
J Comb Optim (2009) 17: 323–338
DOI 10.1007/s10878-007-9114-0

Single machine batch scheduling with release times

Beat Gfeller · Leon Peeters · Birgitta Weber ·
Peter Widmayer

Published online: 22 November 2007
© Springer Science+Business Media, LLC 2007

Abstract Motivated by a high-throughput logging system, we investigate the sin-
gle machine scheduling problem with batching, where jobs have release times and
processing times, and batches require a setup time. Our objective is to minimize the
total flow time, in the online setting. For the online problem where all jobs have iden-
tical processing times, we propose a 2-competitive algorithm and we prove a cor-
responding lower bound. Moreover, we show that if jobs with arbitrary processing
times can be processed in any order, any online algorithm has a linear competitive
ratio in the worst case.
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1 Introduction

The study in this paper is motivated by the real world problem of saving a log of
actions in a high throughput environment. Many actions are to be carried out in rapid
succession, and in case of a system failure the log can identify which actions have
been carried out before the failure and which have not. Keeping such a log can be
existential for a business, for example when logging the trading data in a stock bro-
kerage company.

Logging takes place on disk and is carried out by a storage system that accepts
write requests. When a process wants its data to be logged, it sends a log request
with the log data to the storage system and waits for the acknowledgement that the
writing of the log data has been completed. For the log requests that arrive over
time at the storage system, there is only one decision the system is free to make:
What subset of the requested, but not yet written log data should be written to disk
in a single large write operation to make the whole system as efficient as possible?
After the chosen large write operation is complete, the system instantaneously sends
acknowledgements to all processes whose requests have been satisfied.

The difficulty in the above question comes from the fact that log data come in all
sizes (number of bits or blocks to be stored), that writing several log data in a sin-
gle shot is faster than writing each of them individually (due to the disk hardware
constraints), and that a process requesting a write has to wait for the acknowledge-
ment (of the completion of the large write operation) before it can continue. Based
on an experimental evaluation of writing data to disk, we assume the writing time for
a number of data blocks to be linear in that number, plus an additive constant (for the
disk write setup time). Our objective is to minimize the sum over all requests of the
times between the request’s arrival and its acknowledgement. We ignore the details
of a failure and its recovery here, and are not worrying about (the potential loss of)
unsatisfied write requests.

1.1 Single machine scheduling with batching

Viewing the storage system as a machine, the log requests as jobs, and the write
operations as batches, this problem falls into the realm of scheduling with batching
(see the overview by Potts and Kovalyov 2000). More precisely, in the usual batch
scheduling taxonomy of Potts and Kovalyov (2000) we deal with a family scheduling
problem with batching on a single machine where all the jobs belong to the same
family. The machine processes the jobs consecutively, since the log data are stored
consecutively in time on the disk (as opposed to simultaneously), and each batch of
jobs requires a constant (disk write) setup time. As all log requests in a single write
are simultaneously acknowledged at the write completion time, the machine operates
with batch availability, meaning that each job in the batch completes only when the
full batch is completed.

In more formal terms, we model the storage system as a single machine, and the
log requests as a set of jobs J = {1, . . . , n}. The arrival times of the log requests at
the storage system then correspond to job release times rj , j ∈ {1, . . . , n}. Further,
each job j ∈ J has a processing time pj on the machine, representing the block size



J Comb Optim (2009) 17: 323–338 325

of the log request. The grouping of the log requests into write operations is modeled
by the batching of the jobs into a partition σ = {σ1, . . . , σk} of the jobs {1, . . . , n},
where σu represents the jobs in the u-th batch, k is the total number of batches, and
we refer to |σu| as the size of batch u, defined as the number of jobs in σu. Unless
stated otherwise, we assume that the batch size is not limited. We denote the starting
time of batch σu by Tu, with rj ≤ Tu for all j ∈ σu. Starting at Tu, the batch requires
a constant setup time s for preparing the disk write, and further a total processing
time

∑
j∈σu

pj , for writing the logs on the disk. Thus, each batch σu requires a total
batch processing time Pu = s + ∑

j∈σu
pj . The consecutive execution of batches on

the single machine translates into Tu + Pu ≤ Tu+1 for u = 1, . . . , k − 1. Because of
batch availability, each job j ∈ σu completes at time Cj = Tu + Pu, and takes a flow
time Fj = Cj − rj to be processed. This job flow time basically consists of two
components: first a waiting time Tu − rj ≥ 0 that the job waits before batch σu starts,
followed by the batch processing time Pu. Finally, as mentioned above, our objective
is to minimize the total job flow time F = ∑n

j=1 Fj .
We refer to this scheduling problem as the BATCHFLOW problem. In the stan-

dard scheduling classification scheme, the BATCHFLOW problem is written as 1|rj ,
sf = s,F = 1|∑Fj , where the part sf = s,F = 1 refers to the fact that each job
family has a fixed setup time and all jobs belong to the same family (see Potts and
Kovalyov 2000). As special cases, we consider the problem variants with identi-
cal processing times pj = p, and with a fixed job sequence, where jobs are to be
processed in release order.

