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Abstract Current climate change projections are based

on comprehensive multi-model ensembles of global and

regional climate simulations. Application of this informa-

tion to impact studies requires a combined probabilistic

estimate taking into account the different models and their

performance under current climatic conditions. Here we

present a Bayesian statistical model for the distribution of

seasonal mean surface temperatures for control and sce-

nario periods. The model combines observational data for

the control period with the output of regional climate

models (RCMs) driven by different global climate models

(GCMs). The proposed Bayesian methodology addresses

seasonal mean temperatures and considers both changes in

mean temperature and interannual variability. In addition,

unlike previous studies, our methodology explicitly con-

siders model biases that are allowed to be time-dependent

(i.e. change between control and scenario period). More

specifically, the model considers additive and multiplica-

tive model biases for each RCM and introduces two

plausible assumptions (‘‘constant bias’’ and ‘‘constant

relationship’’) about extrapolating the biases from the

control to the scenario period. The resulting identifiability

problem is resolved by using informative priors for the bias

changes. A sensitivity analysis illustrates the role of the

informative prior. As an example, we present results for

Alpine winter and summer temperatures for control (1961–

1990) and scenario periods (2071–2100) under the SRES

A2 greenhouse gas scenario. For winter, both bias

assumptions yield a comparable mean warming of 3.5–

3.6�C. For summer, the two different assumptions have a

strong influence on the probabilistic prediction of mean

warming, which amounts to 5.4�C and 3.4�C for the

‘‘constant bias’’ and ‘‘constant relation’’ assumptions,

respectively. Analysis shows that the underlying reason for

this large uncertainty is due to the overestimation of

summer interannual variability in all models considered.

Our results show the necessity to consider potential bias

changes when projecting climate under an emission sce-

nario. Further work is needed to determine how bias

information can be exploited for this task.

Keywords Multi-model prediction � Bayesian �
Model bias � Bias change � RCM � Alpine region

1 Introduction

Climate projections and associated applications in impact

studies have become an important topic of scientific and

public interest during the last decades. Several research

teams around the world are developing models to simulate

the current climate and its future evolution under several

greenhouse gas and aerosol scenarios.

On the large scale, general circulation models (GCMs)

are used with coarse horizontal resolution. While they are

capable of effectively reproducing large-scale effects and

circulation patterns, they cannot predict small-scale effects

for a selected region. Information about regional climate

can be obtained by dynamic down-scaling (Giorgi 1990).

To this end, regional climate models (RCMs) use the GCM

output as their driving boundary conditions. It is advanta-

geous to combine different results of several climate
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Seminar for Statistics, ETH Zurich,

Rämistrasse 101, 8092 Zurich, Switzerland

e-mail: buser@stat.math.ethz.ch
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models—both on the global and regional scale—to obtain a

reliable data base. It is generally believed that multi-model

ensembles are superior to single models, and that the

ensemble may even outperform the best single participa-

ting model. Recent analysis indicates that much of this gain

is due to the fact that single models are overconfident

(Weigel et al. 2008). In relation to climate projections,

combining different models exploits the strengths of

diverse approaches and yields a more appropriate estimate

of the uncertainties (Meehl et al. 2007). The combined

GCM/RCM multi-model approach has been advanced by

large international projects such as PRUDENCE (e.g.

Christensen and Christensen 2007; Christensen et al.

2007b).

Once a large multi-model ensemble is available, one is

left with the task of optimally combining this information

into one probabilistic prediction of the anticipated changes

in climate. In the case of medium-range weather forecasts

and seasonal climate prediction, several methods exist (for

an overview see Wilks 2006). Many of these methods

address the task by assigning (equal) weights to all

ensemble members and by subtracting the biases of each

model, as known from past model performance. However,

in a multi-model climate change ensemble, there are

additional issues that should be considered. One would like

to predict the whole climate distribution, in particular

higher moments and quantiles, and there is the additional

complication that the climate model biases can depend on

the underlying climate, i.e. the biases are time- and state-

dependent.

The last item appears particularly difficult. Indeed, the

standard procedure in studies about climate change entails

the implicit assumption that bias changes are negligible

compared to changes in climate, i.e. the consideration of

‘‘climate change’’ defined as difference between scenario

and control climate. This important assumption is rarely

discussed in depth (but see e.g. Shackley et al. 1998), and a

thorough test appears elusive, as the changes in climate

considered are of a magnitude that have not occurred in the

instrumental past. Yet the assumption of a time-indepen-

dent (or climate-state-independent) bias is crucial. Even

with a model that perfectly reproduces the current climate,

there is no guarantee that the model will exhibit the true

climate sensitivity (Stainforth et al. 2005). Also from a

physical viewpoint, it appears unlikely that the biases of a

climate model should be state-independent, as the climate

system entails many non-linearities and threshold processes

(e.g. related to atmospheric humidity, freezing/melting, sea

ice, soil moisture, clouds, convection, etc). One method to

address the role of these nonlinearities on the simulation of

climate is to separately validate summer and winter seasons

(e.g. Meehl et al. 2007) and to use the representation of the

seasonal cycle as a measure of the model’s fidelity (Shukla

et al. 2006).

The Bayesian framework is particularly attractive for

combining several models. It decomposes the complicated

relationship between the observations and the outputs of

different models into simpler, hierarchical relationships

that can be described in a reasonable and transparent way.

(Gelman et al. 2003). Although the necessary integrations

cannot be done analytically, Markov Chain Monte Carlo

methods make it possible to deal with complicated distri-

butions (Gilks et al. 1996).

Tebaldi et al. (2005) were among the first to use the

Bayesian framework to analyze multi-model climate pre-

dictions. They obtain a probability density function (PDF)

for the mean temperature changes in 22 global regions and

four seasons by combining observations and output from

several GCMs of 30 year regional climate averages. Their

approach can be viewed as a weighted average of the

individual GCM results, with weights similar to those used

by the reliability ensemble average (REA) of Giorgi and

Mearns (2002). The framework of Tebaldi et al. (2005) has

been generalized in many directions. Smith et al. (2008)

study several regions simultaneously. Tebaldi and Sanso

(2008) introduce a multivariate generalization for analy-

zing decadal averages of temperature and precipitation for

1955–2100. Furrer et al. (2007) analyze the spatial vari-

ability of the climate change signal. They use a multivariate

hierarchical Bayes model to separate it into a large scale

signal of climate change and an isotropic process repre-

senting small-scale variability among models. Jun et al.

(2008) analyze the spatial variability of the additive bias in

detail for the control climate. Min and Hense (2007) cal-

culate Bayes factors for a weighted multi-model average.

These Bayes factors are obtained by comparing the simu-

lations to a reference model in terms of likelihood. Sain

et al. (2008) provide a multivariate approach that takes into

account the spatial structure of the data. Bayesian methods

are also used to aggregate station data on a regular grid for

an RCM validation (Snyder et al. 2007). A review of multi-

model climate projections and the different types of

uncertainty is given by Tebaldi and Knutti (2007). They

also discuss the problems of model dependence, tuning and

evaluation.

Our approach is a different extension of Tebaldi et al.

(2005). We study RCMs instead of GCMs, but the main

methodological difference is that we consider not only the

long-term climate mean, but also the interannual variations,

by focusing on the distribution of seasonal values of the

variable of interest. A possible nonstationarity of the data is

taken into account by including linear trends in the control

and scenario periods. For simplicity, we assume that all

models have the same underlying trend.
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The reason for analyzing the distribution of seasonal

values is two-fold. First for impact studies, both changes in

mean and variability of the climate variables are relevant

(Katz and Brown 1992; Schär et al. 2004), and our

approach provides this. Second, the broader approach

allows us to study additive and multiplicative biases of the

different RCMs in the Bayesian framework. We discuss

two different assumptions for extrapolating the biases into

the scenario period, which both are plausible, but lead to

quite different conclusions about the likely climate chan-

ges. We can even allow these biases to be different in the

control and scenario period, but we have to assume in the

prior distributions that the bias changes are small.

