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Abstract Traditional kernel classifiers assume inde-
pendence among the classification outputs. As a conse-
quence, each misclassification receives the same weight
in the loss function. Moreover, the kernel function only
takes into account the similarity between input values
and ignores possible relationships between the classes
to be predicted. These assumptions are not consistent
for most of real-life problems. In the particular case
of remote sensing data, this is not a good assumption
either. Segmentation of images acquired by airborne
or satellite sensors is a very active field of research in
which one tries to classify a pixel into a predefined
set of classes of interest (e.g. water, grass, trees, etc.).
In this situation, the classes share strong relationships,
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e.g. a tree is naturally (and spectrally) more similar to
grass than to water. In this paper, we propose a first
approach to remote sensing image classification using
structured output learning. In our approach, the output
space structure is encoded using a hierarchical tree, and
these relations are added to the model in both the ker-
nel and the loss function. The methodology gives rise
to a set of new tools for structured classification, and
generalizes the traditional non-structured classification
methods. Comparison to standard SVM is done nu-
merically, statistically and by visual inspection of the
obtained classification maps. Good results are obtained
in the challenging case of a multispectral image of very
high spatial resolution acquired with QuickBird over a
urban area.

Keywords Structured output learning · Support vector
machines · Kernel methods · Land use classification

1 Introduction

Remotely sensed images allow Earth Observation with
unprecedented accuracy. New satellite sensors acquire
images with high spectral and spatial resolution, and
the revisiting time is constantly reduced. Processing
data is becoming more complex in such situations and
many problems are posed from a machine learning
perspective, but image segmentation is probably the
most critical and important application. The charac-
teristics of the acquired images allow the characteriza-
tion, identification, and classification of the land-covers
[16]. However, traditional classifiers such as Gaussian
maximum likelihood or artificial neural networks are
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affected by the high input sample dimension, tend to
overfit data in the presence of noise or perform poorly
when a low number of training samples are available
[11, 12].

In the recent years, the use of support vector ma-
chines (SVMs) [17] for remote sensing image clas-
sification has been paid attention basically because the
method integrates in the same classification procedure:
(1) a feature extraction step, as samples are mapped to a
higher dimensional space where a simpler (linear) clas-
sification is performed, becoming nonlinear in the input
space; (2) a regularization procedure by which model’s
complexity is efficiently controlled; and (3) the mini-
mization of an upper bound of the generalization error,
thus following the Structural Risk Minimization (SRM)
principle. The application of SVMs have demonstrated
very good performance in multispectral, hyperspectral,
and multi-source image classification [5–7, 15]. Kernel
methods rely on the definition of a distance measure
between input samples (pixels) in a proper Hilbert
space.

In standard kernel machines, relations between the
outputs is not considered explicitly, which constitutes
a theoretical limitation of the approach. In this paper,
we propose the use of a recent machine learning frame-
work, the structured output learning, to improve the
quality of remote sensing image classification by taking
into account such relations.

Suppose we are given a set of n labeled pixels in a
remotely sensed image (x1, y1), . . . , (xn, yn) ∈ X × Y .
In the classical SVM image classification scenario, the
similarity between pixels xi and x j is used to predict
the outputs yi using the kernel function K(xi, x j) =〈
φ(xi), φ(x j)

〉
. The output vector accounts for a land-

use or land-cover class, e.g. class label yi for pixel
xi may refer to ‘grass’, ‘soil’, or ‘water’. This way of
proceeding assumes independence between the out-
puts, as illustrated in Fig. 1a. This choice is justified
by the fact that, in principle, no assumptions about the
distribution of the outputs may be done. However, a
pixel can be associated with a structured output that
considers a more complex relational information, for
instance, through a hierarchical tree structure showing
several classification levels. Figure 1b illustrates this
idea. Considering the structure relating the possible
classification outputs, direct output class dependencies
are assumed and also different forms of penalizing
misclassification errors can be achieved according to
the designed structure. This way, it seems obvious that
predicting ‘Highway’ for a ‘Tree’ pixel should be pe-
nalized more than predicting ‘Grass’, because the latter
are intuitively more related classes, and in fact, input
samples (spectra) are more similar.