1.2 Online algorithms for a single machine with batching

In the online version of the BATCHFLOW problem, jobs are released over time, and
any algorithm can base its batching decisions at a given time instant only on the jobs
that have been released so far. We study the online problem under the non-preemptive
clairvoyant setting: No information about a job is known until it is released, but once
a job j has been released, both its release time rj (that is, arrival time) and processing
time pj are known. A batch that has started processing cannot be stopped before
completion.

In this paper we consider deterministic online algorithms. Without loss of gener-
ality, we assume that these algorithms have a particular structure, as described in the
following.

From the problem definition it follows that no online algorithm can start a new
batch as long as the machine is busy. Furthermore, any online algorithm needs to
revise a decision only when new information becomes available, that is, when a new
job is released. Therefore, we consider online algorithms that only take a decision at
the completion time of a batch σu, or when a new job j is released and the machine
is idle. We refer to these two events as triggering events. In either case, the algorithm
bases its decision on the jobs {1, . . . , j} that have been released so far, and on the
batches σ1, . . . , σu created so far. Note that the set P of currently pending jobs can
be deduced from this information.

In case of a triggering event, an online algorithm A takes the following two deci-
sions. First, it tentatively chooses the next batch σA to be executed on the machine.
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However, it does not execute the batch σA immediately. Rather, the algorithm’s sec-
ond decision defines a delay time ΔA by which it delays the execution of σA, and
waits for a triggering event to occur in the meantime. If ΔA time has elapsed, and no
triggering event has happened, then the algorithm starts the batch σA on the machine
(by definition, the machine is idle in this case). If, however, a triggering event occurs
during the delay time, then the algorithm newly chooses σA and ΔA. Thus, an online
algorithm A is completely specified by how it chooses σA and ΔA.

To evaluate different online algorithms for the online BATCHFLOW problem, we
use competitive analysis: For a given problem instance I , let FOPT(I ) be the total flow
time of an optimal solution, and F A(I ) the total flow time of the solution obtained
from some online algorithm A. We are interested in the strict competitive ratio of
online algorithm A, defined as supI

F A(I )
FOPT (I )

. The online algorithm A is c-competitive
if there is a constant α such that for all instances I , F A(I ) ≤ c · FOPT(I ) + α. When
this condition holds also for α = 0, we say that A is strictly c-competitive.

1.3 Related work

Since
∑

j∈J rj is a constant that we cannot influence, the offline version of our prob-
lem is equivalent to the problem 1|rj , sf = s,F = 1|∑Cj . The related problem
1|sf = s,F = 1|∑Cj , without release times but with individual processing times,
was first considered by Coffman et al. (1990). They solve this problem in O(n logn)

time, first sorting the jobs by processing time, and then using an O(n) dynamic
programming algorithm. Albers and Brucker (1993) extend that solution to solve
1|sf = s,F = 1|∑wjCj for a fixed job sequence in O(n) time, and show that the
unrestricted problem 1|sf = s,F = 1|∑wjCj is unary NP-hard. Webster and Baker
(1995) describe a dynamic program with running time O(n3) for the so-called batch
processing model, where each batch has the same size-independent processing time,
but the batch size is limited.

More recently, Cheng and Kovalyov (2001) describe complexity results for various
related problems and objectives, also considering due dates, but not release times.
They consider the bounded model, where the size of a batch1 can be at most B , as
well as the unbounded model.

The objective of minimizing the total completion time (weighted or unweighted)
has been considered also in the so-called burn-in model (see Lee et al. 1992), where
the processing time of a batch is equal to the maximum processing time among all
jobs in the batch. For this model, Poon and Yu (2004) present two algorithms for
1|sf = s,F = 1,B|∑Cj with batch size bound B , with running times O(n6B) and
nO(

√
n). Furthermore, Deng et al. (2004) consider 1|sf = s,F = 1|∑wjCj in the

burn-in model with unbounded batch size. They show NP-hardness of that problem,
and give a polynomial time approximation scheme.

