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Abstract. Angiogenesis, i.e. the proliferation of new
blood vessels from pre-existing ones, is an underlying
process in many human diseases, including cancer,
blinding ocular disorders and rheumatoid arthritis. The
ability to selectively target and interfere with neovascu-
larisation would potentially be useful in the diagnosis
and treatment of angiogenesis-related diseases. This re-
view presents the authors’ views on some of the most
relevant markers of angiogenesis described to date, as
well as on specific ligands which have been character-
ised in pre-clinical animal models and/or clinical studies.
Furthermore, we present an overview on technologies
which are likely to have an impact on the way molecular
targeting of angiogenesis is performed in the future.
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Ligand-based targeting of disease: 
general concepts

Targeting

The vast majority of approaches for the treatment of dis-
ease are limited by lack of specificity. This constraint
holds true for many diseases, but it is most evident in the
treatment of solid tumours, where most chemotherapeu-
tic agents exhibit poor accumulation in the tumour mass
owing to poor blood perfusion, irregular vasculature and

high interstitial pressure in the tumour environment [1,
2]. Moreover, multidrug resistance proteins may further
decrease drug uptake. As a consequence, the develop-
ment of therapeutic agents which preferentially accumu-
late in solid tumours represents a main focus of modern
anticancer research.

Since Paul Ehrlich first envisioned the possibility of
selective delivery of antibodies to the tumour environment
at the end of the nineteenth century, the concept of “magic
bullets” capable of tumour targeting has been extended to
other molecules (peptides, small organic molecules, etc.)
capable of selective localisation in the tumour environ-
ment. After some delay following the invention of hybri-
doma technology [3], several monoclonal antibodies have
been approved by the US Food and Drug Administration
(http://www.fda.gov) and in Europe, both for the imaging
of disease and for therapeutic applications.

The synergy between imaging opportunities and ther-
apeutic applications is one of the main attractions of bio-
medical approaches which rely on the selective delivery
of bioactive molecules to the tumour environment. In
principle, the same binding moiety (e.g. a monoclonal
antibody) can be used for the delivery of agents which
facilitate tumour detection (radionuclides, fluorophores)
or agents capable of triggering a biocidal event (radionu-
clides, photosensitisers, drugs, cytokines, pro-coagulant
factors, etc.). Quantitative biodistribution studies in ani-
mals and imaging studies in patients are invaluable tools
for the characterisation of markers of diseases (e.g. tu-
mour-associated antigens) and of the corresponding lig-
ands (e.g. monoclonal antibodies). Indeed, ligand-based
targeted therapeutic strategies may represent one of the
few areas of pharmaceutical research in which the per-
formance of a therapeutic strategy can be monitored at
several stages of the development process. Whenever un-
satisfactory targeting results are observed in biodistribu-
tion or imaging studies, these data urge the researchers to
use better target antigens and/or better ligands in their
pharmaceutical strategy. Furthermore, imaging of the tar-
get molecule responsible for therapy allows for individu-
alised patient selection and early monitoring of the thera-
peutic intervention.
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The importance of antigen quality in ligand-based tar-
geted imaging or therapeutic strategies cannot be over-
stated. In theory, an ideal target should be specific, easily
accessible, stable and abundant. In practice, few antigens
exhibit all these properties, but (as we will see in “An-
giogenesis-related disorders”) markers of angiogenesis
may combine a number of attractive features, such as ex-
cellent accessibility, low expression in normal adult tis-
sues and over-expression in several relevant pathologies,
including cancer.

Angiogenesis

Angiogenesis, i.e. the sprouting of new blood capillaries
from existing vessels, is an essential process for embry-
onic development. Once the vascular network is in place,
endothelial cells remain quiescent and angiogenesis is
triggered only locally and transiently during a number of
physiological conditions like the female reproductive cy-
cle, wound healing or hair growth [4]. Angiogenesis is a
tightly controlled multi-step process, in which pro-angio-
genic and anti-angiogenic factors are in equilibrium to
neutralise one another. Imbalance of this equilibrium,
due to either upregulation of pro-angiogenic or downreg-
ulation of anti-angiogenic mediators, induces angiogene-
sis.

Angiogenesis is an important feature of a range of
pathological conditions, cancer being one of the most
prominent examples [5] (see “Angiogenesis-related dis-
orders”). The growth of new capillaries is often triggered
in conditions of pathological cellular proliferation, isch-
aemia or chronic inflammation, where an increase in
blood supply may compensate for hypoxia and insuffi-
cient delivery of nutrient to the tissue [6, 7]. Unlike the
situation in physiological conditions, blood vessels grow
unabated in cancer and other pathologies, and tumour
angiogenesis sustains the progression of the disease.

