
Visual Comput (2007) 23: 689–695
DOI 10.1007/s00371-007-0135-6 O R I G I N A L A R T I C L E

Etienne Lyard
Nadia Magnenat-Thalmann

A simple footskate removal method for
virtual reality applications

Published online: 9 June 2007
© Springer-Verlag 2007

E. Lyard (�) · N. Magnenat-Thalmann
MIRALab, University of Geneva
Battelle, Batiment A
7 Route de Drize
CH-1227 Carouge
Switzerland
Lyard@miralab.unige.ch

Abstract Footskate is a common
problem encountered in interactive
applications dealing with virtual
character animations. It has proven
difficult to fix without the use of
complex numerical methods, which
require expert skills for their imple-
mentations, along with a fair amount
of user interaction to correct a mo-
tion. On the other hand, deformable
bodies are being increasingly used
in virtual reality (VR) applications,
allowing users to customize their
avatar as they wish. This introduces
the need of adapting motions without
any help from a designer, as a random
user seldom has the skills required to
drive the existing algorithms towards
the right solution. In this paper, we

present a simple method to remove
footskate artifacts in VR applica-
tions. Unlike previous algorithms,
our approach does not rely on the
skeletal animation to perform the
correction but rather on the skin. This
ensures that the final foot planting
really matches the virtual character’s
motion. The changes are applied to
the root joint of the skeleton only
so that the resulting animation is as
close as possible to the original one.
Eventually, thanks to the simplicity of
its formulation, it can be quickly and
easily added to existing frameworks.

Keywords Computer animation ·
Motion retargeting · Virtual reality

1 Introduction

Virtual reality often uses motion captured data in order to
animate virtual humans who populate these environments.
As it is very time consuming to capture high quality mo-
tions, an existing clip is most likely to be reused for var-
ious applications. Thus, unless a clip is applied to only
one given character, the motion must be adapted in order
to match the new body’s characteristics and dimensions.
Even though very efficient and reliable methods have al-
ready been proposed to solve this problem, our intention is
to focus on VR applications while taking into account the
trade offs between the quality of the results, the compu-
tational complexity and the ease of implementation. Such
applications commonly have databases of 3D bodies, or
even systems able to generate new bodies according to
user requirements [20]. These bodies are animated on-

the-fly according to user interaction by applying motions
taken from a database or generated at runtime [6, 12, 13].

Users seldom have the skills required in order to per-
form the motion retargeting themselves and moreover this
is a problem they simply do not want to acknowledge. For
this reason, we propose here a new footskate removal al-
gorithm which can accommodate most of the usual skele-
ton simplification and low quality motion clips that are
used by VR applications and yet still deliver high quality
and reliable results with no user interaction.

In order to face the degradation of the models imposed
by the VR designers, our algorithm does not rely on the
skeletal animation as it is usually done, but rather on the
skin motion. Indeed, it isn’t realistic to rely on a model
with two points of contact for the skeleton’s feet as VR
characters rarely have such a feature. Moreover, as the mo-
tions are extremely simplified, it is difficult to robustly

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159148792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

690 E. Lyard, N. Magnenat-Thalmann

estimate these points of contact from the motion data.
Considering the skin motion itself directly gives a mul-
tiple points of contact model, thus avoiding this difficult
estimation step and ensuring a higher quality final anima-
tion.

2 Related works

In real human walking motion, feet remain in a fixed pos-
ition on the ground during small periods of time. Footskate
is a common error in character animation when a foot ap-
pears to slide on the ground plane. It is introduced by the
fact that even tough motions are recorded very accurately
on real subjects [17, 24] or are very well designed by hand,
a particular movement only matches the specific subject
from which it was recorded or the character for which it
was originally designed. Thus, when applying a motion to
a different body, the global rotations and translations that
position the character in the scene no longer match the mo-
tion of the limbs.

