adjoint
problem be H'* (2) regular for some 0 < s < 1. Then,
there exists some C, > 0 depending only on «, B, bso, Coo,
and the shape regularity of the mesh such that, for any finite
element mesh Ty with maximal mesh width hy41 < C ¥,
the quasi-orthogonality

2 2 2 2
lleer1llppg < Ag.;,_] lleellppg — llter1 — uellppg
1

+1 =
- C*h;+1

with A2 (6.2)

holds.

The proof is adapted from [25, Lem. 4.1] and included
here for completeness.

Proof We set €y := ugy1 — ug. It is easy to conclude from
Galerkin’s orthogonality that

2 2 -~ 12
”e(Z”PDE = |legt1 ”PDE + ”‘%HPDE +a (/E\Ev er+1)

holds. Then, integration by parts yields

a (&g, eeq1) = a(egq1, €p) +/ ((b, V&) ep41
7
— (b, Veg41) &)

_ / 2 (b, V&) + (divh) &) ecs.
2
Hence,

2 2 -~ 112
||€£+1 ||pDE = ||3£||pDE - ||€£||pDE _/ (2 (b, ng)
2

+ (divb) &) ep41. (6.3)

The integral can be estimated by Young’s inequality and esti-
mate (6.1)

—/ (2 (b, V&g) + (div b)?@)eg+1
2

(3bso)?

< S lleetilizag) + 5 — Bl g,
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(2.3) ) 9p2 CF 2 We define
< 8 ”el-i-l ”LZ(Q) + —=— ”‘QZHPDE
28a @ in Case a
2 12 2 9b3.cr 2 4055’,(2 ’
< 8C5. 1h% 1 lleertllong + —=— leellspE - in Case b,
= dual’*¢+1 +1IIPDE 28a PDE op = (p{(z,Kz (6.4)

Inserting this into (6.3) leads to

2 42 2 2
(1 - 8Cdua1h£j—l) llee+1llppe < lleelippe

9b2 cr\
—(1— 20 )||8z||12>DE~

28a

We choose § such that both parenthesis have the same value
and obtain

2
2 ||e£||pDE —~ 2 .
lleer1llppg < — leellppg With
- C*hl+l

[cF
C, :=3Cquatboo | —-
2a

Let the mesh width fp1 of Ty satisfy hy | < C7!. Then
the assertion holds with A% 41 3810 (6.2). O

The proof of the saturation estimate requires conditions
on the data oscillations. First, we will introduce some edge
bubble for triangles with a common edge. For E € £, let
K1, K> € 7; denote the triangles which share E as the com-
mon edge.

Case a Both, K, K will be p-refined.

In this case, let (p%) k, € St+1 be the guadratic edge
bubble, i.e., the product of the barycentric coordinates in K1,
K> for the endpoints of E.

Case b Both K, K> will be h-refined.

Let xg € E denote the interior vertex on the edge E (cf.
Fig. 1) and let K € {K|, K>} be an adjacent triangle with
inner vertex xg. Let K’ := conv {xg, xx, A} and K" :=
conv {xg, B, xg} with A, B denoting the endpoints of E.
Then, the piecewise affine edge bubble (pg]) K, Testricted to
K, has value 1 at xg and vanishes at all other vertices of
triangles in sons (K1). Assumption 2 ensures that (pﬁ(ll) K, €
Set1.

Case ¢ K will be p-refined and K, will be h-refined.
Let py, := pk,,,m = 1,2 and define pg := min{py, p2}.
Let K’ € sons (K3) be the triangle which contains E as an

edge. Then, 90;(21) Iar (resp. gog(zl) K K/)is the product of the
1

barycentric coordinates in K1 (resp. K') for the endpoints of
E and zero outside K| U K'.

Case d K will be h-refined and K, will be p-refined.
Then goﬁ?,) K> is defined as in Case c by interchanging the

roles of K and K».

¢ g inCasec,
2y .
gp;(, K, In Case d.

For g € L? (£2), we define averages g, € P, —1 (w;) [with
p. as in (4.5)] as the L? (w,)-orthogonal projection onto
szfl (7).

The data oscillations are defined by

osc (v) := Z oscZ (v) with
zeN}
Al a2
osc; (v) 1= || —Posc ¢ (res (v) —res; (v)) (6.5)
Z Lz(wz)
with

5
p
Do,z = C_ZZCDZ + p;ﬁpg’z +1 and &g, = Z O
g Ee€,

and res; (v) is a shorthand for (res (v)),.

Theorem 8 Let Assumptions 1, 2, and 6 be satisfied. We
assume that the adjoint problem is H'*S (§2) regular for
some 0 < s < 1. Further we assume that the maximal mesh
width of Tp+1 satisfies hey1 < C,* with C, as in Lemma 1.
Let ¢ be as in (5.13b) and Cye as in (4).