In this paper, our variable of interest is the seasonally

and regionally averaged 2 m-temperature, but other vari-

ables could in principle be considered, e.g. the regional

average of the maximum temperature within a season.

However, complications will arise if the assumption of

normal distributions of the variables is no longer valid. We

will restrict attention to the target variable (i.e. tempera-

ture), and biases in other variables, e.g. precipitation, do

not enter the analysis. This procedure has also been fol-

lowed by other studies (Giorgi and Mearns 2002; Tebaldi

et al. 2005), although it would be desirable to account for

the overall performance of a model as in the multivariate

extension of Tebaldi and Sanso (2008).

The paper is structured as follows. In Sect. 2 the data

and the aggregation procedure are described. In Sect. 3 the

methods and the Bayesian model setup are explained. In

Sect. 4 results for the Alpine region are shown. In the final

Sect. 5 we draw conclusions and discuss further extensions

of our approach.

2 Data

In this paper both observational data and output from the

RCMs are summarized by the term ‘‘data’’. One has to

distinguish between current climate data that comes from

observations and model projections, and the future climate

data that comes from models only. Our variable of interest

is the 2 m-temperature, but the same methods apply to

other variables in principle. Some of the problems that can

arise for other variables are discussed in Sect. 5.

2.1 Regional climate model data

For the statistical analysis there is the output of 4 RCMs

(CHRM, CLM, HIRHAM, RCAO) and 1 high-resolution

GCM with a stretched spectral discretization (Arpege).

All simulations are part of the PRUDENCE project

(http://prudence.dmi.dk) or use the PRUDENCE methodo-

logy in their set-up. Here we restrict the attention to the

most salient aspects and refer to the literature for a full

documentation of the numerical experiments (Christensen

et al. 2007a; Christensen and Christensen 2007).

Each model has been run as a control run for the period

1961–1990 (the present) and a scenario run for 2071–2100

(the future) using an A2 emission scenario (Nakicenovic

et al. 2000). All models are driven by different lateral

boundary conditions as derived from global atmospheric

simulations. Boundary conditions for the control runs are

taken from the GCMs HadAM3H (Jones et al. 2001; Pope

et al. 2000), ECHAM4/OPYC (Roeckner et al. 1996) and

ECHAM5 (Roeckner et al. 2003). In Table 1 a short

summary of all regional models is given. RCM data has

been provided by the PRUDENCE data archive. Although

there are more runs from other climate research groups in

the PRUDENCE data archive, we use a subset of models

that are driven by different atmospheric GCM runs. RCMs

driven by the same GCM run reproduce the year-to-year

variability of the driving GCM and are thus highly corre-

lated, although inferred climate changes may considerably

depend on the selected model. In order to analyze all

RCMs one would need to modify the assumptions of a

Bayes model such that the correlations are taken into

account.

Note that 3 of the 5 simulations include the same sea-

surface temperature and sea-ice distributions (i.e. Arpege,

CHRM and CLM) stemming from a coupled HadCM3

simulation (for details see Rowell 2005). The HIRHAM

simulation considered employs an independent HadCM3/

Table 1 PRUDENCE data overview: we use a subset of models that are driven by different atmospheric GCM runs

Institute Model

RCM Reference GCM Reference

CNRM (Toulouse, France) Arpege (Gibelin and Déqué 2003)

ETH (Zurich, Switzerland) CHRM (Vidale et al. 2003) ECHAM5 (Roeckner et al. 2003)

GKSS (Geesthacht, Germany) CLM (Steppeler et al. 2003) HadAM3H/1 (Jones et al. 2001)

DMI (Copenhagen, Denmark) HIRHAM (Christensen et al. 1996) HadAM3H/2 (Jones et al. 2001)

SMHI (Norrköping, Sweden) RCAO (Jones et al. 2004) ECHAM4/OPYC (Roeckner et al. 1996)

The two HadAM3H simulations are independent atmospheric realizations of the same climate state
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HadAM3 ensemble member, and the RCAO another ocean

model (see Räisänen et al. 2004). In addition RCAO is

interactively coupled with a regional ocean model of the

Baltic Sea.

The integration area of the models varies, but in all cases

covers the larger part of Europe. The focus is on the Alpine

region (AL: 44–48N, 5–15E) which is one of the standard

regions of the PRUDENCE project (Christensen and

Christensen 2007). This region lies in the center part of the

integration area for all models. The spatial resolution of the

data is around 0.5� (*56 km). Model output has been

interpolated on the regular CRU grid (see Sect. 2.2) so that

it can easily be compared with observations from the

control period.

2.2 Observational data

The observed temperature data are obtained from the

Climatic Research Unit (CRU). The data is located on a

regular 0.5 lon 9 0.5 lat grid. It is based on station data,

interpolated as a function of latitude, longitude and ele-

vation above sea level. In New et al. (1999) there is a

detailed description of the data set and the thin-plate spline

that was used for interpolation. Data can be accessed via

http://www.cru.uea.ac.uk. It is a widely established surface

temperature data set covering the period 1901–2002. In the

analysis we assume that the CRU observations represent

the true climate.

2.3 Aggregation

For both seasons (winter: DJF and summer: JJA) the sta-

tistical analysis is done independently of the other season.

We average the variable of interest both temporally over

the 3 months of each season and spatially over all land grid

points in the Alpine region. For the spatial average, a grid

point has been considered as a land point if at least 50% of

the corresponding area is landmass. Water grid points have

been excluded from all models and the CRU data set to

avoid a mixing of the sea and land temperatures.

The spatial domain considered has a size of about

20 9 8 grid points and it is one of the standard domains

used for the evaluation of RCMs (see Christensen and

Christensen 2007). At the spatial scale considered, both

elements of the GCM/RCM model chain are important.

Déqué et al. (2007) have used the PRUDENCE archive to

quantify whether the regional-scale uncertainties in climate

projections stem from the GCM, the RCM or from internal

variability. An important conclusion reached from their

analysis is that the uncertainty due to the use of different

RCMs can be as large as the uncertainty due to different

GCMs. More specifically, the analysis showed that uncer-

tainties in winter conditions were primarily affected by the

GCMs (i.e. by large-scale circulations), while summer

uncertainties were considerably affected by the RCMs (i.e.

by parameterizations).

With this aggregation, one can ignore correlations and

trends within a season and within the region. The limitation

of spatial averaging is that small-scale features cannot be

observed anymore since information is lost. In contrast to

Tebaldi et al. (2005), we do not average over the years and

retain the interannual variations of the climate which is our

main interest. A potential difficulty of our approach is that

trends during the periods 1961–1990 and 2071–2100

become confounded with the interannual variability. In

order to avoid this, we will include linear trends in our

model and integrate them out in the Bayesian framework.

3 Methods

3.1 Notation

As explained in the previous section, the data consists of

T = 30 observations for the variable of interest in the

control period (1961–1990) and of T values of the same

variable generated by M = 5 models both for the control

and scenario periods (2071–2100) under an A2 emission

scenario. Having the same number of values in the control

and scenario periods is not essential. We denote by X0,t the

observations in year 1960 ? t, by Xi,t the control output of

model i in year 1960 ? t and by Yi,t the scenario output of

model i in year 2070 ? t with t = 1,…, T years. Although

the observations Y0,t for the years 2070 ? t are not

available, they are included as unobserved data in the

model. This will make the interpretation of model

parameters more transparent. Since separate analyses are

conducted for each season, it is not necessary to add an

index for the season.