Numerous approaches have been developed in order
to address this mapping. It can be thought of as finding
a motion that optimizes a given criterion (e.g., be as close
as possible to the original motion) while complying with
a set of constraints (e.g., no footskate should remain). Nu-
merical methods estimate the required correction using
global optimization algorithms (often referred to as space-
time optimization [26]) and inverse kinematics (IK). Such
approaches have the advantage of taking the entire mo-
tion into account to perform the retarget, and hence deliver
high quality results. Gleicher [8, 9] was the first to apply
this kind of optimization to the problem of motion editing
and retargeting. He managed to keep the high frequency
features of a motion by putting a spline layer between the
optimization algorithm and the actual values of the mo-
tion parameters. Lee and Shin [16] further refined this idea
by adopting not only a single spline per piece of motion,
but hierarchies of splines which made the final motion eas-
ier to control. Choi and Ko [5] used inverse rate control
and managed to achieve the retargeting in real time, while
Boulic et al. [3] proposed an approach based on null-space
projections, which allows to control a strict number of
priority for the constraints. All of the works mentioned
above, even though not explicitly focused on footskate,
can be employed to address this issue. However, due to
the large non-linear systems that must be solved at each it-
eration of the algorithm, they are quite slow compared to
other techniques.

Analytical IK methods were developed to quicken
and facilitate the manipulation of human figures. Tolani
et al. [23] demonstrated how to analytically manipulate
a human limb with 7 degrees of freedom. This scheme
was later employed by several works, which either used
it alone [14], or in conjunction with optimization tech-
niques, thus creating a class of hybrid systems [21].

This idea of hybrid systems, combining several tech-
niques in order to speed up the computation was also ex-
ploited by the most recent works in motion adaptation [1,
15, 22]. However, these works do not address the problem
of footskate removal. Rather, they consider the physical
aspects of a motion [1, 22] or an innovative way to inter-
act with a given clip [15]. Such approaches, even though
they may be able to fix the footskating are not designed
for this purpose, and improvements may still be found for
this specific goal. The only recent work directly dealing
with footskate is from Glardon et al. [7] and takes only the
skeleton into account along with the use of a numerical
IK method to reposition the feet where they should stay
put. Unlike previous approaches, ours does not intend to
make the motion comply with predefined constraints such
as a given foot planting. Rather, we aim to calculate the
actual displacement which corresponds to the limbs mo-
tion, thus modifying the character’s path. This may appear
strange at first, but numerous VR applications, for instance
a virtual try on, do not focus on the character’s path as
much as on the actual movements performed by its limbs.
Indeed, in order to see how a garment fits on a body or an-
other, the motion of their limbs must be similar whereas
their actual path is not of such great importance. Another
novel aspect of our approach is that it relies fully on the
skin to carry out the computation. This allows the use of
any kind of skeletal hierarchy, whether it features both
balls and heels joints or not [10]. Finally, we also present
a new way to estimate the foot planting. Although quite
simple, it has proven to be very robust during our tests on
catwalk and tryout animations.

The remainder of this paper is organized as follows:
Sect. 3 gives an outline of our method, which is explained
further from Sect. 3.1 to 3.3. Section 4 exposes the results
we obtained using this method and eventually these results
are discussed in Sect. 5.

3 A footskate removal method for simplified
characters

VR applications are quite different from entertainment
productions. Indeed, VR aims at immersing a user in a real
time environment as similar as possible to reality. Thus
these applications are usually highly demanding in terms
of performances. To meet these requirements, most labs
have built their own VR platforms [19, 25], which allow
to re-use previously developed components. These frame-
works are optimized to ensure maximum performances
at runtime, and most of the models assume numerous
simplifications in order to allow for rich environments.
For instance, VHD++ developed jointly by MIRALab and
VRLab does not allow for the resizing of a skeleton at
runtime, which leaves the method proposed by [14] unus-
able within this context. Moreover, VR developers rarely
focus on side artifacts and usually prefer to concentrate

A simple footskate removal method for virtual reality applications 691

on the final user experience, which prevents them from
implementing complex methods for only a small benefit.
The method we propose here complies with the two previ-
ous statements in the sense that it can accommodate rigid
skeletons and is very easy to implement. Thus it can be
added with only little time and effort to an existing VR
framework.

