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Figure 1 depicts gender-specific annual trends in overweight
(body mass index (BMI) > 25 kg/m2) prevalence (%) for
nine independent, annual, cross-sectional samples of adult
men and women (total n = 9716) who were randomly se-
lected within age strata during 1993–2001. Five different
trend “curves” are shown. These ways of estimating or ap-
proximating prevalence trends, and of assessing trend P-val-
ues, are discussed in this Hints & Kinks.

1. Crude mean estimates (no trend model)

The dark circles are annual crude sample means of the over-
weight “indicator” variable: Y = 100 for overweight individ-

uals, Y = 0 for non-overweight individuals. Thus, they are
annual overweight sample prevalences, estimating Psurvey =
annual overweight population prevalences. (For propor-
tions, code Y = 1 for overweight.)
Connecting crude means provides some idea of trend, but it
is difficult to formalize this without a statistical model specif-
ically designed to assess it.

2. ANCOVA “Least squares means” approximations

Consider an analysis of covariance (ANCOVA) model for
the population overweight prevalences by age (years, con-
tinuous) and survey (9 groups (not continuous)),

Figure 1 Illustrations of the five approaches in Sections 1–5 for estimating or approximating annual trends in the prevalence of overweight 
(BMI > 25 kg/m2). The data are from nine independent, annual, cross-sectional samples of adult (35–74 years) men and women non-institutionalized
residents of Geneva, Switzerland who were randomly selected within age strata from 1993 through 2001 (see Galobardes et al. 2003a; b). Each
participant appeared in a single survey, and all analyses were gender-specific. Annual trend P-values: mean logistic predicted values estimates: men:
P = 0.000027; women: P = 0.141; linear regression approximations: men: P = 0.000030; women: P = 0.137
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Page, survey = b0 + (b1 ¥ age) + (b2 ¥ survey),                                       (1)

which is linear in age and survey for some unknown para-
meters b0, b1, b2. Should neither age nor survey have effects
on being overweight (i.e., b1 = b2 = 0), then Page, survey = b0

(constant). It is an “additive” (assumes no (age ¥ survey) in-
teraction effect) model.
Correspondingly, the open circles approximate

Psurvey = Page, survey – (b1 ¥ age).                                                         (2)

Specifically, they are so-called  “least squares means” (esti-
mated “population marginal means”, Searle et al. 1980) ob-
tained by analyzing the {Y, age, survey} data trio for each in-

dividual using (e.g.) the “LSMEANS” option for survey
(declared a “CLASS” (grouped) variable), in the SAS GLM
(Generalized Linear Models) program (SAS Institute, Inc.
1999).
Connecting least squares means provides a further idea of
(mean age-adjusted) annual trends (because age was in the
model). However, this ANCOVA model was designed to as-
sess any differences between annual prevalences, not trend,
per se.

3. Mean linear predicted values approximations

If survey is continuous, the above ANCOVA model be-
comes a (multiple) linear regression model. The (generic) b0,

b1, b2 parameters (also approximations, say b0, b1, b2) are not

the same as before (e.g., b2 is now a linear slope). Neverthe-
less, one can analyze the same (Y, age, survey) data with
(e.g.) another GLM run (no “CLASS” declaration) to ob-
tain approximations (“linear predicted values”) of Page, surevey

in (1),

L = b0 + (b1 ¥ age) + (b2 ¥ survey).

Then, an approximate Psurvey in (2) is the mean L over indi-
viduals in that survey.
Connecting mean linear predicted values (“L” points) pro-
vides a “smoother” idea of trend than connecting crude or
least squares means. (The “L” points are almost superim-
posed on the “P” points, defined in Section 5.) However, al-
though the linear regression model was designed to assess
trend (because age and survey are continuous), this still does
not constitute a formal test for trend.

4. Linear regression approximation

On the other hand, within the framework of the model in
Section 3, the usual t- or F-test of H0 : b2 = 0 (no survey slope)
does provide a formal assessment of (linear) trend. In the ex-
ample, the annual overweight prevalences increased signifi-
cantly in men (P = 0.00003), but not in women (P = 0.14).