Concerning the online setting, most previous work focuses on the burn-in
model. An exception is Divakaran and Saks (2001), who consider the problem
1|rj , sf |maxFj with sequence-independent setup times and several job families un-
der job availability (i.e. the processing of each job completes as soon as its processing

1This bound is also called capacity by some authors.
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time has elapsed). They present an O(1)-competitive online algorithm for that prob-
lem. For the burn-in model, Chen et al. (2004) consider the problem 1|rj |∑wjCj ,
and present a 10/3-competitive online algorithm for unbounded batch size, as well
as a 4 + ε-competitive online algorithm for bounded batch size.

The online problem 1|rj |Cmax of minimizing the makespan in the burn-in model
has been considered in several studies. Independently, Deng et al. (2003) and Zhang
et al. (2001) gave a (

√
5 + 1)/2 lower bound for the competitive ratio, and both gave

the same online algorithm for the unbounded batch size model which matches the
lower bound. Poon and Yu (2005a) present a different online algorithm with the same
competitive ratio, and describe a parameterized online algorithm which contains their
own and the previous solution as special cases. Poon and Yu (2005b) give a class
of 2-competitive online algorithms for bounded batch size, and a 7/4-competitive
algorithm for batch size limit B = 2.

Bein et al. (2004) propose optimally competitive online algorithms for the list
batching problem. As in the BATCHFLOW problem, the goal is to minimize the total
flow time of jobs. However there are no release times, or equivalently, all jobs are
released at time zero. Still, the algorithm learns the jobs one after the other, and each
time has to decide whether to include this job as the last in the current batch and start
processing the batch, or to keep the batch open for later jobs.

1.4 Contribution and outline of the paper

To the best of our knowledge, we are the first to consider release times with the ob-
jective of minimizing the total flow time

∑
Fj under batch availability. We study

this problem in an online setting, call it online BATCHFLOW problem, and introduce
the GREEDY online algorithm in Sect. 2.1. For the special case of identical process-
ing times p, we show that GREEDY is strictly 2-competitive, using the fact that its
makespan is optimal up to an additive constant. In Sect. 2.3, we present two lower
bounds, 1 + 1

1+ max(p,s)
min(p,s)

and 1 + 1
1+2 p

s

for this problem variant, and hence show that

GREEDY is not far from optimal for this variant.
For the general online BATCHFLOW problem, we then give an n

2 − ε lower bound
for the competitive ratio, and show that any online algorithm which avoids unneces-
sary idle time, including GREEDY, is strictly n-competitive, which matches the order
of the lower bound.

2 The online BATCHFLOW problem

We first analyze the online BATCHFLOW problem for jobs with identical processing
times pj = p. For this case, we present a 2-competitive greedy algorithm in Sect. 2.1,
and derive two lower bounds in terms of p and s for any online algorithm in Sect. 2.3.
Next, Sect. 2.4 discusses bounds for any online algorithm for the case of general
processing times.
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2.1 The GREEDY batching algorithm for identical processing times

In this section, we consider the restricted case where all jobs have identical process-
ing times pj = p. This case is relevant in applications such as ours, where records of
fixed length are to be logged. Note that the reordering of jobs with identical process-
ing times is never beneficial, so it is irrelevant whether the fixed job sequence restric-
tion is present or not, and we assume in the following that jobs are never reordered.

We now define the GREEDY algorithm, which always starts a batch consisting of
all currently pending jobs as soon as the machine becomes idle.

Algorithm 1 GREEDY

Whenever the machine becomes idle:
Set ΔA = 0 (start the next batch immediately)
Choose σA = the set of currently pending jobs

First, we focus on the makespan of GREEDY. Let us first understand how the struc-
ture of the GREEDY solution relates to alternative solutions that use fewer batches. To
that end, we consider GREEDY’s solution to a given instance and compare it to some
other solution for the same instance, denoted by ANY. By definition, each of these
two solutions consists of a sequence of consecutive batches. We require the following
lemma, which is illustrated in Fig. 1.

Lemma 1 Consider a sequence σa, . . . , σb of u GREEDY batches, and a sequence
σ ′

c, . . . , σ
′
d of v ANY batches, such that the ANY sequence contains all the jobs in the

GREEDY sequence (in the same order), and possibly additional jobs. If u ≥ v + 1,
then there exists a batch σ ′∗ among ANY’s batches that contains both at least one
entire GREEDY batch, and at least one following job j∗ from the next GREEDY batch.

Proof Instead of proving the lemma directly, we prove the following equivalent state-
ment: Assuming that no batch among σ ′

c, . . . , σ
′
d fully contains a GREEDY batch plus

a following job, it holds that u ≤ v.
We show that claim by induction over u. For u = 1 the claim is trivially true.