The method can be summarized as follows: first foot
plants are estimated, i.e., when should each foot be planted
on the ground. Unlike most of the other approaches our
algorithm does not constrain the location where a foot is
planted, but rather the frame at which this should happen.
This way, the motion itself remains as close as possible
to the original, only the path followed by the character is
subject to a scale.

The next stage is divided into two separate processes.
A first treatment corrects the character’s motion along the
horizontal axis, and a second one adapts its vertical dis-
placement. This choice was motivated by the observation
that in most VR applications, the feet of the character
remain rigid throughout the animations. This happens be-
cause the feet are attached to only one joint, again for
optimization reasons. Thus, as the skin is not deformed
accurately, the feet will somewhat penetrate the ground re-
gardless of the retargeting process applied. To correct this,
our method accurately plants the feet where they should
be in the horizontal plane, while in the vertical direc-
tion it minimizes the distance between the ground and the
planted foot.

3.1 Feet motion analysis

Depending on the quality of a motion clip, it can be quite
tricky to estimate how and when to plant a foot. If the
motion is perfect, it should be enough to simply observe
that a foot remaining static may be planted. However, feet
are rarely motionless. Moreover most of the clips that are
repeatedly used in reality are far from perfect and there-
fore such a simple criterion is insufficient. Previous works
focused on proximity rules to extract the planting [2],
k-nearest neighbors classifiers [11] or adaptive threshold
imposed on the location and velocity of the feet [7]. All the
above-mentioned approaches require some human interac-
tion to perform the estimation: even [7] requires at least to
specify the kind of motion being performed. As we men-
tioned previously, our goal is to discard this interaction
stage. Instead, we applied a two-step estimation taking the
root translation and foot vertices into account. The first
step finds out which foot should be planted while the sec-
ond one refines which part of the sole should remain static.
This is achieved by first extracting from the skin mesh the
vertices for which the speed has to be calculated. We then
isolate the vertices belonging to the feet by using the skin
attachment data. Finally, we remove the ones for which the
normal is not pointing downward, which leaves us with the
sole.

For clarity reasons, we will use t to designate a frame
index or a time interval, the unit corresponding to the ac-
tual time elapsed between two animation frames.

3.1.1 Foot selection

Given the original root translation ∆Rt from time t to
t +1 and vi the vertex which is planted at frame t, we
estimate which foot must remain planted at frame t +1
by considering the motion ∆R′

t for which the sole vertex
vj remains planted during the next animation frame. By
planting a vertex at time t, we mean that its global co-
ordinates remain constant during the time interval [t − 1

2 ,

t + 1
2]. ∆R′

t can thus simply be expressed as:

∆R′
t = o(vi, t)−o(vi, t + δ)+o(vj, t + δ)−o(vj, t +1)

(1)

where o(vi, t) is the offset at frame t of vertex vi from
the root, in world coordinates. For this estimation, we take
δ = 1

2 , and o(vi, t + δ) is calculated by linear interpolation
between t and t +1. Once we calculate ∆R′

t for all the sole
vertices, we designate as static the vertex that maximizes
the dot product p:

p = ∆Rt

‖∆Rt‖ .
∆R′

t

‖∆R′
t‖

.

Indeed, a higher value of this dot product means that
if vj is static at frame t +1, the displacement induced
will resemble more the original root motion. We discard
the magnitude of the vector because we are interested in
where the character is going and not how far away it goes.