There exists a constant Cy > 0 depending on «, B,
boo, Cxo, and p but independent of by, pe, u, and f such
that for any 0 < u < 1 and any C3z > C,Cy the condition

n
osc (ug) < N lle¢llppE (6.6)
3

implies the error reduction

lleerillppg < ke llecllppg  with

2
C
A2 _ _’T) (1—,u2)
o+1 5/2
(C3Pe/

Remark 4 The condition on C3 implies that k; > 0. From

the definition of A%Jr] = % with gy < (2C,) 7V

as in (6.2) it follows that the condition

Kg 1=

2/s
c .
hev1 < H (pe) == C4(Tﬂ/2) with
Dy

1 1/s
()
Cy (2C3Cre1)?

implies
2 1 2
Cn Cr
A%Jrl - (—52) =l-7 (—52)
CSCrelpg/ 2 C3Crelpg/
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and, for 0 < p < 1/+/2, it holds

2
1
ke < 1_(c—7,5/2) (E_Mz) < 1.
C3Cre1p,

Proof of Theorem 8 Since upy1 — ug € Sp+1, the quasi-
orthogonality (cf. Lemma 1) implies

2 2 2 2
Az+1 ”eeHPDE = ||eK+1||pDE + ey — WZHPDE 6.7)

with A% 41 asin (6.2). Hence it is sufficient to prove a lower

bound for |jug4+1 — ug||%,DE in terms of ||€g||%,DE and data
oscillations. The residual a posteriori error estimate can be
recast in the form of stars [cf. (4.4)]: By a triangle inequality
we obtain

leelifpe < 2C% > (H — res; (ug)

zeN}

\/7Res (ue)
Pz

+ H he (res; (ug) — res (ug))
Pz

2

Lz(a)z)

2

2

E€€,

(6.8)

L2(E)

2
Lz(wz)) .

Hence, it is sufficient to bound the jumps and projected vol-
ume residuals from above by ||u¢+1 — u¢|lppg and to control
the last term by the oscillation condition (6.6).

We start with the jump term and employ the same argu-
ments as in [25, Proof of Lemma 3.1, Step 2]. Since u, is
continuous, [Vuy]g is parallel to ng, i.e., [Vuglg = jeng

du e P,y with pp = min{p. pa} (cf.

Remark 3). The continuity of the coefficient matrix A implies

Jg == (Ang, [Vuylg) = (6.9)

and jp =

(Ang,ng) jg =: ag jE,

where o < ag (x) < B (cf. Assumption 1). Consequently

N /E ag (jepe) Je < B /E (jEwE) JE
vz el = |, b= | s

[26, Lem. 2.4]
2 p2 ”‘]E”LZ(E)

2
(07
>cl—) el -
(ﬂpE) LYE)

2
e S ,BhE/E (An, [Vuelg) (JE9E) -

(6.10)

Thus
”\/hE(PEJE‘

Nextweextend jg towg.For K C wg,let Ak, A bechosen
such that [cf. (5.3)] Akly,—o = Af holds. Let Z (x) :=
(x1,0)T for x = (x1,x2) € R% We define j; : wg — R
trianglewise by

@ Springer

Jile =i oAk oZo AR (6.11)
Note that j is a polynomial of degree pg — 1 on both trian-
gles which share E as the common edge. The construction
of g along the definition of the polynomial degrees on the
refined mesh (cf. Assumption 2) imply ¢gji € Se+1. By
using partial integration and the fact that 1y is the Galerkin
solution we get for any £ C w,

VheveJE

2
o, SN /E (An, [Vuelg) (egr)
(6.12a)
=hE/ (AVue, V (jior)) + dive (AVue) (75 0r)
WE
(6.12b)

1

=hg [a (ue — wesr, jp9E) +/ res; (ue) (j59E)
[0)

E
+ (res (ug) — res; (o)) (jrox)} - (6.12¢)
From Lemma 5 and Corollary 6 we conclude by an affine
pullback to the reference element that

IVeEiE| 2000 < Cs |VhEQEJE
(wE)

L2(E)
(69) C5
2\ Vaeerre|,, . ©13)
|0t lpps < Cope |||/ 25 el . (6.13b)

where Cs, Ce¢ only depend on «, B, bso, oo and the shape
regularity of the mesh. The combination of (6.12) with (6.13)
and (6.10) leads to

” / Res (uye)

+ H— g res; (ug)
PE

< C7PE { lue — wet1llppE, w,
L2(E)

(6.14)

L%(wE)

he 1p
+ H p_E‘”'lY/ (res (ug) — res, (ug))

}

with C7 depending only on «, 8, bso, Coo, and p. A summa-
tion of the squared inequality (6.14) over all E € &, yields

L% (wF)

2
h
Dol oRes@o| = Csp?
Eee. IV PE L2(E)
h, o2 :
x g llue —ueqr ”%’DE,M + H — g L 168z )
) Pz L2 (o)
2
1/2
H — & (res (ug) — res (ug)) . (6.15)

L (w;)
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Hence, we are left with the estimate of the volume residual. Note that®
A . . c
Pamal integration and the fact that u, solves the Galerkin H @ Z1 /2 h, res, (ig) ‘ > —
equations leads to L)~ p;~°
|12 3/2 e (ue) fors € {0,1}.  (6.20b)
> / Jgb! = / AV, Vb >+dlw (AViuy) b! p, Sre o e :

Ee€.

:/ res(ug)bé
wz

=/ res; (ug) b; +/ (res (ug) — res; (1)) bzl.

Z

(6.16)

We choose ¢4 1 ; as in Theorem 7 such that (5.13) holds and
obtain as in (6.12c)

Z/JEWHZ— Z/ (An, [Vuelg) pesi,z

E€€. E€€.