Suppose that for u ≥ 2, the claim holds for 1, . . . , u − 1. By our assumption, the first
ANY batch σ ′

c can at most contain σa entirely, but no following jobs. Thus, the jobs
in σa+1, . . . , σb must be covered by σ ′

c+1, . . . , σ
′
d . These two sequences have lengths

u − 1 and v − 1, respectively, so by the induction hypothesis, we have 1 + u − 1 ≤
1 + v − 1, thus u ≤ v. �

Fig. 1 Illustration of Lemma 1 and Lemma 2
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The following lemma shows that if GREEDY needs time t to finish a set of batches
{σ1, . . . , σu}, then no other algorithm can complete the same jobs before time t − s.
Thus, GREEDY is 1-competitive for minimizing the makespan, with an additive con-
stant α = s.

Lemma 2 For a given problem instance of the online BATCHFLOW problem with
identical processing times, let σ = σ1, . . . , σk with batch starting times T1, . . . , Tk

be the GREEDY solution, and let σ ′ = σ ′
1, . . . , σ

′
m with T ′

1, . . . , T
′
m be some other

solution ANY for the same instance. For any batch σu ∈ σ completing at time t , it
holds that any batch σ ′

v ∈ σ ′ satisfying the condition

v∑

i=1

|σ ′
i | ≥

u∑

i=1

|σi | (1)

completes at time t ′ ≥ t − s.

Proof For a given batch σu ∈ σ consider the first batch σ ′
v ∈ σ ′ for which (1) holds.

Such a batch exists because
∑m

i=1 |σ ′
i | = n and of course

∑u
i=1 |σi | ≤ n (note that∑u

i=1 |σi | = n holds only if σu is the last GREEDY batch, i.e., u = k). We assume
that the GREEDY batches σ1, . . . , σu are executed without any idle time in between.
Indeed, if such an idle time occurs, GREEDY must have processed all jobs which have
been released so far, and the idle time ends exactly at the release time of the next job.
Of course, ANY cannot start processing this job earlier than GREEDY does. Hence,
ignoring all jobs before such an idle time can only affect the comparison in favor
of ANY.

First, we consider the case u ≥ v +1, where GREEDY uses at least one batch more
than ANY. Apply Lemma 1 to σ1, . . . , σu and σ ′

1, . . . , σ
′
v , and let σ ′∗ be the last ANY

batch containing a full GREEDY batch followed by at least one job. Choose σ∗ such
that it is the last full GREEDY batch whose jobs are contained in σ ′∗ that is followed
by some job j∗ in σ ′∗. When j∗ is released, GREEDY has already started processing
batch σ∗ (or has even finished), because otherwise j∗ would be part of σ∗. On the
other hand, ANY cannot start processing batch σ ′∗ before j∗ is released. So, it must
hold that Tσ∗ ≤ Tσ ′∗ . Let σ∗∗ be the GREEDY batch following σ∗. Note that Lemma 1
(in contraposition) can be applied also to the sequences σ∗∗, . . . , σu and σ ′∗, . . . , σ ′

v .
Thus, since in these two sequences no ANY batch contains an entire GREEDY batch
followed by another job, we have |{σ∗∗, . . . , σu}| ≤ |{σ ′∗, . . . , σ ′

v}|. Defining z as the
number of batches in {σ∗, . . . , σu}, and z′ as the number of batches in {σ ′∗, . . . , σ ′

v}, it
holds z ≤ z′ + 1. Putting all of the above together, we obtain:

t − t ′ ≤ Tσ∗ + p · (|σ∗| + · · · + |σu|) + zs − Tσ ′∗ − p · (|σ ′∗| + · · · + |σ ′
v|) − z′s ≤ s.

Finally, we consider the remaining case u ≤ v. Since GREEDY has no idle time,
it starts the first batch at T1, which is when the first job is released. Note that ANY

cannot start a batch before this time, hence T ′
1 ≥ T1. GREEDY completes σu exactly at

time t = T1 +p ·∑u
i=1 |σi |+us. ANY finishes σ ′

v at time t ′ ≥ T ′
1 +p ·∑v

i=1 |σ ′
i |+vs

or later. So, using condition (1), we obtain that t ′ − t ≥ (v −u)s, proving the theorem
for any u ≤ v + 1, and for u ≤ v in particular. �
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Corollary 3 The GREEDY online algorithm always computes a solution with
makespan at most s larger than the minimum makespan.

From this corollary, we obtain the following lemma.