3.2 Bayesian formalism

As mentioned in the introduction, we are going to use a

Bayesian approach to construct a probability distribution

for the scenario climate given all data. In this approach one

has to specify the likelihood p(Data | H), that is the con-

ditional probability density of the data given the parameters

H (for details see Gelman et al. 2003, Sect. 1.3), and—

because all parameters in the model are considered as

random variables—a joint prior distribution p(H) of all

parameters. In our context ‘‘parameters’’ denote quantities

of interest like long-term climate means and variances,

climate changes, biases, bias changes or trends that deter-

mine the distribution of the data. Other types of parameters

that are used within the RCMs are not discussed in the

paper. In Sect. 3.3 the likelihood is specified for this
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framework and in Sect. 3.5 the distribution of the priors

will be discussed.

The foundation for Bayesian methods is the computation

of the posterior density p(H | Data) of the parameters given

the data by Bayes formula:

pðHjDataÞ / pðDatajHÞ � pðHÞ:

The posterior density is proportional to the product of the

prior and the likelihood. The posterior predictive density of

the scenario climate p(Y0,t | Data) is of particular interest.

This is the best estimate of the distribution of the scenario

climate given all data. It is obtained by averaging the

density of Y0,t given the parameters H with respect to the

posterior distribution

pðY0;tjDataÞ ¼
Z

pðY0;tjHÞpðHjDataÞdH:

We will also look at the posterior predictive distributions

for other variables which are defined similarly.

3.3 Distribution of data

In our framework we make three main assumptions about

the conditional distribution of the data given the

parameters:

Assumption 1 Conditionally on the parameters, all data

are independent.

Assumption 1 implies that the likelihood has a product

form. Independence means that serial correlations in the

time series and possible correlations between models are

ignored. The autocorrelation plots of the series do not show

significant correlations, and thus the first part does not

seem problematic, though in general this depends upon the

region considered. In order to fulfill the second part, dif-

ferent RCMs driven by different GCM simulations are

used. Even then, the independence assumption may nev-

ertheless be questioned as, the GCMs and RCMs are based

on the same scientific knowledge, and thus they are not

completely independent (Tebaldi and Knutti 2007). It

means that the PDFs do not represent all sources of

uncertainty (e.g. Knutti et al. 2002).

Assumption 2 The distribution of the control climate is

X0;t�Nðlþ cðt � T0Þ; r2Þ; ð1Þ

Xi;t�Nðlþ bi þ cðt � T0Þ; r2b2
i Þ ð2Þ

with T0 ¼ Tþ1
2
: Centering the time around T0 yields that the

intercept l can be interpreted as the mean value of the

climate distribution. c is a common linear trend that is

estimated from all control simulations and the CRU data set

together. This trend is not of main interest, but it should be

removed to obtain stationary distributions. By introducing

detrended data Xi,t
det = Xi,t-c(t-T0), independent and

identically distributed (i.i.d.) data are obtained for the

control climate and the outputs of each model:

Xdet
0;t �

i:i:d:
Fc

0 ¼ Nðl; r2Þ; ð3Þ

Xdet
i;t �

i:i:d:
Fc

i ¼ Nðlþ bi; r
2b2

i Þ: ð4Þ

We denote distributions that describe the control climate

by a superscript c. On the other hand we use a superscript s

for the scenario period. The parameters l and r are the

expectation value and standard deviation of the control

climate, bi is an additive bias of the climate mean in model

i, and bi is a multiplicative bias. In other words, we assume

that model projections only imply a change in the location

and spread, but not of the shape of the distribution.

Independence and identical distributions imply in par-

ticular that the detrended data are exchangeable over time,

that is, their distribution is independent of permutations of

the year index. In other words, a model output Xi,t
det is not

supposed to be close to the observation X0,t
det for the same

year t, and two model outputs Xi,t
det and Xj,t

det for i = j need

not be close for the same t. This reflects the fact that the

different data series stem from independent realizations of

the (same) climate state. However, if model i is good, then

the distribution Fi
c of Xi,t

det should be close to the distribution

F0
c.

Assumption 3a The distribution of the scenario climate

is

Y0;t�Nðlþ Dlþ ðcþ DcÞðt � T0Þ; r2q2Þ;

Yi;t�N lþDlþbiþDbiþðcþDcÞðt�T0Þ;r2q2b2
i q2

bi

� �
;

or equivalently

Ydet
0;t �

i:i:d:
Fs

0 ¼ Nðlþ Dl; r2q2Þ; ð5Þ

Ydet
i;t �

i:i:d:
Fs

i ¼ Nðlþ Dlþ bi þ Dbi; r
2q2b2

i q2
bi
Þ: ð6aÞ

This means that a mean shift Dl and a multiplicative

change q in the variability of the scenario climate are

allowed. Dc represents a change in the trend for the

scenario data. Moreover, with the parameters Dbi and qbi

the additive and multiplicative biases can change between

the control and scenario periods. A model may reproduce

the climate well today, but an increased bias in the scenario

is possible due to incorrectly parameterized or simplified

physical processes. Note that the components ‘‘true

change’’, ‘‘bias’’ and ‘‘bias change’’ are combined

additively for the mean, and multiplicatively for the

standard deviation.
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Combining Assumptions (1) to (3a), the likelihood

function is

YT
t¼1

1

r
exp �

X0;t � l� cðt � T0Þ
� �2

2r2

 !
�

�
YT

t¼1

YM
i¼1

1

rbi
exp �

Xi;t � l� bi � cðt � T0Þ
� �2

2r2b2
i

 !
�

�
YT

t¼1

YM
i¼1

1

rbiqqbi

�

� exp �
Yi;t � l� Dl� bi � Dbi � ðcþ DcÞðt � t0Þ
� �2

2r2b2
i q2q2

bi

 !

ð7Þ

up to a constant which is irrelevant.

The assumption of normal distributions is reasonable

due to the aggregation over a season and within the Alpine

region. In addition, quantile plots of observations and

model data against the theoretical normal distribution do

not show strong discrepancies (see Sect. 4.2). In principle

the normal assumption can be relaxed using either more

general distribution families or a non-parametric approach.

But even with the restriction to the normal distribution the

problem is still somewhat ill-posed as we will see in the

next section.

3.4 Identifiability

For the control climate, there are model values from the

RCM control runs and observations from the CRU data set.

Therefore it is possible to estimate both the mean value l
of the climate and the individual biases bi for each model.

Since there are no observations Y0,t, Dl and Dbi cannot be

estimated separately from the data alone, they are con-

founded. The model is not identifiable, that is two different

parameter sets with identical sums Dl ? Dbi lead to the

same distribution for all data. A large value of Dl could in

principle be compensated by opposite model bias changes

Dbi for each model. This is a general problem in statistical

and dynamic down-scaling. One needs observations to cal-

ibrate and validate a model and to verify model assumptions.

These observations are only available for the control cli-

mate. Therefore one has to accept the assumption that a

(statistical) relationship also holds for the scenario climate,

or that parameters calibrated in the control period remain

valid in the scenario period. In our context we are facing the

same problem by trying to separate the climate change Dl
and the change of the model bias Dbi of the i-th model.

There are different ways to handle the identifiability

problem:

(i) One assumes that the model bias does not change, that

is Dbi = 0.

(ii) One puts restrictions on the bias change, e.g.
P

iDbi

= 0, that is the average of the model biases does not

change in the scenario period.

(iii) One introduces a soft restriction that
P

iDbi
2 is small,

that is the changes of model biases cannot be too

large, where ‘‘not too large’’ will be defined more

thoroughly later.

(iv) One reparameterizes the model by defining new

parameters mi :¼ Dl ? Dbi which then are identifiable.