Trees Meadows Highway Roads Habitat Shadow
Com-
  mercial

1

1 1 1
1 1 1

(a)

Trees

Vegetation

Natural

Asphalt Buildings

Man-made

Meadows Highway Roads Habitat Shadow
Com-
  mercial

0.330.330.330.330.330.330.33

0.33 0.33 0.330.33

(b)

Figure 1 Examples of a classical non structured and b structured
output representation.

In the literature, this output information is indi-
rectly exploited through the use of cost matrices and
balancing constraints, typically encoded a priori. This
approach is not useful when few (or not representa-
tive) labeled samples are available. Besides, these are
second-order output class relations, and they are not
learned from data but fixed before learning. Structured
output learning [3] formalizes the problem of output
space relations. This methodological framework aims at
predicting complex objects, such as trees, sequences or
web queries, where, contrarily to usual machine learn-
ing algorithms, the relationship between the associated
outputs plays a role in the prediction.

Several ways can be considered to introduce inter-
dependencies in the output space. In this paper, Struc-
tured Support Vector Machines (SSVM) are consid-
ered. The first attempts at SSVM classifiers can be
found in the machine learning literature [13, 19, 20, 22].
In [1], an excellent review of the state of the art in struc-
tured learning is presented. Despite the confinement
of these methods in the machine learning community,
the first applications of structured output learning ap-
peared in other disciplines, such as natural language
learning [13] or object localization [4]. However, its
application to image classification has not been pre-
sented so far, and currently no remote sensing appli-
cations of SSVM (or of structured learning in general)
can be found. Nonetheless, the manifold where natural
and remote sensing images lie is typically smooth and
dominated by strong local relations. Therefore, similar
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classes should be nearby in the manifold and, by con-
sidering output relations, structured learning may bring
relevant information to the classification task.

This paper introduces the concept of structured
learning for the simplest case of multiclass clas-
sification. Two implementations are considered: the
first with a simple, yet effective, modification of the
SVM loss function, and the second introducing the tree
structure in the measure of similarity, the kernel. The
presented framework is evaluated on a very high reso-
lution (VHR) image classification problem. Section 2
illustrates the modification to the standard SVM to
obtain the SSVM formulation. Section 3 presents the
experimental setup of the experiments presented in
Section 4. Section 5 concludes the work.

2 Structured Output Learning

This section revises the theory and novelties introduced
by the structured learning paradigm. Then, we develop
the SSVM algorithm. A simple hierarchical structure is
designed to include output relations in the context of
remote sensing image classification.

2.1 Basic Concepts

The aim of structured learning for classification is, as
for the canonical classification setting, to learn a func-
tion h such as

h : X → Y, (1)

where X is the space of inputs and Y is the space of
structured outputs. Using an i.i.d. training sample X =
{(x1, y1), (x2, y2), ..., (xn, yn)}, h is the function minimiz-
ing the empirical risk

R�
E(h) = 1

n

n∑

i=1

�
(
yi, ȳi

)
, (2)

where ȳi is the prediction and y is the correct class
assignment. The quality of the model is evaluated by
a loss function: �(yi, ȳi) = 0 if the label is correctly
assigned and �(yi, ȳi) ≥ 0 otherwise. Note that the
classical 0/1 loss is a particular case of this function
returning the loss 1 for each wrong output. Coming
back to the h functions, they are of the form

h(x) : arg max
y∈Y

f (x, y), (3)

where f : X × Y → R is a joint function between in-
puts and outputs evaluating how well a certain predic-

tion matches the observed output. The joint function f
can be represented as f (x, y) = w��(x, y), where w is
a weight vector and the joint input–output mapping �

relates inputs x and outputs y.
In order to account for a structured output, or object,

two main ingredients of the SVM must be modified:
the mapping � and the loss function �. It is clear that
such modification leads to SSVM formulations that are
application-dependent and must take advantage of the
specificities of the particular task. The examples con-
sidered in this paper address the problem of multiclass
spectral image classification.