Lemma 4 In the online BATCHFLOW problem with identical processing times, con-
sider any batch σu of the GREEDY solution, with starting time Tu. Let σ ′ be the first
batch of the optimal solution OPT that contains some job in σu. The earliest time that
OPT can finish processing the m jobs in σu ∩ σ ′ is Tu + mp.

Proof Observe that, if we deleted all jobs in σu\σ ′ from the problem instance, then
GREEDY would start processing exactly the m jobs in σu ∩σ ′ in one batch at time Tu,
and finish at Tu + mp + s. Now, if OPT were to finish these m jobs before Tu + mp,
then there would exist a solution with makespan more than s smaller than GREEDY’s
makespan. This is a contradiction to Theorem 2. �

Note that the proofs of Theorem 2 and Lemma 4 can easily be adapted to incor-
porate non-identical processing times. We prove them for identical processing times
here, since they serve as ingredients for the main theorem below, which only applies
to identical processing times.

In order to compare an online solution against an optimal offline solution, let us
now look at a special case of the latter.

Observation 5 The total job flow time for optimally processing n jobs 1, . . . , n with
identical processing times pj = p and with identical release times is at least

Fn ≥ 1

2
pn2 + sn.

Proof Assume without loss of generality that all rj = 0. Consider the first job: This
job will have completion time at least s +p. The second job will finish no earlier than
s + 2p, which can be achieved if the first two jobs are batched together. Generally,
the i-th job can finish no earlier than s + ip, which would be achieved by batching
the first i jobs together. This shows that Fn ≥ ∑n

i=1(s + ip) = 1
2pn(n + 1) + sn ≥

1
2pn2 + sn. �

Theorem 6 The GREEDY algorithm is strictly 2-competitive for the online BATCH-
FLOW problem with identical processing times.

Proof Figure 2 shows all the relevant time instants for the proof. As in Lemma 4,
consider any batch σu of size l = |σu| of the GREEDY solution, with starting time Tu,
and let σ ′ be the first batch of the optimal solution OPT that contains some jobs in
σu. Further, let m = |σu ∩ σ ′|. Below, we compare the total accumulated flow time
before and after time Tu for the jobs in σu, for both GREEDY and OPT.

Lemma 4 implies that no job in σu can complete before Tu in OPT. Thus, until time
Tu, the jobs in σu have accumulated a total flow time of F ≤Tu(σu) := ∑

j∈σu
(Tu −rj )
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Fig. 2 Important time instants in GREEDY’s competitiveness proof

in both GREEDY and OPT. Let F ≥Tu
GREEDY(σu) denote the total flow time for the

jobs in σu after time Tu in the GREEDY solution, and F ≥Tu
OPT (σu) the same quan-

tity for the OPT solution. Further, we let FOPT(σu) = F ≥Tu
OPT (σu) + F ≤Tu(σu) and

FGREEDY(σu) = F ≥Tu
GREEDY(σu) + F ≤Tu(σu) be the total flow time for the jobs in σu

in OPT and GREEDY, respectively. As σ ′ finishes at least pm time units after Tu

(Lemma 4), and all jobs in σu must have been released by Tu, the total flow time of
OPT for the jobs in σu after time Tu is

F ≥Tu
OPT (σu) ≥

Lemma 4
︷ ︸︸ ︷
m(pm)+

wait for σ ′
︷ ︸︸ ︷
(l − m)(pm)+

Observation 5
︷ ︸︸ ︷
1

2
p(l − m)2 + (l − m)s

= 1

2
(pl2 + pm2) + s(l − m). (2)

After time Tu, the GREEDY solution further accumulates a total flow time F ≥Tu
GREEDY(σu)

= Pu = l(lp + s) for the l ≥ m jobs in σu. Now, if σ ′ starts at Tu − s or earlier, then
all jobs in σ ′ must have been released at Tu − s or earlier. Therefore, up until time Tu,
the m jobs in σu ∩ σ ′ already yield an accumulated total flow time F ≤Tu(σu) ≥ sm

in this case. Thus we have

FGREEDY(σu)

FOPT(σu)
≤ pl2 + sl + F ≤Tu(σu)

1
2 (pl2 + pm2) + s(l − m) + F ≤Tu(σu)

= 1 +
1
2p

≥0
︷ ︸︸ ︷
(l2 − m2) + sm

1
2p(l2 + m2) + s (l − m)

︸ ︷︷ ︸
≥0

+ F ≤Tu(σu)︸ ︷︷ ︸
≥sm

≤ 1 +
1
2p(l2 − m2) + sm

1
2p(l2 + m2) + sl

in this case.
Next, we consider the case in which σ ′ starts after Tu − s, say at starting time