In fact, however, these trend P-values refer to another (sim-
pler) way of approximating (mean age-adjusted) Psurvey in
(2). Specifically, for each gender, the solid lines depict the
single linear function of survey,

b0 + (b1 ¥ mean age) + (b2 ¥ survey),

i.e., the sample linear regression equation evaluated at the
(overall) mean age.

5.  Mean logistic regression predicted values estimates

Although 0 ≤ Page, survey ≤ 100 since it is a percentage, it is pos-

sible to obtain a least squares mean, a mean linear predicted
value, or even a point on the sample regression line outside

that range because those approaches do not constrain the fi-
nal approximated numerical values in any way. This is one
reason why these three approaches were dubbed “approxi-
mations” rather than estimates. 
This difficulty is avoided by a logistic regression model 
and analysis. In lieu of modeling Page, survey directly, the
“logit” (or log odds) of Page, survey, which is the logarithm (log)
of {Page, survey/(100 – Page, survey)}, is modeled instead. The cor-
responding analogue of model (1) is:

log{Page, survey/(100 – Page, survey)} = b0 + (b1 ¥ age) + (b2 ¥ year).
(3)

This model assumes the logit, not Page, year itself, is linear in
age and survey (both continuous).
Once again, the individual (Y, age, survey) data are analyzed
(e.g., with the SAS LOGISTIC program). In addition, cor-
responding likelihood ratio tests (LRT) for trend can be ob-
tained. In the example, the logistic LRT P-values  were vir-
tually the same as those reported in Section 4.
One can also estimate, for each individual in an annual sur-
vey, the corresponding individual analogue of Psurvey in (2)  by
back-transforming the estimated logit of Page, survey, (say)

LOGIT = {b0 + (b1 ¥ age) + (b2 ¥ survey)})

in two steps as follows:  (i)  exponentiate to eLOGIT,  and (ii)
compute eLOGIT/(1 + eLOGIT). Then, to estimate the corre-
sponding (overall) analogue of Psurvey in (2), one can use the
mean eLOGIT/(1 + eLOGIT) over all individuals surveyed that
year (“P” points).
As mentioned above, in the figure the mean logistic pre-
dicted values (“P”) were practically identical to the mean
linear predicted values ( “L”). So, connecting the “P” points
also provides a “smoother” idea of trends than connecting
the crude or least squares means. However, neither the con-
nected “P” nor “L” points is as smooth as the single regres-
sion line approximation of Section 4.
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Discussion and recommendations
Remember, prevalence estimates and trend P-values should
be obtained by analyzing the individual-level data, not the
aggregated (e.g.) least squares means data. Crude and least
squares means were stressed in the first two approaches, but
other types of adjusted means, or medians, etc., also could be
used. SAS programs were cited, but others, e.g., in S-PLUS
2000 (MathSoft, Inc. 1999), used for Figure 1, could equally
well be employed for the analyses.
In the moderately prevalent (25% to 65%) overweight ex-
ample, there was little practical difference between the
(technically more correct) mean logistic predicted values es-
timates and the mean linear predicted values approxima-
tions. Just as an observation, consistently similar degrees of
concordance between these two approaches have occurred
in our research on much less prevalent risk factors or out-
comes (e.g., diabetes treatment prevalences from 0% to
2%). The even simpler, single straight line regression ap-
proximations were also reasonably close to both the latter
approaches for all prevalence magnitudes considered.

Further examples of the least squares means and linear re-
gression approximations approaches can be found in Galo-
bardes et al. (2003a; b), where quarterly trends in a variety
of cardiovascular disease risk factors were assessed using
these techniques.
The range of models covered here was curtailed and delib-
erately simplified. Readers requiring more depth or more
complex models for dealing with other important issues such
as interaction effects, different methods of age-adjustment
(e.g., direct standardization) or other covariate-adjustment,
nonlinear trends, etc., are directed to more comprehensive
references such as (e.g.) Szklo and Nieto (2000), or Korn
and Graubard (1999).
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