The first alternative seems to be too restrictive, especially

if an RCM is calibrated and the model bias is estimated in

one region with today’s climate. If there is a climate shift,

it is possible that the model has another bias for the new

climate.

With the second alternative, a large bias change of one

model forces either a large bias change of another model in

the opposite direction, or many smaller compensations by

the other models. In addition it does not allow the total bias

to become larger (or smaller) due to a climate shift.

Although the re-parameterization in the fourth alterna-

tive solves the identifiability problem, it does not allow one

to distinguish between model biases and climate change.

Since the aim is a climate projection that corrects for

individual model biases, this is not a real alternative to the

problem.

The third solution is a regularisation of the over-

parameterized problem. In a Bayesian context it can be

implemented with specific choices of the priors for the

affected parameters Dbi. Equation 6a together with alter-

native (iii) will subsequently be referred to as the ‘‘constant

bias’’ assumption and later be contrasted with an alterna-

tive ‘‘constant relation’’ assumption. The term ‘‘constant

bias’’ is somehow misleading since actually bias changes

are allowed, but alternative (iii) will overall tend to mini-

mize the bias changes depending upon the prior distribu-

tion. In the next sections we will describe these

assumptions and their interpretation in more detail.

The same problem as for Dl and Dbi appears for q and

qbi
. Because these parameters represent multiplicative

biases, only the products q � qbi
are identifiable. Again this

problem is solved by forcing the sum of the logðqbi
Þ2-terms

to be small. This regularisation is achieved by the choice of

the prior distribution of qbi
:

3.5 Choice of priors

For all parameters one has to choose prior distributions. We

assume that all parameters are a priori independent so that

only the marginal prior distributions are needed. There are

two classes of parameters: l, Dl, bi, Dbi, c and Dc are

related to the mean values of the assumed normal distri-

butions of the data. It is common to take normal priors for
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these parameters since this simplifies the computations.

The other class of parameters consists of r2, q2, bi
2 and q2

bi

which are variances or multiplicative changes of the vari-

ances. It is a common procedure (Gelman et al. 2003) to

work with the precision, which is defined as the inverse of

the variance, and to choose a Gamma distribution for the

prior of the precision. The same procedure is used for the

multiplicative change factors. Note that this reparametri-

zation in terms of precision does not affect the results, it is

used only for computational reasons. Hence we will later

show the posterior for the standard deviation r and the

scale factors q, bi and qbi
which have a more direct physical

interpretation.

Both the normal and the Gamma prior distributions have

again parameters—called hyper-parameters—that must be

specified. Table 2 presents the adopted values of the hyper-

parameters. For the parameters l, Dl, bi, c, Dc, r-2 and

q-2 and bi
-2, we choose them so that the priors are flat and

thus carry little information. In particular, the prior vari-

ances are chosen such that only values which are far away

from physical plausibility are excluded. This means the

posterior distribution will be mainly determined by the

likelihood, that is the data. The reason for this is that in this

case little is to be gained by using expert knowledge and

that we want to avoid controversies.

The situation for the parameters Dbi and q�2
bi

is different.

For the reasons discussed in Sect. 3.4, we take informative

priors with small variances that are concentrated around

zero and one, respectively. This choice of hyper-para-

meters means for instance that the bias change Dbi lies

between -1.4�C and 1.4�C with a probability of 95%.

Although this assumption seems somewhat restrictive, one

has to keep in mind that there are no future observation to

strictly separate climate shift and bias change. Therefore

one is forced to accept an assumption about a possible bias

change. Our approach is reasonable. It assumes a priori that

the bias change Dbi is comparable or smaller than typical

biases bi in the control period, because otherwise the sce-

nario runs would be of little use. Since one can estimate the

biases bi from the data X0,t and Xi,t, there is a rational basis

to choose the variance of the prior for Dbi.

Only the parameters mi = Dl ? Dbi (climate shift plus

additional scenario bias of model i) are identifiable. The

prior assumptions above imply that (m1, …, mM) are a priori

jointly normally distributed, where all mi have mean zero

and variance rDl
2 ? rDb

2 and all pairs mi,mj (i = j) have a

correlation r2
Dlðr2

Dl þ r2
DbÞ
�1: In other words, the correla-

tion matrix has constant off-diagonal entries. Hence a small

rDb
2 corresponds to the a priori belief that all mi are similar

(highly correlated).

It is important to check the sensitivity of the results to

the choice of the prior distributions and the hyper-param-

eters. This is especially important here, since the hyper-

parameters are specified in order to solve the identifiability

problem, and are not based on prior expert knowledge. This

sensitivity analysis will be done in Sect. 4.4, and we will

describe separately how the hyper-parameters have been

varied.

3.6 Computation of the posterior

By Bayes formula the joint posterior density of all

parameters given the data is proportional to the prior

density multiplied by the likelihood of the data.

Table 2 Hyper-parameters for the prior distributions: for normal distributions hyper-parameters for the expectation (l0) and the variance (r0
2)

are given

Parameter Distribution Hyper-parameter 1

(l0, shape)

Hyper-parameter 2

(r0
2, rate)

95% Confidence

interval

l (�C) Normal 0 (Winter) 25 [-9.8, 9.8]

15 (Summer) [5.2, 24.8]

Dl (�C) Normal 0 16 [-7.8, 7.8]

bi (�C) Normal 0 16 [-7.8, 7.8]

Dbi (�C) Normal 0 0.5 [-1.4, 1.4]

c (�C year-1) Normal 0 16 [-7.8, 7.8]

Dc (�C year-1) Normal 0 16 [-7.8, 7.8]

r-2 (�C-2) Gamma 0.1 0.1 [0, 9.8]

q-2 Gamma 0.1 0.1 [0, 9.8]

bi
-2 Gamma 0.1 0.1 [0, 9.8]

q�2
bi

Gamma 3 3 [0.2, 2.4]

For Gamma distributions the first hyper-parameter is the shape parameter and the second hyper-parameter is the rate. The mean is shape 9

rate-1, the variance is shape 9 rate-2. The 95% confidence intervals show the range of values that are a priori decided to be physically plausible.

The intervals are quite large for the non informative priors. For the two parameters Dbi and q�2
bi

we have chosen informative priors to solve the

identifiability problem. Therefore their confidence intervals are smaller
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Hence in principle, the posterior is known, but this is of

little practical use. In order to deduce information about

the marginal posteriors of the two main parameters of

interest, Dl and q, and in order to compute posterior

predictive densities, high dimensional integration would

be needed which is difficult. Common practice in modern

statistics is to rely on Markov Chain Monte Carlo meth-

ods instead. Monte Carlo methods replace analytical cal-

culations by empirical estimates computed with an

artificially generated sample from the posterior distribu-

tion. For complicated high-dimensional distributions it is

not feasible to generate an independent sample, but it is

possible to generate a dependent sample with a suitable

Markov Chain. This means that each member of the

sample is constructed recursively from its predecessor,

(see e.g. Gilks et al. 1996). For our analysis, we use the

standard Gibbs sampler which updates a single component

at a time, because the so-called full conditionals have a

standard form. Results are based on a single Markov

Chain with length 550,000 where the first 50,000 are

disregarded as a burn-in period. The remaining 500,000

samples were thinned to a sample of 5,000 by taking only

every hundredth point. The thinning removes the depen-

dency within the Markov Chain so that 5,000 remaining

points are an independent sample of the distribution of

interest. To check the convergence of the chain, diag-

nostics such as autocorrelation and effective sample size

were calculated. None of these diagnostic tools showed

any indication that the chain has not converged. More-

over, additional simulations not shown here confirmed the

results.