Z/ AVug, Vopi )+ dive (AVug) ooy,

KCow;

=a(ue—ues1, os1.z) +/ res; (i) Pe+1,z

@z

+ / (res (ue) — res; (o)) Pec.c. 6.17)
w7
The combination of (6.16) and (6.17) with (5.13a) allows
to eliminate the jump residuals and we obtain

/ res; (ug) (b; - <Pe+1,z) =a (uz — Ugt1, Petlz — b;)
wz

+ [ s —rescwo (e -8). @19

Recall the definition of ¢y ; as in the proof of Theorem 7
IT,v
vl
and we apply this definition for v = res;, (u¢). From this and

(5.13b) we obtain a bound of the averaged volume residual
on stars

1 : .
b, — @ut1,; =v; with v, :=h,

Cr H ¢Zl,/2hz res; (ug)

L2(w;)
<Cs |lug—u -
=< Cs llug £+1||pDE,wZ Pe+1,2—0; PDE, 0,
1/2 —
+ |ne@!? wes @o) —resc en)| L, n:!
Lz(wz)

(6.19)

x (H@J V2 (pesre = b))

Hence, from (5.13) we conclude

(we) H L (w

L2<w1>) '

Cy
< Cs—p; lug — uet1llppE. 0.
2) 2 N

+2C ;/2 (res (ug) — res; (6.20a)

The first and second term in the right-hand side in (6.8) can
be estimated by means of (6.14) and (6.20)

leelifpe < 2C24C D ( < lue —

T[
zeN}

2
U1 ”PDE,a)Z

2
, 6.21)
Lz(wz)

where, again, Co only depends on «, 8, bsg, Coo, and p.
Taking into account the finite overlap of the supports w,
we end up with

5
p
leel2pg < (C2Crel)? (c—f

T

+ ;@bosc,z (res (ug) — res; (ug))

<

H h: 12

2 2
lg — ues1llppg + 0sc (uz))

6.22)

where C» only depends on «, 8, b, Coo, and p.

Choose C3 > C(Cye. The assumption that the data
oscillations are small, i.e., osc (uy) < C%, implies for any
O<u<l

2
2 ¢ 2 2
>t = el o, = 2555 (1= 1) e o
zeN} 3Py

The combination with (6.7) finally leads to

2 2 2 2
lleer1llppg < Ay lleellppg — llte+1 — uellppg

2
2 Cr 2 2
= A€+1 - (C3p5/2) (1 - M ) ||€g ”PDE
4

and this is the assertion. O

6 For s = 1 this follows from Corollary 6. For s = 0, we conclude
from [39, Prop. 3.37, Cor. 3.40, Prop. 3.46] that

3 C
',/qb}()v > Sl YveP,(K), p=>1
L2k)y P
holds and from [27, (22) witha = 0 and 8 = 1]
1)
I ‘D( >*||U||L7(K) YveP,(K), p=1

for some constant ¢ > 0 which is independent of p and A g . Finally, for
@}(I)K + 055(2) we employ

455(3) < @}(IAV)K + @;?) pointwise

to obtain

VO x + o

¢
> — |lvllp2k
L2(K) p2 (K)

Yv e P, (K),

H [o®,

L2(K)
p=>1

@ Springer



208

R. E. Bank et al.

Corollary 3 Let the assumptions of Theorem 8 be satisfied.
Condition (6.6) follows from the computable condition

2 1/2
fic [hE
—7.;/2 E p—ERCS (I/l[)

(6.23)
1Py \Ee&o

for sufficiently small 0 < 1 < [ig, where iy depends on
a, ﬁv b001 Coos Uy C3, and pP.

osc (ug) =

LX(E)

Proof Observe that (6.12¢) and (6.17) remain true if upq
is replaced by u. Hence, we may also replace ug41 by u in
(6.14) and (6.20). By doing so, the combination of (6.14)
and (6.20) yields after summing the squared norms over all
z € N/} the estimate

Z /h—ERes (ug)
PE

Eekq L2(E)

5/2
P
< CIO( CK lle¢llppg + 0sc (w)),

T

) 1/2

where C1¢ only depends «, 8, bxo, Coo, and p. The condition
(6.23) implies (since 0 < ¢; <1 [cf. Cor. (2)]

[ h
—ERes (ug)
PE

< It lleellppg + fosc (ue) .

2 1/2

O
osc (ug) < HC—IOW Z
14 EcEg

LX(E)

For sufficiently small 0 < & < j19, this implies (6.6). O

Corollary 4 Assume that the sequence of meshes and poly-
nomial distributions are chosen such that the oscillation con-
dition (6.6) holds on every level £. Let Conjecture 1 be sat-
isfied. Then, the contraction of the error on level £ is given

by

¢
C

fe = H(l - 5/2)
k=1 Pr

for a constant 0 < C < 1 which is independent of the poly-
nomial degrees, i.e.,

lleellppe < e lleollppE -

Recall that py denotes the maximal polynomial degree
at level k which is monotonously increasing. Define the
sequence (n;);cn recursivelybyno = Oand, fori = 1,2, ...,
by the condition

pk=1i forni_y+1=<k<n;,

i.e., the maximal polynomial degree stays fix for §; := n; —
n;j_1 consecutive levels.

1. 1If, for some ko > 0, it holds ny = oo for all k > kg, then

4
Lo < (1—Cp,:05/2) — 0ast — oo.

@ Springer

2. 1 302, % = oo, then limy o0 £y = 0.
3. 1f 8 > ci*/?, then limy_, oo &y = 0 as £ — oo, while
limg— 00 pr = 00.

Proof The first statement is trivial. For the second statement
we employ for s > 0 and C < 1

£ C
& < exp(Zlog (1 — —Y))
k=1 pk

Note that, for0 < ¢ < 1,
log(l—¢) < —¢

so that

¢
1
¢ <exp| —C Z 1
=1 Pk
From this, the second statement follows. For the third one we
use

. 1
ez %)
1=

Hence, for §; > ci*~! we have limy_, o, {¢ = 0. O

7 Appendix 1: Lower bound for the constant ¢ :
numerical experiments

In this appendix we will invest the dependence of the stability
constant ¢, of the polynomial projection operator IT, [cf.
(5.8)] on the polynomial degree p. We consider mainly two
cases: pure p-refinement and /-refinement.