2.2 The Joint Input–Output Mapping

Figure 1b shows the tree structure for a multiclass
classification task with seven classes (lower level in
the tree), even though 13 classes can be created from
the structure by grouping physically-similar classes into
superclasses (upper levels). The goal is to encode the
structure of the tree into the mapping φ(x), resulting
into a joint input–output mapping �(x, y). In [1], a
mapping considering tree-structures is proposed for
taxonomies. Consider a taxonomy as a set of elements
Z ⊇ Y ordered by a partial order ≺, and let β(y,z) be
a measure of similarity respecting the order ≺. The
representation of the outputs �(y) can be generalized
as

λz(y) =
{

β(y,z) if y ≺ z or y = z
0 otherwise

(4)

For instance, in the guiding example of Fig. 1 and using
β(y,z) = 1, the class “Meadows” will be represented as

�(Meadows)=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
1 (Meadows is equal to Meadows)
0
0
0
0
0
1 (Vegetation is a superclass of Meadows)
0
0
1 (Natural is a superclass of Meadows)
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

This way, the similarity between two outputs sharing
common superclasses will be higher than between out-
puts that are distant in the tree. Then, we can define the
joint input–output feature map via a tensor product

�(x, y) = �(x) ⊗ �(y) (5)
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This formulation introduces a weight vector wz for
every node in the hierarchy. The inner product of the
joint feature map decomposes into kernels over input
and output space (using the properties proposed in
[17]):

〈
�(x, y), �

(
x′, y′)〉 = K⊗((�(x), �(y)),

(
�

(
x′), �

(
y′))

= 〈
�(y), �

(
y′)〉 K

(
x, x′) (6)

In order to illustrate this principle, consider a three-
class problem with the structure shown in Fig. 2. Classes
4, 5 and 6 are the superclasses giving the tree structure.

In the non-structured version of the algorithm
(equivalent to usual multiclass classification), the � and
� vectors take the form:

�(y)� =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ �(y)� =
⎛

⎝
x 0 0
0 x 0
0 0 x

⎞

⎠

Taking into account the structure shown in Fig. 2, � and
� become:

�(y)� =
⎛

⎝
1 0 0 1 0 1
0 1 0 1 0 1
0 0 1 0 1 1

⎞

⎠ �(y)� =
⎛

⎝
x 0 0 x 0 x
0 x 0 x 0 x
0 0 x 0 x x

⎞

⎠

The linear dot product between the two first classes
will result in 2

〈
x, x′〉, while between the classes 1 and

3 (and 2 and 3) it is of
〈
x, x′〉 only. Thus, using a joint

input–output mapping, output structure participates to
the similarity between samples.

2.3 The Loss Function

To define the loss function, we can modify the classical
0/1 loss by exploiting the tree-based output structure.

Figure 2 Toy example of
structure.

1 2 3

54

6

The proposed tree-based loss assumes a common su-
perclass in the tree at level l = {1, ..., L} as follows:

�(y, ȳ) =
{

(l − 1)/L if yl = ȳl

1 otherwise
(7)

Using this loss, errors predicting ‘far away’ classes are
penalized more than ‘close’ errors. A class predicted
correctly will receive a loss of zero (l − 1 = 0), while the
prediction of a class not sharing any superclass with the
true class will receive a loss of 1.

The loss function presented in Eq. 7 assumes equal
distance between the classes and their superclasses: this
can be refined by constructing ad hoc class distances
from the labeled data or by learning inter-class dis-
tances through clustering or bag kernels [21].

2.4 The n-slack and 1-slack SSVM

The modification of the loss and the mapping allows
us the integration of output-space similarities into the
kernel function. However, to exploit this new source
of information, the whole SVM must be reformulated:
it is easy to see that the mapping �(x, y) cannot be
computed for test points, for which the class member-
ship is unknown. In order to solve this general problem
in structured learning, specific (structured) SVM for-
mulations must be developed. Several strategies have
been proposed for the SSVM [2, 14, 18–20], but the
formulation of [19] is the most general as it includes
the rest as particular cases. This formulation is usually
referred to as the n-slack Structured-outputs SVM (n-
SSVM), since it assigns a different slack variable to each
of the n training examples. Specifically, in the margin-
rescaling version of [19], the position of the hinge is
adapted while the slope is fixed. Each possible output is
considered and the model is constrained iteratively by
adding constraints on the (x, y) pairs that most violate
the SVM solution (note that y has become a vector
containing all possible outputs). In other words, a sort
of regularization is done, restricting the set of possible
functions h. This way, the formulation becomes:

min
w,ξ

1
2
||w||2 + C

n

n∑

i=1

ξi (8)

∀i : ξi ≥ 0

∀ȳ ∈ Y
︸ ︷︷ ︸

−1−
, ∀i︸︷︷︸

−2−
: 〈

w, �
(
xi, yi

)〉

︸ ︷︷ ︸
−3−

− 〈
w, �

(
xi, ȳi

)〉

︸ ︷︷ ︸
−4−

≥ �
(
yi, ȳ

)

︸ ︷︷ ︸
−5−

−ξi (9)
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The objective is the conventional regularized risk used
in SVMs. The constraints state that for each incorrect
label (–1–) and for each training example (xi, yi) (–2–),
the score 〈w, �(xi, yi)〉 of the correct structure yi (–3–)
must be greater than the score 〈w, �(xi, ȳi)〉 of all in-
correct structures ȳ (–4–) by a required margin (–5–).
If the margin is violated, the slack variable ξi becomes
non zero.