Tu − s + τ , for τ > 0. We still have F ≥Tu
GREEDY(σu) = l(lp + s) for GREEDY. In this

case, however, we obtain F ≤Tu(σu) ≥ m(s − τ), and further an additive term lτ in
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the bound (2) for F ≥Tu
OPT (σu). Hence in this case,

FGREEDY(σu)

FOPT(σu)
≤ pl2 + sl + F ≤Tu(σu)

1
2 (pl2 + pm2) + s(l − m) + τ l + F ≤Tu(σu)

= 1 +
1
2p(l2 − m2) + sm − τ l

1
2p(l2 + m2) + s(l − m) + τ l + F ≤Tu(σu)

≤ 1 +
1
2p

≥0
︷ ︸︸ ︷
(l2 − m2) + sm

1
2p(l2 + m2) + s (l − m)

︸ ︷︷ ︸
≥0

+ τ l + F ≤Tu(σu)︸ ︷︷ ︸
≥m(s−τ)

≤ 1 +
1
2p(l2 − m2) + sm

1
2p(l2 + m2) + sl + τ (l − m)

︸ ︷︷ ︸
≥0

.

So in both cases, we have

FGREEDY(σu)

FOPT (σu)
≤ 1 +

1
2p(l2 − m2) + sm

1
2p(l2 + m2) + sl

= 1 +
1
2 (l2 − m2) + s

p
m

1
2 (l2 + m2) + s

p
l

.

Clearly, F GREEDY(σu)
F OPT(σu)

≤ 2 because m ≤ l. Furthermore, note that since l can be as large
as n, this ratio comes arbitrarily close to 2 as n increases, irrespective of the values of
s and p. Since F GREEDY(σu)

F OPT (σu)
≤ 2 holds for any batch σu of the GREEDY solution, the

theorem follows. �

2.2 A tight example for GREEDY for large n

Consider the following instance: The first job arrives at time 0, then immediately
afterwards (ε > 0 later) a second job arrives. All other k := n − 2 jobs arrive at time
s + 2p + ε. Greedy will process the first two jobs in two separate batches, and then
all other jobs in one batch. Thus, the flow time of the GREEDY solution (omitting ε)
is

FGREEDY = (s + p) + 2(s + p) + k(s + s + kp) = k2p + 2ks + 3s + 3p.

We compare this solution with the following: The first two jobs are processed
together in one batch starting at ε. The other k = n − 2 batches are split into

√
k

batches of size
√

k each (for simplicity, we assume that k = n−2 is a square number).
The total flow time of this solution (again omitting ε) is

2(s + 2p) +
√

k∑

i=1

i
√

k(s + √
kp) = 2(s + 2p) + 1

2
k2p + 1

2
ks + 1

2
pk3/2 + 1

2
sk3/2.
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Hence we have

FGREEDY

FOPT

≥ 2k2p + 4ks + 6(s + p)

k2p + ks + pk3/2 + sk3/2 + 4(s + 2p)

= 2p + 4s/k + 6(s + p)/k2

p + s/k + p/k1/2 + s/k1/2 + 4(s + 2p/k2)
,

and this ratio approaches 2 as n increases (recall k = n − 2). Thus, for arbitrary
positive values of s and p, and for sufficiently large values of n, our analysis of the
competitive ratio of GREEDY is tight.

2.3 Lower bounds for identical processing times

To complement the upper bound on the competitive ratio of our GREEDY algorithm,
we derive two lower bounds on the competitive ratio of any algorithm for the online
BATCHFLOW problem, again with identical processing times. These bounds show
that no online algorithm can be much better than GREEDY for this setting.

For the following bounds, when we write that the adversary lets a job to be released
immediately after t , we mean that the job’s release time is t +ε for an arbitrarily small
ε > 0. For simplicity, we do not include ε in the calculations, but all proofs could be
easily adapted by including ε and making it sufficiently small.

Theorem 7 No online algorithm for the online BATCHFLOW problem with identical
processing times can have a competitive ratio lower than

1 + 1

1 + max(p,s)
min(p,s)

≤ 3

2
.

Proof Let A be any online algorithm with finite delay time ΔA for P = {1}. The
adversary chooses release times r1 = 0, r2 immediately after ΔA, and rj immediately
after ΔA +p(j − 1)+ s(j − 2) for j ∈ {3, . . . , n}, as depicted in Fig. 3. Observe that
an offline solution can avoid any waiting time for n − 2 jobs: If job 1 and job 2 are
processed together, the first batch has finished just when job 3 is released, so if job 3
is processed immediately, it will be finished just when job 4 is released, and so on
until job n. Thus,

FOPT ≤
job 1 waits
︷︸︸︷
ΔA +2(2p + s) + (n − 2) · (p + s) = n(p + s) + ΔA + 2p.