7.1 p-Refinement

First, we will rewrite the definition of ¢, as an algebraic
eigenvalue problem which we will solve numerically. We
have performed numerical experiments for the two-dimensi-
onal setting on stars as described in this paper but also con-
sidered the one-dimensional case where w, consists of the
two intervals which have z as a common endpoint.

7.1.1 Equivalent formulation

The goal is to investigate the dependence of the constant

(”’ va)Lz(wz)

Crp = 5

inf 7.1
veP, (0)\{0} H @ Z}/zv‘

L? (w7)

on the polynomial degree p numerically. Let d denote the
spatial dimension. Let w, consists of ¢ > d simplices K;,
1<i<gqg.
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By employing a global affine map we can pull back the star
w; to a reference configuration, where K| = K is the unit
simplex, on the expense that c; in (7.1) depends additionally
on the shape regularity of K. Let x; : K — K, denote affine
bijection with the special choice x| = id. Then,

>
%] J&
where ; = vo y; and @ denotes the product of barycentric

coordinates. Let (Pn)na,, denote a basis of P, (w,) for a
suitable index set ¢,,. We write

2
|22
Lz(a)z)

P
=> up, (7.2)

n=0

and obtain

2
|#:%]

— VTM(p)V,
Lz(wz)

(p) _|Kil Do ) .
M; =T @k (Ppoxi)(Pnoxi), n,mei
" Jem K] R

q
and MP) .= ZMgp).
i=1

For the special case that 5} is the polynomial bubble func-
tion we can choose an orthogonal basis for P, (K ) (cf.

[23,31]) so that Mﬁp) is a diagonal matrix.
In order to invest (7.1) we introduce a matrix representa-
tion of TT7v with v as in (7.2) via the ansatz

P -1
HZ UlK,' = E wm,iPm o X;
met,

The coefficients w; = (Wi )me , are determined via

-1
W,:(Mgp_l)) W;v with

IKil [ —
(Wi)m’”::ﬁ I?(DKP,IO)(,'Pm for mep_1,n €tp.

Hence,

q
N
(v, va)z =v'Bv with B:= ZWlT (M§p1 1)) W;
i=1
so that the constant ¢, has the algebraic representation
vIBv
cr = inf ————.
veR'» vIM(P)y

Hence, ¢, is the smallest eigenvalue of

(M<p>)—“2 B (M<p>)—1/2 _

——5=05] |
=1

08| —%=2
—5=4

o7t

06}

05t

04f

03t

02t

0.1 : : ‘

1 2 3 4 5

Fig. 4 Performance of ¢, versus p for the one-dimensional case

7.1.2 The one-dimensional case

In this case we have Kk = [—1,1] and P, are the Jacobi

polynomials P,fl’l) which are defined as follows
2) —nn+a+p+1 1—x
(04 B @n F ’ -
(x) = o2k ( ot 1 )

where (-),, is Pochhammer’s symbol and ; F] is the termi-
nating Gauss hypergeometric function

—n,b o~ Cni) 4
2F1( c ’Z)_é Okl

We consider K| = K and K> =1, 1+ §] for some § > 0.
Note that M'”” in this case is given by

(n+1)
—————————nEy|.
2n+3)(n+2)
The mapping y» is defined by

l+x

M'” = diag [8

1—x

x2 (%) = 5 +

(1+9).

To observe the behav1our of ¢, with respect to p and &, we
consider three different cases: § = 0.5, § =1, =2, 5§ =
4. The following observations can be obtained from Fig. 4:

— ¢, converges to a positive constant with respect to p,

— ¢y is properly bounded from below,
— ¢y is decreasing as § goes to zero.

7.1.3 The two-dimensional case
Now we consider Jacobi bivariate polynomials as our basis

functions on the reference triangle, which are defined as fol-
lows:
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Mesh number # 1 Mesh number # 2 Mesh number # 3
1 1 1

05 0 0
-1
0 -1
-2
-0.5 -2 3
-1 -3 -4
-1 0 1 -2 0 1 -4 -2 0

Mesh number # 4 Mesh number # 5 Mesh number # 6
1

1 3
0.8 2
05
06 1
0
0 0.4
-1
0.2
-05 -2
0 -3
- 02 -4
-1 0 1 0 05 14 2 0

Fig. 5 Illustration of the geometric configuations described in (7.3)

L1,1 1,342k 1,1 2y
Prl ey = (= 0f PO 1 - 2x) P )(1——1_x),

which is a polynomial of degree  in x and y.

We study different triangulations. Again we assume that
K is the unit simplex and the common point of all triangles
in the patch is (0, 0). The meshes consist of the following
nodes and are illustrated in Fig. 5:

vi = {(0,0), (1,0), (0, 1), (=1, 1), (=1,0), (0, =), (1, =D},

v2 = {(0,0), (1,0), (0, 1), (=1, 1), (=2,0), (=2, =1), (=1, =3),
(0,-3). (I, =D},

v3 = {(0,0), (1,0), (0, 1), (=1, 1), (=3,0), (=4, =2), (=3, =3),
(—=1,—-4), (0, —4), (1, =2)}, (7.3)

v4 = {(0,0), (1,0, (0, D), (=1, =D},
vs = {(0,0), (1, 0), (0, 1), (—0.1, =0.2)},
Vo = {(07 0)7 (17 0)’ (05 1)’ (_45 3)’ (_45 O)! (_41 _4’)7 (07 _4)7

(1, —0.1)}.