The above quadratic program involves a very large,
possibly infinite number of linear inequality con-
straints. This high number of inequalities is too large
to be optimized explicitly. Alternatively, the problem
is solved by using delayed constraint generation where
only a finite and small subset of constraints is taken into
account. Optimizing over a subset of the constraints
enlarges the feasible set and will yield a solution which
provides a lower bound on the objective. The algo-
rithm works iteratively by finding the most violated
constraints. Since exact solution would imply a huge
amount of constraints, a violating constraint is added
to the model only if the violation if greater than a
precision threshold ε. Nonetheless, this algorithm is
not efficient: it iterates over all training examples and
adds several constraints at each iteration. It has been
proven in [19] that a greedily constructed model of the
n-slack SSVM requires O( n

ε2 ) constraints. Although it
could be efficient when the most violated constraints
can be found quickly, the n-SSVM is computationally
expensive when working with many training samples.
To solve this issue, the n-slack algorithm has been refor-
mulated in [13] to a model several orders of magnitude
faster: the 1-slack SSVM (1-SSVM). As suggested by its
name, the model has a unique slack variable ξ applied
to all the constraints. The interested reader can find the
proof for the equivalence with the n-slack formulation
in [13]. The n cutting planes of the previous model
(one for each training example) are replaced by a single
cutting plane for the sum of the hinge-losses. In this
sense, Eqs. 8 and 9 can be replaced by

min
w,ξ

1
2
||w||2 + C

n
ξ (10)

∀ȳ ∈ Y : 1
n

n∑

i=1

[〈
w, �

(
xi, yi

)〉 − 〈
w, �

(
xi, ȳi

)〉]

≥ 1
n

n∑

i=1

�
(
yi, ȳ

) − ξ (11)

where ξ = 1/n
∑

i ξi.
Algorithm 1 shows the 1-SSVM, as proposed in [13].

Starting with an empty working set of constraints W =

Algorithm 1 1-slack SSVM with margin rescaling [13]

Inputs
- Initial training set X = {(x1, y1), (x2, y2), ..., (xn, yn)}
(n × d + 1).
- Set of constraints W ← ∅.
- Precision ε (scalar).

1: repeat
2: solve the SVM using Eqs. 10 and 11

Result are parameters (w, ξ)

3: for i = 1, ..., n do
4: predict the label ȳi ← arg maxȳ∈Y{�(yi, ȳ) +

〈w, �(xi, ȳ)〉}
5: end for
6: W ← W ∪ {(ȳ1, ȳ2, ..., ȳn)}
7: until Eq. 11 is fulfilled with ε precision for

all the active constraints
(
i.e. 1

n

∑
i �(yi, ȳi) −

1
n

∑
i

[
〈w, �(xi, yi)〉 − 〈w, �(xi, ȳi)〉

]
≤ ξ + ε

)
.

∅, the algorithm computes the solution over the current
W , finds the most violated constraint (one, for all the
training points) and adds it to the working set. The
algorithm terminates when no constraint is added in
the previous iteration, i.e. when all the constraints are
fulfilled up to a precision ε. Unlike the n-SSVM, only
one constraint is added at each iteration. This new
formulation has |Y|n constraints, one for each possible
combination of labels [ȳ1, . . . , ȳn], but only one slack
variable ξ is shared across all constraints.