3.1.2 Vertex selection

The dot product criterion robustly tells us which foot must
be planted. However, the actual vertex picked by this algo-
rithm can sometimes be jerky, e.g., jump from the foot tip
to the heel. The reason is that we picked the vertex which
keeps the motion as close as possible to the original one,
possibly keeping a bit of skating on its way. In order to
overcome this issue, we add a second selection process ap-
plied on the vertices of the planted foot only. This second
process uses the speed of the vertices in order to pick the
right one. Indeed, if the original motion is not too bad,
then the vertex which must be static at a given frame is
most likely to be the one moving less. The speed of each
vertex is first smoothed along several frames in order to re-
move some of the data noise (in our experiments, 5 frames
appeared to be a good compromise). Second, the least
moving vertex is chosen as the static one. The result of this
selection over a foot step can be seen in Fig. 1.

We previously assumed that the static vertex in the pre-
vious frame must be known in order to estimate the one
in the current frame. So for the first frame of the ani-
mation, we just use the speed criterion. One could think

692 E. Lyard, N. Magnenat-Thalmann

Fig. 1. View of the trajectory of the least moving point over the sole
during one foot step. In black is a wire frame view of the sole of
the character, in red are the vertices selected during the step, and
eventually the blue arrows show the transitions between each point

that the detection would be less accurate because of this,
however we did not witness any setback during our experi-
ments.

This algorithm has proven to be quite efficient on the
catwalk animations we tried it on. It is even possible to
discard the dot product phase of the algorithm but we
noticed that this stage of the process significantly im-
proved the robustness of the detection by accurately tag-
ging which foot must be planted. If the original animation
clip is too bad, our algorithm may fail to figure out which
vertex should be planted. In this case, one still has the pos-
sibility to manually label the vertices (or correct the output
of the algorithm), as is the case for all the previous mo-
tion retargeting methods. However, during our tests, this
only happened on complex dance motions, for which it
was hard even for the human eye to figure out which foot
should be planted or not.

3.2 Root translation correction

As outlined in Sect. 1, the retargeting is split into two
phases, namely horizontal and vertical corrections. The
horizontal correction introduces a drift of the character
over the animation range in order to remove the footskat-
ing, while the vertical processing aims at minimizing the
distance of the static vertices from the floor. These two
separate steps use completely different approaches, which
are outlined in the next section.

3.2.1 Horizontal correction

In order to calculate the corrected horizontal translation of
the root joint between two frames, once again we use the
motion of the vertices. In the previous section, we made
the assumption that a static vertex remains during a time
interval of at least one frame, centered around the cur-
rent time instant. However, due to the low sampling of the
motion data which is often no more than 25 Hz, this as-
sumption cannot be retained for the actual displacement of
the root joint. Thus, we estimate when the transition be-

tween two static vertices should happen, again using their
speed. As before, the vertex with less speed should remain
static, and we estimate the exact time instant between two
frames when the transfer should occur.

For doing so, we approximate the speed of each ver-
tex as follows: first the speed of the current and next static
vertices vi and vj are calculated for frames t −1, t, t +1
and t +2. These velocities are then plotted in 2D and ap-
proximated using a Catmull–Rom spline [4], which yields
to two parametric curves Vi(q) and Vj(q), q ∈ [0, 1], as
depicted in Fig. 2. Eventually, the particular value qt cor-
responding to the cross between vi and vj is calculated by
solving the cubic equation Vi(q) = Vj(q), which we did
using the approach proposed by Nickalls [18].

Now that the exact time t +qt when the weight trans-
fer occurs is know, the actual position of the vertices at
this instant is to be calculated. For doing so, the trajec-
tory of the points between t and t +1 is first approximated
using again a Catmull–Rom spline. The parametric loca-
tion t1 and t2 of the points over these curves is given by
their approximated speeds as follows:

ti =
∫ t+qt

t Vi(q)dq
∫ t+1

t Vi(q)dq
, i = 1, 2 .

Having the two offsets o(vi, t +qt) and o(vj, t +qt),
enables us to calculate the new root displacement between
frames t and t +1 using formula Eq. 1, with δ = qt .

The translation computed during this step is valid only
if the feet deform in a realistic way which – to our expe-
rience – they seldom do. Often they remain rigid and this
creates a bad vertical translation while the weight is trans-
ferred from the heel to the toe during a foot step. This is
the reason why, as stated previously, the calculated root
translation is only applied on the horizontal directions, as
follows:

∆Rhorizontal
t = P∆R′

t

where P is a 3D to 2D projection matrix.