Figure 6 shows the behaviour of c¢; with respect to p in
each case and we summarize the main observations.

(a) In the first three cases, i.e., the number of triangles (at
least six) is varying while the shape regularity constant
is always moderately bounded, the lower bound of ¢,
is approximately 1. It also shows that the constant c,
is robust with respect to the elongation of the triangles
which is in analogy to the one-dimensional observation
(8 increases).

(b) If we consider the minimal number (three) elements,
again, with moderate shape regular constant, we still get
a proper lower bound. Recall that the dimension of the
image space P,_1 (7;) [in (5.1)] increases with the num-
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6
V.
Vo

5r _V,
v

4 N
Vs

3r |

2r |

1 -

0 ! ! I N I

1 2 3 4 5 6 7

Fig. 6 Performance of ¢, versus p for the two-dimensional cases

ber of triangles so that we expect that the constant ¢,
becomes larger with increasing number of triangles.

(c) On the other hand, if we consider the minimal configura-
tion with only three triangles and large shape regularity
constant (the area of the triangles is highly varying) as
described by vs, then the constant ¢, becomes smaller
as expected.

(d) Configuration vg supports the statement that, if the space
P,_1 (7;) is large enough, then a few tiny elements can
be still harmless. We can see that these numerical exam-
ples confirm our hypothesis that ¢, depends on the shape
regularity of our meshes but does not depend on p.

7.2 h-Refinement

In this section we study the similar problem as in previous
section but with A-refinement instead of p-refinement. In
other word, we apply one level of regular h-refinement on
each mesh and observe the behaviour of the constant ¢,; with
respect to p on the refined mesh. To be able to make a com-
parison between the results, we take the same patches as in
previous section. From the definition of @, for this case we
have

Cqg =

1 1 2 —1
2 kcw, Jx ”¢}(,)K”+f1< v (¢§<,)K+¢§()) [k v

1 2
Ykcw J v (@%?K + (p;()) v

s

in
veP,—1(K)

where <1>§(1)K and ¢;<2) are piecewise linear and quadratic
functions defined as in (5.4). Figure 7 shows the behaviour
of ¢, for the same patches with respect to p. It supports our
hypothesis and shows the similar behaviour as in p-version.
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4
v Then
35} Y2 / 1/2
: Ue)'| <C(C+Cp) 2= H |
:3 H( fa.61) L2([a,b]) — (Cn 12) L2([a.b])
8 . Vv eP,(a,bl).
\"
25} ¢ Proof Leibniz’ rule gives us
/
H (ia,510)’ HLz([a by = H la,b] HL2 (la.b)) + [ appv “Lz([a,b])

Fig. 7 Behaviour of ¢; versus p with one level of A-refinement

Also here we observe that ¢, does not depend on p, but it
only depends on the shape regularity of the mesh.

8 Appendix 2: Polynomial inverse estimates

We start with a one-dimensional estimate.

Lemma 2 Fora < b, let @4 p) (x) = % denote the

one-dimensional bubble function. Then,

]
<cZT 2 |pl2
L2(ab) ~ b —a ll @b

/
H (@1a.010) L2(la,b])

Vv € P, ([a, b]).

Proof We first prove the result for (a, b) =
that )qﬁ[/o’ 1 H

(0, 1). Observe

= 1 so that Leibniz rule gives us

Lee([0,11)

[@0) ], 1 = 120000020,y + 19000 | 2o,y

< Ivll 2o, + | ¢[0»1]v/||L2([0,1]) :

For the first term, we apply [27, Lemma 2.4 with @ = 0
and B = 1] and for the second term [27, Lemma 2.4 with
§ = 1] to obtain

@ .
” (@0.0) L2([0.1))

The result then follows via a scaling argument. O

1/2

cp+n|oy el @.1)

L2([0,1])

Corollary 5 Let a < b and P4, be as in Lemma 2. Let
Wia.p) € W12 ([a, b)) be a function with the properties

|Wia.b1| < Cr1®rap) pointwise and

Ci2
”‘Ij[,a,b] ”LDO([a,b]) = b—a

Sﬁ 1l 210,67 +C11 [ Pla,b1v | 12007

p+1y 1,2
=C(Cn +C12) an / HL2([a b’

where the last inequality follows as (8.1). O

The two-dimensional version is formulated next. The esti-
mates are similar to those in [39, Sec. 3.6] but differ by powers
of the weight functions in the right-hand side and also by the
choice of the weight function in Lemma 4. The proofs follow
the lines of the proofs in [39, Prop. 3.46] and also employs
tools from [28, Appendix D].

Lemma 3 Let K denote a triangle and let @k be the cubic
bubble function as defined in (5.3). Then, it holds for all
veP,(K)

p+1 /2
IV @kl = €5 |9y

L2(K)

Proof LetK = K be the two-dimensional reference triangle.
Note that

DPp (x1,x2) = Do, 1-x,1 (x2) (1 — x1) Ppo,17 (x1)

with @[, p) as in Lemma 2. First, we consider the derivative
with respect to x» and obtain

|92 (@v) ||iz(1?)

1 1—x1
- /0 (/0 (32 (P (i x2) v (s xz)))zdxz) dxi
1
2/0 D4 (x1) (1= x1)?

1—x1 9 2
X (/0 (a—xz (Pro,1-x] (x2) v (xl,xz))) dX2)dX1.