3.7 An alternative assumption for scenario period

values

Even under the assumption that climate change and model

error affect only location and scale, but not the shape of the

distribution, there is at least one additional way to specify

the distribution of scenario period values that can also be

regarded as plausible. The ‘‘constant bias’’ assumption in

Eq. 6a means that the difference between the expected

values of the control and the scenario periods in model i is

equal to Dl ? Dbi. Hence up to small bias changes

(alternative (iii) in Sect. 3.4), all models are assumed to

predict the climate scenario shift correctly.

The alternative ‘‘constant relation’’ assumption says that

a model over- or underestimates the climate scenario shift

by approximately the same factor by which it over- or

underestimates the interannual variability within a season

in the control period. The latter factor is equal to bi.

Allowing such an additional bias change means thus

replacing Eq. 6a by

Assumption 3b For 1 B i B M

Fs
i ¼ Nðlþ biDlþ bi þ Dbi; r

2q2b2
i q2

bi
Þ: ð6bÞ

The specification of the priors of the parameters with

this alternative ‘‘constant relation’’ assumption is done as

before. In particular, an informative prior is used, forcing

Dbi to be near zero and qbi
near one (alternative (iii) in

Sect. 3.4). In this way, we will avoid the analogue basic

non-identifiability problem as discussed in Sect. 3.4.

The two assumptions are shown in Fig. 1. In the left

figure the ‘‘constant bias’’ assumption (Assumption 3a) is

explained. On the x-axis the observed detrended quantiles

are drawn. These are the ordered 30 observations of the

yearly climatology for the period 1961–90 (red dots on the

x-axis with mean l) after subtracting the estimated trend.

On the y-axis there are the quantiles for an RCM which

correspond to the ordered detrended output values for the

control period of the RCM. The red points in the plot show

a quantile–quantile-plot of the observations against the

model output for the control period. The red dashed line

show the relationship between these quantiles and therefore

the additive bias is the intercept and the multiplicative

variability bias the slope of the line. Under the ‘‘constant

bias’’ assumption this red line is shifted into the scenario

period assuming that the bias remains constant. A small

bias change Dbi and a multiplicative change of the vari-

ability qbi
allow for some changes in the bias. The result is

shown with the black solid line. The bias changes are

restricted to be small by the informative priors on these

parameters. The slightly adapted relationship between the

quantiles of today’s observation and the control model

output is used to estimate the new climate mean l ? Dl.

Since there are no future observation, no points can be

drawn for the quantile in the scenario period, on the x-axis.

With the ‘‘constant relation’’ assumption (Assumption

3b) in the right figure, one can extrapolate the observed

bias relationship today (red dashed line) into the scenario

period. This results in two different parts of the model bias

change. The first part is a systematic part. If the slope of

the line is larger than one a systematic bias increase of

(bi -1)Dl is expected. The second part of the bias change

Dbi is restricted to be small by the informative priors as

with the ‘‘constant bias’’ assumption. One has to remark

that with the ‘‘constant relation’’ assumption the bias

change can be quite large due to the systematic part since

the restriction with informative prior only influences the

second part of the bias change. This will result in a dif-

ferent estimation of the climate shift Dl because a part of

the signal is attributed to the bias change. This can be seen

in Fig. 1 by remarking that with the same observations and

model projections, Dl in the right figure is smaller than in

the left figure. However, because Y0,t is not available, it is
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difficult to distinguish between the two models only from

the data.

Figure 1 can be justified with formulas for the quantiles

of the distributions Fc
i and Fs

i. Remember that the super-

script c is used for distributions and quantiles that are

related to the control climate while s stands for the scenario

climate. The a-quantile z(a) of a distribution is the value

that divides the mass of the distribution into the ratio

a:(1-a). In other words, the probability that a random draw

from this distribution is below z(a) is equal to a. The k-th

smallest among T data points is an estimate of the

a = k(T ? 1)-1 quantile. Then by Eqs. 3 and 5

zs
0ðaÞ ¼ lþ Dlþ qðzc

0ðaÞ � lÞ ð8Þ

and by Eqs. 3 and 4 for i = 1, …, M

zc
i ðaÞ ¼ lþ bi þ biðzc

0ðaÞ � lÞ: ð9Þ

Under Assumption 3a, it holds that

zs
i ðaÞ ¼lþ Dlþ bi þ Dbi þ biqbi

ðzs
0ðaÞ � l� DlÞ

�lþ Dlþ bi þ biðzs
0ðaÞ � l� DlÞ ð10Þ

since Dbi & 0 and qbi
& 1. In other words, the relation

between the true quantiles and the quantiles of the model

output has a similar structure in the control and the scenario

periods (if Dbi = 0 and qbi
¼ 1, the structure is identical).

The 50% quantile z(0.5) is the median (typical year) and

in case of the normal distribution, it is equal to the mean.

By using zc
0(0.5) = l in Eqs. 8, 9 and 10, one obtains

zc
i ð0:5Þ � zc

0ð0:5Þ ¼ bi ¼ zs
i ð0:5Þ � zs

0ð0:5Þ: ð11Þ

Hence Assumption 3a says in particular that the

difference between model and observation for a typical

year are similar both in the control and the scenario period,

regardless of how warm a typical year is. This can be

justified by saying that the physical relationships are still

valid for a changed forcing and thus have about the same

error for a typical year.

In contrast, under Assumption 3b, it holds that

zs
i ðaÞ ¼lþ bi þ Dbi þ bið1� qbi

ÞDlþ biqbi
ðzs

0ðaÞ � lÞ
�lþ bi þ biðzs

0ðaÞ � lÞ: ð12Þ

Note that Eqs. 12 and 9 are similar. Assumption 3b

postulates therefore that one can use the same linear

relation between zc
i(a) and zc

0(a) in the control period and

between zs
i(a) and zs

0(a) in the scenario period. Hence if

the temperature of a warm year in the control period is

similar to that of a cold year in the scenario, then the

difference between model and observations is about the

same in both cases. This explains the name ‘‘constant

relation’’ that describes Assumption 3b.

It is important to note that both assumptions have been

made in distinct areas of climate research. Christensen

et al. (2008) suggest that temperature and precipitation

biases grow in a global warming scenario. As mentioned in

the introduction, the ‘‘constant bias’’ assumption is implicit

to the consideration of the ‘‘scenario minus control’’ signal
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Fig. 1 Schematic illustration of the two bias assumptions: The red
dashed lines depict the underlying assumptions. With the ‘‘constant

bias’’ assumption it is assumed that the additive bias of the control

period (simulated minus observed) also applies to the scenario period.

With the ‘‘constant relation’’ assumption it is assumed that the (linear)

relationship between simulated and observed quantiles during the

control period may be extrapolated into the scenario period. The black
solid line depicts the resulting relation between quantiles of the

scenario climate, accounting for small nonlinear changes of the biases

using the Bayes approach. Thus, the red dashed line corresponds to

the case Dbi = 0 and qbi
¼ 1 of the full model. The points on the axes

depict the simulated and observed climates for the control (red
circles) and scenario periods (black triangles), respectively. For the

control period a quantile–quantile-plot (red points in the plot) is

shown. The black dotted line is the identity y = x
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in climate projections, and is made throughout the IPCC

report (Meehl et al. 2007). Likewise, the ‘‘constant rela-

tion’’ assumption is made in many statistical evaluations of

seasonal forecasting, where a forecasted anomaly is con-

sidered relative to the models representation of the

observed variability (e.g. Kharin and Zwiers 2003). It can

thus be argued that the ‘‘constant relation’’ assumption is

the more natural assumption for near-term climate change

(e.g. the next 20 years), as we would expect the error

structure of the models to be approximately conserved over

shorter time periods, when the climate shifts can be con-

sidered comparatively small. Likewise, it can be argued

that the ‘‘constant bias’’ assumption is the more natural

assumption in longer-term climate change studies (e.g.