3 Data and Experimental Setup

Experiments have been carried out on a four-bands
optical image of the city of Zurich (Fig. 3a). The im-
age, acquired by the sensor QuickBird, in 2006 has
size (828 × 889) pixels. QuickBird is a high-resolution
commercial earth observation satellite, owned by
DigitalGlobe and launched in 2001. The satellite col-
lects panchromatic imagery at 60–70 cm resolution and
multispectral imagery at 2.4 and 2.8-m resolutions. The
latter was pansharpened using Bayesian Data Fusion
[9] to attain a spatial resolution of 0.6 m. Seven classes
of interest have been highlighted by photointerpreta-
tion and 254,469 pixels have been carefully labeled
(Fig. 3b). For analysis, these pixels have been randomly
split into three sets: for training (1,400 pixels, 200 per
class), model selection (5,000) and validation (248,769).
The input variables are the four spectral bands and
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(a) (b)

Figure 3 Multispectral very high resolution Quickbird image
acquired over Zurich. a RGB composition of the image and
b ground survey of the seven classes of interest identified: ‘trees’

(Dark green), ‘meadows’ (light green), ‘highway’ (black), ‘road’
(brown), ‘residential’ (orange), ‘commercial’ (red) ‘and shadow’
(blue).

six morphological features extracted from the panchro-
matic band (opening and closing with increasing size
structured elements (5, 9, 13 pixels)).

Structure has been imposed using the tree shown in
Fig. 1b. The empty class, superclass of ‘shadow’ has
been added in order to give a three-level hierarchy for
each of the seven classes and results in a normalized
mapping. Three main experiments have been carried
out:

1. Loss: only the loss function �(y, ȳi) is
modified. This is investigated by three different
modifications: first, the modification proposed in
Section 2.3:

– Loss-Tree1: encoding the similarity of the
tree in Fig. 1b with β = 0.33.

Then, one could decide to encode a greater sim-
ilarity to classes sharing the first common super-
class, inducing an asymmetric tree, or to derive the
loss from training data, for instance by computing
class mean vectors and computing a distance matrix
between them. These algorithmical variations are
analyzed in experiments Tree2 and Tree3:

– Loss-Tree2: decreasing β to 0.1 between
classes sharing a direct superclass.

– Loss-Tree3: loss assessed by distance be-
tween training class mean vectors.

2. PSI: the mapping �(xi, yi) is tree weighted using
Eq. 6, where

〈
�(y), �(y′)

〉
is set to 1 − �(y, y′

i). The
loss used is the 0/1 loss.

3. Loss-PSI: both � and � are modified using
the modifications presented above. That give birth
to three experiments using respectively the losses
Tree1, Tree2 and Tree3.

SSVM algorithm is implemented using the SVMstruct

library,1 and compared with the multiclass implemen-
tation of the SVM of [8], also using the same library.

4 Results and Discussion

Table 1 illustrates the results of the experiments men-
tioned above. The standard SVM, taken as a refer-
ence, results in an overall accuracy of 76.17% and
an estimated kappa statistic of 0.711. Looking at the
user’s accuracies, most of the confusion is observed
for the classes ‘Residential’ and ‘Commercial’: this was
expected, because several residential buildings have a

1Available at http://svmlight.joachims.org/svm_struct.html.

http://svmlight.joachims.org/svm_struct.html
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Table 1 Classification
accuracies (in %) and
estimated kappa statistic
(along with its 95%
confidence intervals).

In bold, the results
outperforming the standard
SVM
aSignificantly improves the
Standard SVM by the
McNemar’s test [10]

Loss SVM SSVM–Loss SSVM–PSI SSVM–Loss-PSI

0/1 Tree1 Tree2 Tree3 0/1 Tree1 Tree2 Tree3

Trees 85.07 82.41 87.67 84.96 86.74 84.78 87.39 83.64
Meadows 96.22 96.02 93.34 95.29 96.44 95.90 94.27 94.86
Highway 96.98 94.15 94.54 95.28 93.68 95.50 94.09 95.68
Roads 73.40 69.58 75.76 77.24 72.70 75.15 73.32 70.96
Residential 59.67 71.22 68.48 63.71 62.90 66.61 67.85 65.84
Commercial 67.09 57.54 50.20 59.75 69.59 55.60 52.38 62.32
Shadows 99.62 99.77 99.49 99.53 99.04 99.59 99.77 99.44
Overall 76.17 77.30a 77.72a 77.07a 77.25a 77.21a 77.29a 76.66a

Kappa 0.711 0.722 0.726 0.721 0.724 0.722 0.722 0.715
C.I. [0.709; [0.720; [0.724; [0.719; [0.722; [0.720; [0.719; [0.713;

0.713] 0.724] 0.728] 0.723] 0.726] 0.724] 0.724 ] 0.717]

roof color similar to the commercial center. The main
challenge of the method is thus to resolve the confusion
between these two classes.