We then get

1—x1 2
(I —=x1) / ( (®r0.1-x] (2) v (x1, X2))) dx;

=1 -x)? H ((D[o 1—x 1V (X1, ')),‘ ’
T L2(0,1—x1)

Lem
< C(p+1) H‘p[m —aV (1 )‘LZ(OI —x)
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Since @ 1, (x1) Pjo.1-x] (2) < Pg (x1,x2) we end up
with

2
|02 (@0) [ 72 (z) = € (0 + 1?
1—x1
X / / Cb[zo,l] (1) D0, 1-x] (¥2) V7 (x1, X2) dxadxy

<C(p+1)7? qu”z ‘

L2(K)

Since K , V¢, and the integral are invariant under permuta-
tions of the coordinates, the same estimate holds for the other
partial derivatives. O

Lemma 4 Let K be regularly h-refined and let (P;(z) be as
explained in Definition 3 and illustrated in Fig. 3. Then, it
holds for all v € P, (K)

1
[¥ (@8] e, <5 V2R
) =

Proof Via an affine transformation it suffices to prove the
result for the reference element K1 = K and K, =

conv {(8), ((1)), (Bl)}.The common edgeis E = {0} x (0, 1).

Let K = K| U K». The edge bubble <D;<2) [cf. (5.4)] is given
by

LZ(K)

2
@ (x1,02) = x2 (1 — 1] — x2).
We first consider the derivative with respect to x;. Let

x2 (1 = [x1] — x2)
(1= lxi)?
i.e., @[0,1—|x] 1s the one-dimensional bubble function for

. 2
[0,1— |xi]] and satisfies @ = (1 — |x11)? Dpo.1—pxy))-
Hence,

2 \|I? !
2 (270) [ s, = |, 0 = 0D

I—|x]
x / (82 (q)[O,l—\xll] (x2) v (x1, XQ)))2 dxrdx
0

Dpo,1—|x]] (¥2) =

Lem. 2 2 1 2
2 C<p+1>/ (1= xil)
—1
I—[xq] )
X/o D0,1— x| (¥2) v° (x1, x2) dx2dx1
:C(p+1)2/ o P2, (8.2)
K

Next, we will estimate the derivative with respect to xj.
We split the triangle into the two regions

D = [(2) eK:x< %] and
Dy i=conv {(123). (). ()}

@ Springer

In addition, we will need
Dy i=conv {(0). (113), (). (1)}

On D; we obtain

(2) 172 2 2
9 (dﬁ )‘ </ 21— x
” ! Lz(Dl) 0 2( 2)
1= 1— [x] — ?
X 01 —v(x1 Xx2) dxidxy
— X2
Lem. 12 pl—xp
=< C (p+1 / / —x

x @2 (x1,x2) V7 (x1, x2) dx1dxs

<cpr1?|Jo@u] . (8.3)
L2(Dy)
since x/ (1 —x2) < 1on Dj.
On D, we observe that
o1 0 P L O L e
8.4)

Letd : D3 — R be defined by

d (x1,x2) = c3dist ((x1, x2)T, 0D3)

where the scaling c3 is chosen such that d interpolates @;(2)
at the vertices of the two triangles K, N D3, m = 1, 2. Note
that

d < 45;(2) <1 pointwise in D3 and qﬁg) <2d pointwise in D;.
Since Halqﬁg) HLOC(K) < C we obtain for the first term in

(8.4) asin (5.16b)

2
Hv31¢>§() L2y < Clvliz2(py
<Clolly <€+ [,
3
<C(p+1 H,/cbf)v (8.52)
L%(D3)

For the second term in (8.4) we get, again, as in (5.16b)

@
e ooy = 21401220,
[26, (23) withé=1]
2 e+ H\/Ev‘
L2(D3)
<C(p+1 H\/qﬁ?)v (8.5b)
L2(D3)
The combination of (8.4) and (8.5) yields
9 ( ‘%)‘ C(p+ »Py . (8.6)
” ! LZ(D) P K L2(D3)

The combination of (8.2), (8.3), and (8.6) yields the
assertion. O
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Fig. 8 Reference triangle K
which is split into I/(\l and I/(\z,
The shaded regions illustrate the
integration domains in the
splitting of the integral in (8.8)

K
a=1/2

The following lemma is illustrated in Fig. 8.

Lemma 5 Let K be the reference triangle split into K 1=

conv ((8) (©)- ((1))) and K, = conv ((g) ((1)) (?)) for some
a € 10, 1[. Let (pgn denote the continuous, piecewise linear
function which has value 1 at (g) and vanishes at 9K \E1
with Ey = [0, 1] x {0}. Then, for any polynomial v € P,
which is constant with respect to x; it holds

] =
L2(K) L2(Ey)
i r

9 (650 gy = 0

Proof We prove this lemma only for a = 1/2 to reduce
technicalities. The arguments apply verbatim for the general
case. The function <p2-“ and its partial derivatives are given
by

)

L2(E1).

2x (x1,%2) € K,
2(1 —x1 —x2) (x1,x2) € Ko,
2 (x1,x) € Ky,

{ -2 (x1,x2) € Ez.
0 (x1,x) €Ki,
—2 (x1,x2) € Ko,

i
eg (x1,x2) =

i (x1, x2) =

hep (x1, x2) =

Since v € ) is constant with respect to x, we write, with a
slight abuse of notation, v (x1, x2) = v (x1). Hence,

- 2
1,
L2(K)

The result of the inner integration is

I-x; |
r(x1) :=/ @i (x1, x2) dxa
0

_ 2 a5 A= x - x)dx)
217 (1 = x1 = x2) dx

| x1 2 =3x) x1 <172,
Tla-xD? x> 1/2.