100 years), as the anticipated changes are considerably

larger than the currently observed interannual variability.

Further work is needed to determine how biases in the

control period can be used for the estimation of biases in

the scenario period.

4 Results

4.1 Climate prediction: ‘‘Constant bias’’ versus

‘‘constant relation’’ assumption

4.1.1 Summer temperature

We restrict the discussion to the Alpine region and start

with the summer (JJA) season. In the upper row of Fig. 2,

the posterior distributions of D l, q, c and c ? Dc are given

under the two assumptions ‘‘constant bias’’ (black solid

line) and ‘‘constant relation’’ (red dashed line), respec-

tively. Our method predicts an expected increase of the

average temperature of 5.4�C for the ‘‘constant bias’’

assumption and of 3.4�C for the ‘‘constant relation’’

assumption. This difference is quite large and will be dis-

cussed in more detail in the next Sect. 4.2.

In contrast, the posterior for the other three parameters is

similar under both assumptions. Values above and below 1

are plausible for q, hence the RCMs considered are not able

to decide whether the variability of the mean summer

temperatures will increase or decrease in the future, albeit

there is a small tendency towards an increase in variability,

(see also Fig. 3). Previous research revealed that there

might be considerable increases in interannual summer

variability over Central Europe (Schär et al. 2004). The

aforementioned study assessed one single model chain (the

CHRM driven by HadAM3H), but recent model inter-

comparisons indicate that this result qualitatively agrees

with most RCMs (Giorgi et al. 2004; Giorgi and Bi 2005;

Vidale et al. 2007; Lenderink et al. 2007) and GCMs

(Seneviratne et al. 2006). The absence of a pronounced

variability increase in our analysis appears mostly related

to the consideration of the Alpine region, which is situated

to the south of the region of maximum variability increase.

The trend is with posterior probability higher than 99%

between -0.01 and 0.04�C per year for the period 1961–

1990 and between 0.06 and 0.12�C per year for the period

2071–2100. In comparison, the global mean surface
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Fig. 2 Posterior densities for the climate shift Dl, the change of

variability q, the trends c for the control and c ? Dc for the scenario

period in summer (upper row) and in winter (lower row). The solid
black lines show the densities for the ‘‘constant bias’’ and the red

dashed lines for the ‘‘constant relation’’ assumption. There is a large

difference for the estimated climate change in summer between the

two assumptions. Note that for q, c and c ? Dc, the two curves are

lying upon each other
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temperature trend of the A2 scenario for the 2071–2100

period amounts to 0.05�C per year (Meehl et al. 2007, see

their Fig. 10.4). The larger trend over the Alpine region

revealed above can be explained by two reasons: First, the

regional warming over continental land surfaces consider-

ably exceeds the global mean warming which is moderated

by the presence of large ocean surfaces. Second, it is

possible that the RCMs overestimate the trend during the

scenario period, as the respective simulations use a spin-up

period of merely one year and are initialized from a soil-

moisture distribution that is not in complete balance with

the scenario climate. However as the RCM trend exceeds

the global trend by merely a factor 2, we believe that the

former reason dominates.

In Fig. 3, the posterior predictive density given all data

is shown with a dashed red line for the mean temperatures

X0,t
det in the control period and with a red solid line for the

predicted mean temperatures Y0,t
det in the scenario period.

The posterior predictive densities for the output Yi,t
det of

individual RCMs are given with black dotted lines. In

addition to the trend, the individual biases bi and bi are also

removed, but not the bias changes of the scenario period.

The additive bias change for the scenario is Dbi under the

‘‘constant bias’’ assumption and (bi-1)Dl ? Dbi respec-

tively under the ‘‘constant relation’’ assumption. As we will

see in Sect. 4.3, the bi’s are quite large for all models in the

summer season. This explains why under the ‘‘constant

relation’’ assumption the expected value of the multi-model

ensemble projection is smaller than all individual model

projections of the scenario period.

Recall that in the posterior predictive density uncer-

tainty about the parameters has been taken into account by

integrating with respect to the posterior distribution of the

parameters. Hence the individual model projections depend

also on other models through integration over the posterior

distribution of the parameters given the data. Therefore

they influence each other to some extent.

For both assumptions, the range of the different models

is quite large. The combined Bayesian prediction density is

much narrower than an equally weighted average of the

prediction densities of the 5 models. This is due to the

inclusion of additive bias changes for the individual RCMs

in the model. Note that the biases are not estimated by

aligning the black curves as well as possible. For the

control climate, they are essentially estimated by compar-

ing the control simulations and the observed climate, and

for the scenario climate the estimate depends upon the

assumption. For the ‘‘constant bias’’ assumption, they are

assumed to be similar because the prior for Dbi is con-

centrated around zero. For the ‘‘constant relation’’

assumption we assume that the biases show a linear rela-

tionship where the intercept and slope are determined by

comparing the control simulations and the observed cli-

mate. The size and uncertainty of estimated biases for both

assumptions will be discussed in Sect. 4.3.

4.1.2 Winter temperature

In the lower row of Fig. 2, the posterior distribution of Dl,

q, c and c ? Dc are given under the two assumptions

‘‘constant bias’’ and ‘‘constant relation’’, respectively. In

contrast to the summer, the results are quite consistent

under both assumptions and an expected increase of the

mean temperature of around 3.5–3.6�C is observed. The
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Fig. 3 Posterior predictive densities for mean summer temperature:

The dashed red line is for the control period (observations), the solid
red line for the scenario period (multi-model projection) and the

dotted black lines for the scenario output of the individual RCMs

which are corrected for the control bias. Note that the individual RCM

output curves are calculated using the posterior distributions of the

Bayes model and therefore these curves can be different using the two

bias assumptions. The main difference is the larger predicted climate

mean change of 5.4�C for the ‘‘constant bias’’ assumption (left),
compared to only 3.4�C climate shift for the ‘‘constant relation’’

assumption (right)
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uncertainty about the climate shift Dl is larger under the

‘‘constant relation’’ assumption.

As in summer, the posterior for the other three param-

eters is similar under both assumptions. Values above and

below 1 are plausible for q, hence the RCMs considered are

not able to decide whether the variability of the mean

winter temperatures will increase or decrease in the future.

Figure 4 shows the posterior predictive densities given

all data for mean winter temperature. The different lines

have the same meaning as for summer. The two distribu-

tions of the control and scenario climate have a larger

overlap than in summer. The individual RCMs have nearly

the same variability as the combined Bayes prediction, in

distinction to the spread in the summer season. This is

likely due to the reduced role of soil moisture during

winter.

4.2 Diagnostic check of assumptions

Although our results are reasonable and consistent with the

literature, we have to verify several assumptions.

4.2.1 Normal distribution, independence

After the aggregation of daily data to a seasonal mean, and

of spatial data to a regional mean, it is not surprising that

the distribution of this mean is close to normal due to the

central limit theorem for weak dependence. To verify the

normal assumption we visually check the normal plots

(ordered values against the quantiles of the normal distri-

bution) for each model and the observations. Deviations

from the normal assumption would show up as nonlinear

relations. Since trends are in the model, the original data

are not stationary and one should use the detrended data as

introduced in Eqs. 4 and 5 for constructing the normal plot.

For the summer control period, there is no obvious viola-

tion of normality in Fig. 5. One can see the very cold

winter 1962/63 as an outlier in the observations. Plots for

projection in the scenario period look similar. We also

checked the normal plot based on combining all data after

centering and scaling the values, and there is no systematic

deviation from normality. In addition to the quantile plots

the assumption of normality can be checked using the

Shapiro-Wilks test for normality and a goodness-of-fit test

based on the linearity of the probability plot (for details see

Rice 1995, chap. 9). In summer and winter, for all models

and the observations there was no significant violation of

the normal assumption. The smallest p-value was 0.058.