Fig. 2. A conceptual view of the velocity estimation performed in
order to determine the exact instant of the weight transfer between
two fixed points

A simple footskate removal method for virtual reality applications 693

3.3 Vertical correction

The horizontal correction introduces some drift of the
character compared to the original animation. This effect
is desired as it removes the footskating. However, in the
vertical direction, no drift should take place otherwise the
body will soon be walking in the floor or in the air. We do
not want to change the legs configuration for enforcing the
correct height of the foot sole because we want to remain
as close as possible to the original animation of the limbs.
Moreover, strictly enforcing the height of the static ver-
tices to be zero would lead to cumbersome configurations
of the legs in order to cope with the rigidity of the feet (re-
member that the feet seldom deform in VR applications)
thus introducing unattractive artifacts.

Instead we chose to act on the root joint translation
only, by minimizing the height of the static vertices over
the animation. Thus, a small amount of penetration will re-
main afterwards, which is the price we pay if the feet are
rigid and if we do not want to drastically change the look
of the animation.

We calculate a single offset and a scale to be applied to
the root height trajectory so that static vertices remain as
close as possible to the ground throughout the animation,
as shown in Fig. 3.

It is quite trivial to calculate the offset to be applied to
the root trajectory: if we consider the height ht in world
coordinates of each static point, then the root offset ∆H is
simply:

∆H = −
N−1∑

t=0

ht

N

where N is the number of frames of the animation.
Once this offset is applied to the root trajectory, the

mean of the static vertices height is thus zero. However,
they still oscillate above and underneath the ground during
the animation. This oscillation will be minimized by the
calculation of the scaling factor α.

Fig. 3. Scaling of the root joint height

If we consider H to be the average root height over
the animation, then for each frame its actual height Ht
can be written as an offset rt from this mean value: Ht =
H +rt . The variance σ2 of the static points height can be
expressed in terms of the root average height H, the scal-
ing factor α and the relative height lt of the fixed vertex
with respect to the root as follows:

Nσ2 =
N−1∑

t=0

h2
t =

N−1∑

t=0

(H +αrt + lt)
2 .

This variance is to be minimized by the scaling factor
α, and fortunately this is equivalent to finding the root of
a simple second order equation with only one unknown, α.
Indeed:

Nσ2 = α2
N−1∑

t=0

r2
t +2α

N−1∑

t=0

(rt .(H + lt))+
N−1∑

t=0

(H + lt)
2 .

Fig. 4. Two foot prints left by a character
animation: on the left (in green) the ori-
ginal clip and on the right (in blue) the
retargeted clip. The residual sliding that
one may notice in the blue prints is due
to the estimation of the root motion be-
tween two steps, which makes both feet
move at the same time in order to get
a more realistic final motion

694 E. Lyard, N. Magnenat-Thalmann

Fig. 5. Superimposed snapshots of a walk with the original anima-
tion in red, and the corrected one in green

As σ2 and N are always positive, the minimal variance
is given by:

α = −
∑N−1

t=0 rt .(H + lt)
∑N−1

t=0 r2
t

.

4 Results

Figure 4 exhibits the foot prints left by a retargeted walk
(in blue) and by the original walk (in green). One can see
that nearly all footskate is corrected. The minor sliding
which remains is due to the estimation of the displace-
ment of the root joint between two steps, as described
in Sect. 3.2. Indeed, because the weight transfer does not
occur exactly in an animation frame, the feet may well
slide a bit between two frames when switching from one
foot plant to the other. Figure 5 shows animation snapshots
of an original animation and its retargeted version. One
can see that the drifting effect for getting rid of the foot
sliding actually occurs, while the height of the character

is modified so that its feet stick to the floor as much as
possible.