For bounding the flow time of A’s solution, we examine for each job j the earliest
possible completion time that A can achieve.

Fig. 3 The lower bound construction
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By construction of the example, A cannot batch job 2 together with job 1, and
starts processing job 1 at time ΔA, which completes at C1 = ΔA +p + s. Hence, job
2 cannot start processing before C1, and thus C2 ≥ ΔA + 2p + 2s. By induction, we
show that for each j ∈ {3, . . . , n}, it holds Cj ≥ ΔA + pj + s(j − 1) + min(p, s).
j = 3 : As batching job 3 together with later jobs will only increase job 3’s completion
time, the earliest possible completion time C3 is either achieved by batching job 3
with job 2, or by processing job 3 separately. The two possibilities yield completion
times

C′
3 = ΔA + 2p + s +

process jobs 2,3
︷ ︸︸ ︷
2p + s = ΔA + 4p + 2s

and

C′′
3 = ΔA + 2p + 2s + p + s = ΔA + 3p + 3s,

respectively. We have C3 ≥ ΔA + 3p + 2s + min(p, s).
j − 1 → j : Note that batching more than two jobs would result in an idle time of
more than p + s, which is certainly not fastest possible. So, the fastest possible way
to process job j is to either batch it with job j − 1 or to process it separately. If job j

is batched with job j − 1, then

Cj ≥ rj + 2p + s = ΔA + p(j + 1) + s(j − 1).

If job j is processed separately,

Cj ≥ Cj−1 + p + s ≥ ΔA + p(j − 1) + s(j − 2) + min(p, s) + p + s

= ΔA + pj + s(j − 1) + min(p, s).

Again, we see that Cj ≥ ΔA + pj + s(j − 1) + min(p, s).
Adding

∑n
j=1 Fj = ∑n

j=1(Cj − rj ), we get

F A ≥
job 1

︷ ︸︸ ︷
ΔA + p + s +

job 2
︷ ︸︸ ︷
2p + 2s +

n∑

j=3

(p + s + min(p, s))

= ΔA + np + p + ns + s + (n − 2)min(p, s).

The competitive ratio can now be bounded as

F A
FOPT

≥ ΔA + np + p + ns + s + (n − 2)min(p, s)

n(p + s) + ΔA + 2p

→ p + s + min(p, s)

p + s
= 1 + 1

1 + max(p,s)
min(p,s)

for n → ∞.
�

Using a similar construction, we get the following lower bound.
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Fig. 4 Forcing A to process all jobs separately. Waiting time is shown as dashed lines, batch processing
time as solid lines

Theorem 8 No online algorithm for the online BATCHFLOW problem with identical
processing times can have a competitive ratio lower than

1 + 1

1 + 2p
s

≤ 2.

Proof The following adversary can force every online algorithm A to process all jobs
separately: Release job 1 and wait for ΔA until A processes it, then immediately
release job 2, wait for Δ′

A until A processes it, and so on. Note that this causes every
job except the first one to wait at least p + s (see Fig. 4). Furthermore, the intervals
between the job release times are all at least p + s (and exactly p + s if A processes
each job as soon as the previous batch finishes, i.e. all Δ′

A = Δ′′
A = . . . = 0), except

for the first interval ΔA, which can be smaller. The flow time of A’s solution thus
equals the batch processing time plus at least p+ s waiting time for n−1 jobs, giving

F A ≥
processing
︷ ︸︸ ︷
n(p + s)+

waiting
︷ ︸︸ ︷
ΔA + (n − 1)(p + s) = (2n − 1)(p + s) + ΔA.

For bounding the optimal offline flow time, we consider the solution of batching job 1
and job 2 together, and processing all other jobs separately. Since each interval after
job 2 is at least p+ s, and processing job 1 and job 2 together takes 2p+ s time, job 3
needs to wait at most p. Processing job 3 will hence complete no later than r4 + p,
so job 4 has to wait at most p, and so on. So, we can bound the optimal offline flow
time as

FOPT ≤ ΔA +
process jobs 1,2
︷ ︸︸ ︷
2(2p + s) +

waiting of jobs 3, . . . , n
︷ ︸︸ ︷
(n − 2)p +

process jobs 3, . . . , n
︷ ︸︸ ︷
(n − 2)(p + s)

= ΔA + 2np + ns.