Using quantile plots and goodness-of-fit tests there are no

obvious violation of the normal assumption.

Furthermore, in order to examine the temporal inde-

pendence between the different years, we computed the

autocorrelation for each model and for the observations,

assuming a stationary time series model. Even at lag one,

no significant autocorrelation could be observed. There is

no strong correlation between the different RCMs either.

Such correlations are avoided by not including additional

RCMs that are driven by the same GCM run. Since on a

large scale the RCM reproduces the year-to-year process of

the GCM, such correlations would be quite high. In the

PRUDENCE project some RCMs are driven by the same

GCM run and have a correlation between 0.8 and 0.95. We

currently study a possible extension of our model that

incorporates a GCM effect and thereby relaxes the

restriction that all model chains consider a different GCM

simulation.

4.2.2 Relation between model output and observations

In Fig. 6 are the quantile plots of the control runs and the

observed temperatures (plot of ordered values of the two

data sets). As before these are not the raw values, but the

detrended data. Again, a linear relation is expected if

our model assumptions are correct. The multiplicative
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variability bias can be seen as a change of the slope. In the

summer season, obviously all models have a slope larger

than one, that is they overestimate the variability of sum-

mer mean temperatures, as already noted in other publi-

cations (Vidale et al. 2007; Lenderink et al. 2007). In

winter there are no systematic variability biases. Note that

for the winter season the eye-catching observation in all

quantile plots is the winter 1962/1963 that was extraordi-

nary cold.

These results have different implications under the

‘‘constant bias’’ and the ‘‘constant relation’’ assumption, as

we have seen in Sect. 4.1. In the next Sect. 4.3 we will

examine the biases and bias changes in more detail to

explain the behaviour of the two assumptions.

4.3 Model biases

4.3.1 Summer temperature

In Fig. 7 the posterior densities of the additive biases for

control and scenario summer temperatures are shown.

Upper and lower row display the biases for the ‘‘constant
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bias’’ and ‘‘constant relation’’ assumption, respectively.

The solid black line represents the control bias bi and the

dashed red line the scenario bias. Under the ‘‘constant

bias’’ assumption, the scenario bias is bi ? Dbi whereas

for the ‘‘constant relation’’ assumption it is bi ? (bi -1)Dl
? Dbi.

With the ‘‘constant bias’’ assumption the biases for

control and scenario periods are generally similar, but the

uncertainty about the biases increases in the scenario per-

iod. This was to be expected. There is no systematic

increase or decrease of the biases in all models. The RCAO

model has the biggest bias change. The situation changes

for the ‘‘constant relation’’ assumption. The biases for the

control period are similar to those under the ‘‘constant

bias’’ assumption, but there is a systematic increase in the

scenario biases of all models. In all models, the scenario

bias is now clearly positive and the uncertainty is larger

than under the ‘‘constant bias’’ assumption. Again it is

largest for the RCAO model. Since under the ‘‘constant

relation’’ assumption all RCMs have large positive biases,

the climate shift remaining after bias correction is smaller

than under the ‘‘constant bias’’ assumption. This results in a

posterior predictive density Y0,t
det that is smaller than each

RCM as observed in Fig. 3.

The difference between the scenario biases under the

two assumptions is equal to (bi-1)Dl. A simple point

estimate of bi is given by the slope of straight lines in

Fig. 6 which are clearly greater than one. This is confirmed

by Fig. 8 which shows the posterior distributions of

multiplicative variability biases in summer. The solid line

represents the control bias bi and the dashed line describes

the scenario bias biqbi
. Under both assumptions, the control

bias bi is larger than one for all models, and this explains

why the scenario biases are substantially larger under the

‘‘constant relation’’ assumption. In other words, the reason

for the difference between the results under the two

assumptions is the overestimation of the year-to-year var-

iability in the summer by most models (see Vidale et al.

2007; Lenderink et al. 2007). Figure 8 also shows that the

scenario multiplicative bias is—under both assumptions—

not much different from the control multiplicative bias.

The difference is largest for the CLM model.

The ability to estimate biases of individual models both

for the control and scenario period is a clear advantage of

our approach. Assuming that there are no biases or that the

biases remain constant over time would lead to incorrect

quantifications of uncertainty.

4.3.2 Winter temperature

In Fig. 9 the posterior densities of the additive biases of the

control and scenario periods are shown for the winter

season. There is no systematic behaviour, neither for the

control bias nor for the bias change. Some models over-

estimate, some underestimate the true climate shift. This

holds for both the ‘‘constant bias’’ and the ‘‘constant rela-

tion’’ assumption. In Fig. 6 one can see that in the winter

season there is no systematic under- or overestimation of

the variability. Therefore, in the quantile plots of the

models, one observes slopes which are larger and slopes

that are smaller than one. In such a situation a linear

extrapolation of the biases does not show a common
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change for all models and the ‘‘constant bias’’ and the

‘‘constant relation’’ assumption give similar results.

In all models the uncertainty about the additive bias

increases from control to scenario period. For some models

the posterior mean of the bias remains unchanged and only

the spread is larger. For other models the posterior mean

also changes. Compared to the biases of the summer, the

biases are slightly smaller in winter. Again, the RCAO

model yields the largest bias and the largest bias change,

but they are smaller than in the summer for the same

model.

In Fig. 10 the multiplicative variability biases for the

winter temperature are shown. The first obvious point is

that the uncertainty of the estimates of the multiplicative

model biases in the winter season is smaller, the distribu-

tions are more concentrated around one. Overall, estimat-

ing mean winter temperature seems to be easier than

summer temperature.

4.4 Sensitivity analysis

In Sect. 3.4 we described an identifiability problem of our

model setup. Our solution in the Bayesian framework has

been to choose informative priors for the two parameters

Dbi and qbi
. We used a normal distribution with expecta-

tion 0�C and variance 0.5�C2 for Dbi and an inverse
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Fig. 9 Same as Fig. 7, but for winter
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Gamma distribution with expectation 1 and variance 0.33

for qbi
(see Table 2). Although these choices are based on

some qualitative knowledge about the behaviour of the

model biases, there is an additional uncertainty in this prior

distribution that is difficult to quantify. We therefore vary

the variances of these prior distributions over a large

spectrum of possible values to examine the sensitivity of

our model to the prior distributions. It would be desirable

to vary several of the hyper-parameters simultaneously

since there are also possible interactions between the

parameters, but this is computationally expensive to do. As

a compromise between varying only the hyper-parameters

of one single parameter and varying all hyper-parameters

together we simultaneously varied the hyper-parameters of

two parameters and kept the others fixed. This has been

done for all possible pairs of parameters.

There is no interaction between most parameters as long

as extreme situations are avoided. There is an interaction

between parameters which cannot be separated due to the

identifiability problem, e.g. rDb
2 and rDl

2 . In Fig. 11 we

show results of different prior distributions for one single

parameter Dbi, the additive bias change. For Dbi we varied

the hyper-parameter rDb
2 of the prior distribution. Plots of

the effect on the posterior for the additive bias change Dbi

of the CHRM model and the corresponding climate shift

Dl are shown for the ‘‘constant bias’’ assumption, but the

plots for the ‘‘constant relation’’ assumption look similar.