Since r < (pg“ (-, 0) pointwise on [0, 1], the first assertion
follows.

Next, we investigate the derivative with respect to x». It
holds

0 (gognv) = vaztpgn =v X [
Thus,
lin 2 lin 2 2 ! 2
A(az (goE v)) = A(vazpr) <4 [ v <4 v
K K K 0

[26, Lemma 2.4 with@=0and f=1] 5 1 5
< 4(p+1 / Pio,1v
0

0 (x1,x) €Ki,
-2 (x1,x2) € K>.

1 .
<4C(p+ 1)2/ ghiny?, (8.7)

0
For the derivative with respect to x1, we get

g (e1x2) 1= 00 (¢ (a2 v )

_ [(xlv(xl))/ in El,
(I —=x1 —x2)v" (x1) — v (x1) in K.

The function g is on K 1 and on K- », an affine function with
respect to xo. We split the integral into

1 1—x
b
12 pl-2x 1/2 pl-x
0 0 0 1-2x

=W+ Wo+ W3

1 1—x1
“J
1/2J0

(8.8)

and obtain for the summands
1/2 5
Wi = 4/0 (1 —2x1) ((x1v (x1))') " dxy

12 )
- /0 (v ()Y)? day

2

1 . A2
1 1-x; 5/ (((p%n (x1,0)v(x1))) dx;
= / v (m)( / 05" (xl,x2>dx2) dxi. 0
0 0 C

VR

For W, and W3 we use the fact that the Simpson rule is exact
for quadratic polynomials and (8.7) to obtain

or. 5 )
= Clp+1

L2([0,1]) ‘

172 pl—x;
W2=4/0 /1 (1= x1 —x2) v (¥1) — v (1) doadxy

—2x1

5 12
2
0

+2? (x1)) dx

2

v (x)—v () | +4 %U/(xl)_v(xl)
[ ——
[ —

= x1))/ =2
(xrv(x1) —2v(x1) (.\']v(le))/_

%v()ﬂ)
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2 1/2
<3 [ n (s ) + 2 o) an

4 ! , N2

< 5/0 (((w}; <x1,0>v<x1))) )dxl +9 vl g0
- 2

Ver'v

Finally, for W3 we obtain

Cor. 5 )
= Cp+D

L2([0,1])

1 1—x1
W3 =4/ / ((l—xl—xg) v (x1) —v (xl))zdxzdxl
12.Jo

2
24/1 1 —x
12 6

(1 —x)v (x1) — v (x1)

((I=xDv(xn)’
2

1—
+4 ( 2x1)v’<x1)—v(x1> +0? () | dxy

LS|
54/
12

1

S JR—
12 12
[NV '
<1 [ ((renvan))
2
Ver'v

T((A=xv(x1) =v(x1))

— X1

(3 (1 =xn v xnY)* + 9 (1)) dx

3(2 0 —x)v@)))’ 4360 (x)) dxy

2
d)Cl +3 ”‘UH%Z[O!I]

Cor. 5 2
= Cp+1D

L2([0,1)

m}

Corollary 6 Let K bethe reference triangle and let o (x1, x2)
= x1 (1 — x1 — x3) denote the quadratic edge bubble on K
for the edge E1 = [0, 1] x {0}. Then, for any polynomial
v € P, which is constant with respect to x it holds

I ‘/’EUHLZ(I?) =c| ¢Ev’|L2(E1)’

IV @eWliary < € 0+ D [ VoEv] 2, -

The proof follows by a simple repetition of the arguments
of the proof of Lemma 5.

Lemma 6 Let K be a triangle and E one of its edges. Then,
for any of the functions g (6.4) and corresponding version
Dk as in (5.4) it holds

1/2

1/2
Joi" :

5C(p+l)H<PK v‘ Yo e P, (D).

L2(D) L2(D)

The proof requires two preparatory lemmata and follows
the ideas in [28, Appendix D].

@ Springer

Lemma 7 Let I = [a, b] for somea < bandletw : I — R
be a weight function which satisfies

1A, B, D > Owith

[ w is positive in la, b[ ,
® (x) <A@q (x)+Bop (x)+DPpg ) (x)

where p (x) = 370, @a = 1 — @p, and @q,p) = Qapp as in
(2). Then, it holds

[0 oy =€ 1) [obany

YvelP, ),
L2 v p()

where C is independent of p, v, o, a, b.

Proof By employing an affine transform it is sufficient to
prove the assertion for the unit interval / = [0, 1].

() w(x) = Po,1] (x) =x (1 —x). We may apply standard
inverse estimates to obtain

[26, with a=1,=2]

1/2
T e G RIL Fo
=C(p+1D Hw/a)@[o,l]v o
(b) For w (x) = ¢p(x) = x we observe that w (x) <

2®P(p,1] (x) holds for all 0 < x < 1/2 so that

2

2
Ha)l/zv <2 Hd"[o,l]v

LX)

1/2 ‘

T )

LX(D)

[26, Lem. 2.4] 5
< C(p+1

2

(1))

The result now follows from ¢[l()< 21] < wl/? pointwise in
[0, 1] and v/2w > 1 pointwise on [%, 1].
(c) The w (x) = ¢, (x) follows from Case b by symmetry.
(d) Let o be a general weight function which satisfies the
assumptions of the lemma. Hence, from Part a,b,c we
conclude that

12

[

x| @], + @

Bl—

2
o]

o = AlVal gy + B Vool g,

+D H\/CD[(),[]U‘ <C' (p+1)2 H‘/a)dﬁ[o,l]v‘

2 2
LX)

L2(I)
holds. o

The following lemma is a weighted version of [28, Lem.
D3].
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Lemma 8 Letd € (0, 1), a, b be given such that —1 +ad <
1 + bd and define the trapezoid

D:=D(a,b,d) = {(x1,x2) eR? | x; € (0, d)
and —14axy < x; <1+ bxy}.