Thus, the competitive ratio is bounded by

F A
FOPT

≥ 2p + 2s − p+s−ΔA
n

2p + s + ΔA
n

→ 1 + 1

1 + 2p
s

for n → ∞.
�
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2.4 Bounds on the competitive ratio with job reordering

The following theorem shows that no online algorithm can have a good worst case
performance for the online BATCHFLOW problem with general processing times, if
the jobs do not need to be scheduled in the order they are given.

Theorem 9 For the online BATCHFLOW problem, no online algorithm can have
competitive ratio better than n

2 .

Proof Let A be any online algorithm. Consider an instance of n jobs, where job 1 has
processing time p, and jobs 2, . . . , n have processing time 1 each, and are released
immediately after A starts processing job 1 (after having delayed for ΔA time units).
Note that any competitive algorithm must start processing job 1 after some finite time
(otherwise, its competitive ratio is unbounded if no further job arrives after job 1). As
each of the jobs 2, . . . , n has to wait for job 1 to finish, the total flow time for A is

F A ≥ ΔA + n(p + s) + 1

2
(n − 1)2 + (n − 1)s,

where we used the lower bound from Observation 5 for optimally processing (n − 1)

jobs of equal processing time arriving at the same time.
For OPT, consider the solution that first processes jobs 2, . . . , n in one batch, and

after that processes job 1:

FOPT ≤ ΔA + n((n − 1) + s) + p + s.

We assume in the following that ΔA ≤ p + s; if ΔA > p + s, then our bound for
F A increases, but we can decrease the bound for FOPT because OPT can complete
job 1 even before the other jobs are released, and then process all other jobs in one
batch. We thus have

F A ≥ np + 1

2
n2 + 2ns − n − s + 1

2
and FOPT ≤ 2p + 2s + n2 − n + ns.

It is easily verified that

(
n

2
− ε

)

· FOPT ≤ F A if we choose p ≥ 1

4ε
(n3 + n2s + 2n + 2s + 2εn). �

Theorem 9 shows that for the general setting, there is no online algorithm with
a sub-linear competitive ratio. However, we will see in the following that all so-
called non-waiting algorithms, a class to which the GREEDY algorithm belongs, are
strictly n-competitive, i.e., are at most a factor 2 away from the lower bound. We call
an online algorithm non-waiting if it never produces a solution in which there is idle
time while some jobs are pending.

Theorem 10 Any non-waiting online algorithm for the online BATCHFLOW problem
is strictly n-competitive.
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Proof Let A be any non-waiting online algorithm. Consider any job i, and let σu be
the batch which contains job i. Furthermore, let J ′ be the set of all jobs not contained
in σu. The flow time of job i is Fi = Ci − ri = Tu + Pu − ri . The longest possible
interval during which σu needs to wait (i.e. the machine is busy) in a non-waiting
algorithm’s solution is s|J ′| + ∑

j∈J ′ pj . So, for a non-waiting algorithm, Tu − ri ≤
s(n − 1) + ∑

j∈J ′
pj . Hence,

Fi ≤ Pu + s(n − 1) +
∑

j∈J ′
pj ≤ sn +

n∑

j=1

pj .

Thus, the total flow time for A’s solution is

F A =
n∑

i=1

Fi ≤ n2s + n ·
n∑

j=1

pj .

We now turn to the optimal solution OPT. Clearly, each job j has flow time F ′
j ≥

pj + s, as the batch processing time is inevitable. Thus, the flow time of OPT is at
least

FOPT =
n∑

j=1

F ′
j ≥ ns +

n∑

j=1

pj .

Comparing the total flow times F A and FOPT completes the proof. �

Observe that this upper bound proof does not make use of the fact that the reorder-
ing of jobs is allowed. Thus, adding a fixed job sequence constraint does not affect
the validity of Theorem 10. Note that this is not true for Theorem 9.

We remark that the online non-preemptive scheduling problem with release times
known from the literature (see e.g. Epstein and van Stee 2003) is a special case of the
online BATCHFLOW problem. Thus, the Θ(n) upper bound for the former problem
is implied by our Theorem 10.

3 Discussion

We studied the online BATCHFLOW problem 1|rj , sf = s,F = 1|∑Fj , and investi-
gated this problem for the case of identical processing times and for general process-
ing times.

We shortly mention here further results we can prove (see Gfeller et al. 2006),
whose detailed explanations and proofs are omitted in this paper. With a fixed job
sequence (but arbitrary processing times), no online algorithm for the online BATCH-
FLOW problem can have a constant competitive ratio. The general offline BATCH-
FLOW problem is NP-complete, even with machine setup time s = 0. When the job
sequence is fixed, there exists a dynamic programming-like algorithm with polyno-
mial running time.
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