The Loss results show a significant improvement
(tested by the McNemar’s test) of the SVM solution
of about 1% to 1.5%: in all these experiments, the

Image GT SVM Loss–T2 PSI

Figure 4 Classification map, Loss-Tree2 experiment. Bottom row: detail of classification for the SVM, Loss-Tree2 and PSI
experiments.
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Table 2 Classification accuracies (in %) and estimated kappa statistic (along with its 95% confidence intervals) for the second-level
classification (four classes).

Loss SVM SSVM–Loss SSVM–PSI SSVM–Loss-PSI

0/1 Tree1 Tree2 Tree3 0/1 Tree1 Tree2 Tree3

Natural 96.86 95.03 96.24 95.84 97.38 96.61 96.07 95.19
Asphalt 84.53 80.88 85.17 85.65 82.19 85.16 83.54 82.18
Buildings 80.82 86.59 82.89 80.67 84.87 83.35 83.51 83.01
Shadows 99.62 99.77 99.49 99.54 99.04 99.60 99.77 99.44
Overall 87.00 87.86a 87.85a 86.99 88.09a 88.14a 87.62a 86.79
Kappa 0.812 0.823 0.824 0.812 0.827 0.828 0.821 0.808
C.I. [0.810; [0.821; [0.822; [0.899; [0.825; [0.826; [0.819; [0.806;

0.814] 0.825 0.826 0.814] 0.829] 0.830] 0.823] 0.810]

In bold, the results outperforming the standard SVM
aSignificantly improves the Standard SVM by the McNemar’s test [10]

class ‘Residential’ increases in accuracy, as well as the
roads (Tree2 and Tree3). Even though it is not a
big gain, this improvement is achieved by modifying
the loss function only and practically no additional
computational cost is involved. Figure 4 illustrates the
classification map obtained with the LS–T2 experiment:
the strong confusion between residential and commer-
cial buildings is visible on the left side of the image.

The PSI experiment shows a solution similar to
the ones observed above. Nevertheless, the accuracy is
improved for four classes, among which ‘Commercial’
and ‘Residential’. This proves that the modification of
the mapping � allows to encode additional information
about the pixels. The solution seems more stable: unlike
in the previous experiments, there is no class where the
accuracy is degraded.

The last experiments (Loss-PSI) combine the ideas
of the previous ones: both the loss and the mapping
are modified. The effect of the new loss seems to be
stronger, since the solutions are similar to the ones
obtained in the Loss experiments. With respect to
the latter, the overall performance is lightly degraded
(especially for the Tree3 loss), probably due to the
increase of the complexity of the model.

In the introduction, we stated that the interest of
adding information about the output structure in tax-
onomies would help penalizing the prediction of classes
whose outputs are distant in the tree structure. In
other words, confusion between higher levels of the
taxonomy should be avoided. To confirm this hypoth-
esis, we have re-grouped the seven-classes predictions
of Table 1 into the four classes of the second level
of the tree of Fig. 1, namely ‘Vegetation’, ‘Asphalt’,
‘Buildings’ and ‘Shadow’. Table 2 illustrates the results
for the aggregated data. The gains in overall accuracy
are, again, of the order of 1–1.5% and of 0.15 for the
estimated kappa statistic. The PSI and the Loss-PSI
with Tree1 loss result in the best solutions, confirming

that the modification of the mapping helps the coher-
ence of the solution. On the contrary, the mean vectors
loss (Tree3) does not result in an improved solution
of the standard SVM (the result of the McNemar’s
test is negative, thus giving preference to the latter):
a loss function computed on training data seems not
to be satisfactory, probably because its information is
redundant with the kernel K(x, x′), while the other
losses introduce new independent information related
to expert knowledge of the class similarities.

5 Conclusions

We proposed the use of structured learning for remote
sensing image classification. The framework has been
presented and analyzed theoretically. Also a structured
SVM has been developed by embedding output label
similarity in the machine through a simple hierarchical
tree. The output relations are then used to modify the
SVM loss function and the kernel function. Experi-
ments on a VHR image classification problem showed
good results, and encourage future research in the field
of remote sensing structured learning. Ongoing work is
focused on design of spatially structured output kernels.
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