Let w € Py (D) be a polynomial such that for any 0 < xp <

d, w (-, x2) has property Pl_1tax, 1+bxs]-
On D we define the weight function

Dy p,a (x1,x2) :=min {|x; — (=1 +axp)|, [x; — (1 + bx2)[}

which measures the distance of the point (x1, x2) from the lat-
eral edges of D. Then, there exists a constant C = C (a, b, d)
such that for all p € N and all polynomials v € P, (D) it
holds

o]

<C(p+1 H\/w@a,b,dv

LX(D)

L)’
Proof Note that
C13P—14axy, 14bx] (X1) = Pap,a (X1, X2)

< C1aP—1+axy, 1+bxy] (X1)

for positive constants Ci3, C14 which only depends on
a, b, d. Hence, the one-dimensional case (Lemma 7) implies

1+bx>
/ % (x1, x2) v* (x1, x2) dx; < C (p + 1)?

14ax>

14+bx> )
X / Vo (x1,%2) P p.a (x1, x2)v° (x1, X2) dxy.
—1+4axy

Integrating this estimate over x» € (0,d) completes the
proof. O

Proof of Lemma 6 By using an affine pullback we may
restrict to the case that K is the equi-sided triangle conv

(6)-0)- 2(J2)) and £ = 0.1 x (o)

It turns out that the proofs for the different cases in (6.4)
for ¢ and in (5.4) for @k uses the same arguments and we
work them out exemplarily for the case of the quadratic edge
bubble

(x x)—(x—x—z)(l—x—ﬁ)
QE (X1, X2) = { X1 A 1 A

and for @ = @;3) being the cubic bubble on K.
First, we will cover K with 4 trapezoids and one triangle:
Let v = (cos Z, sin %)T =2"1/2(1, )T. Then,

£ (0<% =<1/2 .
1. T} := [(0)+sv. (OS:IS Ll/()?l))]wnh
V6 A
v A

2. T, : mirror image of 77 with respect to the angle bisector
at (0,0)7.

L ()21) =

3. Tz : counter-clockwise rotations of 77 by 3T”about the
barycenter of K.

4. T4 : mirror image of 73 with respect to the angle bisector
at (1,0)T.

5. Ts :={(x1,x2)T € K | xp > 1/2}.

Case T1: We introduce

. 0<x<1/2
’ 0§S§L1()?1

=

)) — T by X(Jﬁ,s) = (%)—i—sv

The bubble function ¢ restricted to the line ()8) + sv results
in

X1+

J6 3
v 0<x <1/2
0555[4()21) ’

Note that the function 3, satisfies the assumptions of
Lemma 7 and 0 := v o x is a polynomial of maximal degree
p. Hence,

1/2 L|()21)
/ YEv? =/ (/ Yz, (8) f)zds)dxl
T, 0 0

) 1/2 Ll()?l) ) ) - .
<C(p+1) A A lﬁxl (s) ¢[0-L1(-’C1)] (s)v°ds )dx.

Composing Plo.Li(51)] ) with x ~! yields the function

%21 (S)ZZ(pon(fl,s):(Ll(xAl)_s)(\/g-I-lA S)

X2

Ly van (-0 - %)
V3 (A —xi+x)?

Note that the distance function

d(x1,x2) =

D (x1,x2) = dist ((x1, x2)T, 9K)

is piecewise linear on K. It is easy to verify thatd (x1, x2) <
Cd)}( (x1, x2) pointwise on 77 for some C = O (1) so that

/ cpEv2 <C'(p+ 1)2/ ¢E¢}<v2.
T T
Since ¢ ® }( < Co kx pointwise on K we have proved the

assertion for 77.

Case T3: The proof for the trapezoid 73 follows by sym-
metry.

Case T»: Next, we will consider the trapezoid 7> and
first note that by interchanging the xp, xp-variables the case
becomes equivalent to the estimate

/ (pEv2 §C/(p+l)2/ @g)vz velP, (),
T T
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where @z is the qudratic edge bubble for the edge
E= (8), (%52) with explicit form

0z (x1,x2) 2x(l X xz)
pLx)=—7x0|l-x——]).
V3 V3

This time, the bubble function ¢ 5o restricted to the line ()8)
+ sv, is given by

V3+1
—_—
3

(L (1) =)
0<% <12
V(Ofsfh (3?1))'

The function @,;l satisfies the assumptions of Lemma 7 so
that

12 Li(%1) _
/ ‘PEvZ :/ (/ Yz, (5) ﬁzds)dxl
T 0 0
5 1/2 Li(%) _ - )
<C (P+1) /0 /0 1//21 (s) ¢[0,L1(£1)] (s)v ds )dx.

Now we can argue as for the Case of 77 to obtain

/ vt <C (p+ 1)2/ 9P’
Ty T

&)21 () = PiroX (XAl,S) =

Since ¢ 7P }( < Co k pointwise on K the assertion follows
for 7.

Case Ty: The proof for the trapezoid 74 again follows by
symmetry from the case 7.

Case Ts5: On Ts5 we have the pointwise estimate
o <C @5(3) and the estimate for 75 is trivial. O
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