Due to its simplicity, our method performs very swiftly
and can be added to existing systems within moments. Thus
even if it cannot accommodate all the motions one may want
to use within a VR framework, it can fix many existing clips
with only a minimal amount of time and effort.

5 Conclusion

In this paper, we presented a method to remove the foot-
skating of a motion clip, which takes into account the
character itself in order to improve the results and speed
up the computations. Compared to previous approaches,
this method fully relies on the skin, which is what the fi-
nal animation will display, to perform the retargeting. It
can be utilized by casual users as no interaction or exper-
tise is required to obtain good motions. The footskating
removal preserves the original movements of the limbs
because the corrections are applied to the root joint trans-
lation only. Moreover, for most cases, it has the advantage
of extracting the foot plants automatically, which prevents
time consuming manual work.

Last but not least, in the future we would like to extend
our method to be able to apply it to any kind of motion,
and more particularly motions such as sliding and jump-
ing. Indeed, during the foot plant extraction, we currently
assume that the character always has one foot anchored to
the ground, which is not the case in such motions.

Acknowledgement We would like to thank Clementine Lo for
proof reading this article, Nedjma Cadi and Marlene Arevalo for
the demo movie and Autodesk for their Maya donation. This work
was funded by the European Project LEAPFROG IP (FP6-NMP-
515810).

References
1. Abe, Y., Liu, K., Popovic, Z.:

Momentum-based parameterization of
dynamic character motion. In: Proceedings
of the ACM Symposium on Computer
Animation 2004. ACM, New York (2004)

2. Bindiganavale, R., Badler, N.I.: Motion
abstraction and mapping with spatial
constraints. Lect. Notes Comput. Sci. 1537,
70–82 (1998) (URL citeseer.ist.psu.edu/

bindiganavale98motion.html)
3. Boulic, R., Le Callennec, B., Herren, M.,

Bay, H.: Experimenting prioritized IK for
motion editing. In: Proceedings of
EUROGRAPHICS 2003. Eurographics
Association, Aire-la-Ville, Switzerland,
Switzerland (2003)

4. Catmull, E., Rom, R.: A class of local
interpolating splines. In: Computer Aided
Geometric Design, pp. 317–326. Academic,
New York (1974)

5. Choi, K., Ko, H.: Online motion
retargeting. J. Vis. Comput. Anim. 11(5),
223–235 (2000)

6. Egges, A., Molet, T.,
Magnenat-Thalmann, N.: Personalised
real-time idle motion synthesis. In: PG ’04:
Proceedings of the Computer Graphics and
Applications, 12th Pacific Conference on
(PG’04), pp. 121–130. IEEE Press,
Washington, DC (2004)

7. Glardon, P., Boulic, R., Thalmann, D.:
Robust on-line adaptive footplant detection
and enforcement. Vis. Comput. 22(3),
194–209 (2006)

8. Gleicher, M.: Motion editing with
spacetime constraints. In: Proceedings of
the Symposium on Interactive 3D Graphics.
ACM, New York (1997)

9. Gleicher, M.: Retargeting motion to new
characters. In: Proceedings of SIGGRAPH

1998, Computer Graphics Proceedings,
Annual Conference Series, pp. 33–42.
ACM/ACM SIGGRAPH, New York
(1998)

10. Humanoid Animation Working Group:
H-anim. http://hanim.org. Cited May 2006
(2006)

11. Ikemoto, L., Arikan, O., Forsyth, D.:
Knowing when to put your foot down. In:
SI3D ’06: Proceedings of the 2006
Symposium on Interactive 3D Graphics and
Games, pp. 49–53. ACM, New York (2006)
(DOI http://doi.acm.org/10.1145/

1111411.1111420)
12. Kovar, L., Gleicher, M.: Flexible automatic

motion blending with registration curves.
In: SCA ’03: Proceedings of the 2003
ACM SIGGRAPH/Eurographics
Symposium on Computer Animation,
pp. 214–224. Eurographics Association,

A simple footskate removal method for virtual reality applications 695

Aire-la-Ville, Switzerland, Switzerland
(2003)