In the upper row of Fig. 11 the dashed red lines show

the prior distributions and the solid black lines the a pos-

teriori distributions of Dbi. Different values of the prior

variance rDb
2 are used. For large values one can see the

identifiability problem. There is a lot of uncertainty and the

gain of knowledge by the observations is small. For small

values the prior and the posterior distributions are nearly

identical. In such cases we assume that there is essentially

no bias change and therefore the identifiability problem

disappears. These different prior distributions for the bias

change affect not only the posterior of the bias change, but

also the posterior of the parameter Dl that describes the

climate shift. In the lower row of Fig. 11, it is shown how

the posterior of Dl (solid black line) changes by varying

the prior variance rDb
2 . Note that the prior distribution of

Dl is fixed (dashed red line) and only the prior distribution

of Dbi is changed. Furthermore if there is an uninformative

prior for Dbi, the correlation between Dl and Dbi gets

higher as expected. Nevertheless if one only considers the

sum Dl ? Dbi as proposed in Sect. 3.4 in alternative (iv),

the identifiability problem disappears. For all rDb
2 in

Fig. 11 one obtains the same distribution for this sum (plots

not shown). As indicated in Sect. 3.4 this is not a true

solution to our problem since the estimation and separation

of the climate shift and model bias is our main purpose.

Having a very concentrated prior distribution around 0

for the Dbi’s means that there is no bias change. In that

situation the a posteriori distribution for the climate shift is

also very concentrated around 5�C (mean summer tem-

perature increase). With a totally uninformative prior for

Dbi, the uncertainty about the climate shift increases, Dl
laying somewhere between 2 and 7�C. This behaviour of

the climate shift has also been observed by Lopez et al.

(2006, see their Fig. 3) when they are using different priors

for the change of the variability for the scenario runs.

Including the year-to-year variability, the uncertainty about

the predicted mean summer temperatures would be even

larger. But such uninformative prior for Dbi with rDb
2 = 4

or 16 is not a reasonable choice in our view. The bias |bi|
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Fig. 10 Same as Fig. 8, but for winter
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are with high probability less than 3� (see Fig. 7) for all

models and therefore one would expect the bias changes

|Dbi| to be smaller than 3� as well.

Having more uncertainty in the scenario runs implies

increased uncertainty in the climate shift. The sensitivity

shown here is not a disadvantage of the Bayesian approach,

but it highlights a more general problem. Making the

assumption of a constant bias over time leads to a too

confident conclusion about the precision of a prediction.

The other extreme is the assumption that there is no

knowledge about the change of the bias at all. Then prac-

tically no conclusion can be drawn from the model outputs.

Hence one should make a reasonable choice of the size of

possible bias changes Dbi. Note that only for additive and

multiplicative bias changes, informative priors have been

used. To validate this statement we have run a simulation in

which all other priors have been taken completely unin-

formative (improper priors). The results have not changed.

5 Conclusions and outlook

We have developed a new Bayesian methodology for the

estimation of future temperature distributions by combin-

ing the information contained in a multi-model ensemble

and available observations. The new model entails two

innovations: First, it has specifically been designed to

provide an estimate of the full distribution of a climate

variable. It thus allows the consideration of changes in

variability and mean, rather than merely changes in mean.

Second additive and multiplicative biases of individual

models can be taken into account, and these biases are

allowed to vary with time and thus to depend upon the

climate state. Although the consideration of time-depen-

dent biases is subordinate to the main objectives of the

study, it is not possible to separate the two issues, as

assumptions about biases changes under an emission sce-

nario directly influence the outcome of climate change

projections.

– The new methodology is successfully applied to

temperature changes as simulated by five GCM/RCM

model chains, and it yields a single probabilistic

estimate of climate change under an SRES A2 scenario.

We can consider the predictive density of the resulting

temperature changes as a kind of weighted average of

shifted and scaled versions of the individual RCM

predictions. The Bayesian approach incorporates a

statistical way for deriving the weights, shifts and scale

factors. We start with equal prior weights and the same

priors for shifts and scale factors for all models. In

principle, with the Bayesian approach it would also be

possible to include qualitative a priori knowledge about

different model behaviour in an easy way.

– The methodology does not make any a priori assump-

tions regarding climate change. In particular, the priors

for the parameters describing the climate change signal

are non-informative. A more comprehensive sensitivity

analysis (not included in the paper) confirms that the

choice of these priors does not influence the results.
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– Our analysis does however show that there is an

intrinsic identifiability problem, as the data does not

allow a clear separation between bias changes and

climate changes. Some additional assumptions are thus

inevitable. We resolved this identifiability problem by

using informative priors for the bias changes. The

choice of these priors influences the results, but we

believe that our choice is reasonable, and we show that

the sensitivity is small as long as we avoid extreme

choices. Also, the use of informative priors is well

justified, as there is both established trust in climate

models and justified doubts about the stationarity of

model biases. In effect, our approach constrains the

bias changes to be smaller in magnitude than the

climate changes by about a factor 3.

– The study demonstrates that assumptions about the

extrapolation of the model biases from the control into

the scenario period are crucial, at least for the situation

considered (Alpine summer surface temperatures). To

arrive at this conclusion, we have made two different

assumptions about the behaviour of the model bias,

referred to ‘‘constant bias’’ and ‘‘constant relation’’

assumption. Both assumptions appear plausible and

both have (implicitly or explicitly) been used in climate

studies, yet the two assumptions yield different esti-

mates of future summer mean temperatures. Indeed,

with one of the two assumptions, the strong summer

mean warming exhibited by most models is reduced

from an ensemble mean of 5.4�C to 3.4�C, thus

becoming smaller than the ensemble mean warming

for the winter season. By contrast, winter temperature

estimates are not affected by the bias assumptions, and

this difference is explained by the difficulties (success)

of the models in reproducing the observed interannual

variability of the summer (winter) season. Although the

current paper restricts its attention to Alpine temper-

atures, we note in passing that similar conclusions can

be drawn if the model is applied to larger areas, e.g.

Central Europe.

The aforementioned result is of general interest, as it

questions an important implicit assumption of current

scenario models, namely that the model bias will not sig-

nificantly depend upon the climate state. This assumption is

implicitly buried in the consideration of ‘‘changes in cli-

mate’’, which are defined as the difference between sce-

nario and control climate.

Distinguishing in an objective way between the two

aforesaid bias assumptions seems difficult. The decision

cannot be made by statistical methods alone, but needs

expert knowledge. Additional information about the

behaviour of model biases may be gained by considering

one model in different climatic regions or under different

emission scenarios. Longer time series for the control runs

and observations may also help to determine the behaviour

of the biases and would also enable the consideration and

exploitation of different variability measures (e.g. inter-

annual versus decadal variability).

There are several extensions of our methodology beyond

the current study. Since spatial and temporal aggregation is

a limitation of this study, one could consider spatial aver-

ages over smaller regions (e.g. station rather than domain-

averaged data), temporal averages over shorter periods

(e.g. monthly rather than seasonal means), other variables

(e.g. precipitation), or replace the temporal averages by a

measure that considers extremes (e.g. number of days

above a 90th percentile). Applying the current methodo-

logy to other models and data sets (e.g. global mean surface

temperature) would also be of considerable interest. Some

of these extensions would presumably require us to con-

sider non-normal distributions. Extensions to other loca-

tion-scale families of distributions (univariate distributions

that are parameterized by a location parameter l and a

scale parameter r) are straightforward, but things become

more complicated when different shapes of the distribution

are also involved. Other potential extensions deal with the

separation of GCM and RCM uncertainties and with an

individual treatment of the different RCMs trends. For the

former, one would include RCMs that are based on the

same GCM simulation and model the correlations with

hierarchical random effects. For the latter, one would

replace the common slope c in Assumption 2 by a model-

specific slope c ? di for model i. Another question is the

treatment of spatial correlations if no aggregation is done.

Some of these extensions will be considered in the PhD

thesis of the first author.
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Vidale PL, Lüthi D, Frei C, Seneviratne S, Schär C (2003)

Predictability and uncertainty in a regional climate model.

J Geophys Res 108:Art. No. 4586
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