13. Kovar, L., Gleicher, M., Pighin, F.: Motion
graphs. In: SIGGRAPH ’02: Proceedings of
the 29th Annual Conference on Computer
Graphics and Interactive Techniques,
pp. 473–482. ACM, New York (2002) (DOI
http://doi.acm.org/10.1145/566570.566605)

14. Kovar, L., Schreiner, J., Gleicher, M.:
Footskate cleanup for motion capture
editing. In: Proceedings of the ACM
Symposium on Computer Animation 2002.
ACM, New York (2002)

15. Lam, W., Zou, F., Komura, T.: Motion
editing with data glove. In: Proceedings of
the SIGCHI International Conference on
Advances in Computer Entertainment
Technology, pp. 337–342. ACM, New York
(2005)

16. Lee, J., Shin, S.: A hierarchical approach to
interactive motion editing for human-like
figures. In: Proceedings of SIGGRAPH

1999, Computer Graphics Proceedings,
Annual Conference Series. ACM/ACM
SIGGRAPH, New York (1999)

17. Motion Analysis:
http://www.motionanalysis.com. Cited May
2006 (2006)

18. Nickalls, R.: A new approach to solving
the cubic: Cardan’s solution revealed.
Math. Gaz. 77, 354–359 (1993)

19. Ponder, M., Papagiannakis, G., Molet, T.,
Magnenat-Thalmann, N., Thalmann, D.:
Vhd++ development framework: towards
extendible, component based VR/AR
simulation engine featuring advanced
virtual character technologies. In:
Proceedings of Computer Graphics
International, pp. 96–104. CGI, IEEE Press,
Washington, DC (2003)

20. Seo, H., Magnenat-Thalmann, N.: An
example-based approach to human body
manipulation. Graph. Models 66(1), 1–23
(2004)

21. Shin, H., Lee, J., Shin, S., Gleicher, M.:
Computer puppetry: an importance-based
approach. ACM Trans. Graph. 20(2), 67–94
(2001)

22. Tak, S., Ko, H.: A physically-based motion
retargeting filter. ACM Trans. Graph. 24(1),
98–117 (2005)

23. Tolani, D., Goswami, A., Badler, N.I.:
Real-time inverse kinematics techniques for
anthropomorphic limbs. Graph. Models 62,
353–388 (2000)

24. Vicon: http://www.vicon.com. Cited May
2006 (2006)

25. VR Juggler: Vr juggler–open source virtual
reality tools. http://www.vrjuggler.org.
Cited May 2006 (2006)

26. Witkin, A., Kass, M.: Spacetime
constraints. In: Proceedings of SIGGRAPH
1988, Computer Graphics Proceedings,
Annual Conference Series, pp. 159–168.
ACM/ACM SIGGRAPH, New York
(1988)

ETIENNE LYARD received his Master’s degree
in Computer Graphics, Vision and Robotics
from the University of Grenoble in 2002. The
next year he worked as a reasearch scholar at
the Multisensory Computation Lab (Rutgers
University). Since then, he has been a research
assistant and PhD candidate at MIRALab
(University of Geneva). His research inter-
ests include physics based modeling, real time
applications and human motion.

NADIA MAGNENAT-THALMANN has pio-
neered research into virtual humans over the
last 25 years. She obtained her PhD in Quantum
Physics from the University of Geneva. From
1977 to 1989, she was a professor at the
University of Montreal where she founded
the research lab MIRALab . She was elected
Woman of the Year in the Grand Montreal for
her pioneering work on virtual humans and
presented Virtual Marilyn at the Modern Art
Museum of New York in 1988. Since 1989,
she has been a professor at the University of
Geneva where she recreated the interdisci-
plinary MIRALab laboratory. With her 30 PhD
students, she has authored and coauthored
more than 300 research papers and books in
the field of modeling virtual humans. She is
presently coordinating three European Re-
search Projects (INTERMEDIA, HAPTEX and
3DANATOMICAL HUMANS).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