During angiogenesis, endothelial cells detach from
the pre-existing destabilised vessel, migrate into the peri-
vascular space and proliferate to finally mature and form
new vascular structures. A number of growth factors,
proteases, adhesion molecules and other angiogenic me-
diators which enable endothelial cell migration or prolif-
eration regulate this process. Vascular endothelial growth
factor (VEGF) is considered one of the most important
growth factors in angiogenesis [8]. It increases the per-
meability of existing blood vessels and acts as an endo-
thelial cell survival factor, as well as being a potent en-
dothelial cell mitogen. The neutralising humanised
monoclonal anti-VEGF antibody bevacizumab (Avastin,
Genentech) has recently been approved for the treatment
of colorectal cancer [9], but showed no survival benefit
in patients with breast cancer [10].

Ligands to markers of angiogenesis 
and their applications in targeting

In this review, we will refer to “targeting” as the selec-
tive delivery of a molecular agent to a site of disease. In
most cases, this molecular agent will be a ligand specific
to a target antigen (“marker”) which is over-expressed at
the site of disease. At present, monoclonal antibodies are
the only clinically proven class of high-affinity binding
molecules which can be generated against virtually any
marker of disease. However, as we will see in “Ligands
for targeting applications”, other molecular species (such
as peptides, aptamers, or small organic molecules) are
also being considered for targeting applications.

Monoclonal antibodies exhibit slow elimination from
the blood and accumulate predominantly in the liver.
Rapidly clearing antibody fragments are typically pre-
ferred for imaging applications in nuclear medicine. By
contrast, intact immunoglobulins continue to represent
the antibody format of choice for many therapeutic appli-
cations [11], which rely on the antibody’s ability to inter-
fere with signalling events and to activate antibody-de-
pendent cellular cytotoxicity mechanisms or complement.

The immunogenicity of rodent antibodies continues to
be a concern for repeated administrations to humans, and
the use of chimeric, humanised or fully human antibod-
ies is generally preferred [11, 12].

Markers of angiogenesis can be located on the lumi-
nal or abluminal aspects of new blood vessels (Fig. 1).
Components of the modified extracellular matrix are
mostly found on the abluminal side of neovasculature.
These antigens are often stable and abundant. Some ex-
tracellular matrix components (such as oncofetal fi-
bronectins and tenascins) display a restricted pattern of
expression and may serve as useful antigens for tumour
targeting applications. In spite of the fenestration of tu-
mour blood vessels, the ligand-based targeting of ablu-
minal antigens can be a slow process owing to the irreg-
ular vasculature and high interstitial pressure of solid tu-
mours, as well as to the fact that such ligands must ex-
travasate in order to reach their target.

While markers of angiogenesis on the luminal side of
new blood vessels are better accessible, it would be mis-
leading to consider that they will necessarily lead to
faster, more efficient ligand-based targeting applications.
The targeting of such antigens, by means of a rapidly
clearing ligand (e.g. an antibody fragment), can be
viewed essentially as a single-compartment pharmacoki-
netic problem. A small antibody fragment with a low ki-
netic dissociation constant for the antigen will have two
main possible fates: it will either bind to the accessible
target or be cleared from the circulation via the renal and
hepatobiliary route. In this model, the time required for
semisaturation of the target antigen satisfies the follow-
ing equation: 

(1)
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where kon is the kinetic association constant of the anti-
body for the antigen and [Ab] is the initial antibody con-
centration in blood, neglecting blood clearance (which
obviously can only make the targeting process even less
efficient).

From Eq. 1, it is obvious that an accessible luminal
target can be saturated very rapidly if high concentra-
tions of ligands are used (e.g. T1/2=0.692 s if kon=106 M1 s−1

and [Ab]=1 µM). However, such rapid targeting results
will correspond to only a minimal fraction of antibody
being used for targeting (and will translate into very poor
percent injected dose per gram of tissue), unless the tar-
get antigen is abundantly expressed. In fact, saturation of
target antigen leaves most of the remaining antibody in
circulation (leading to poor tumour/blood ratios). Such a
targeting scenario will not be satisfactory for applica-
tions in nuclear medicine, as the performance of radiola-
belled antibodies for imaging and radioimmunotherapy
applications relies strongly on the achievement of high
tumour/organ ratios.

Lowering the initial antibody concentration to levels
that stoichiometrically match the amounts of accessible
antigen does not help. Even with exceptionally high af-
finity antibodies, the ultimate diffusion-controlled limits
on kon values make it impossible to rapidly target low-
abundance accessible antigens with low (e.g. subnanomo-
lar) concentrations of ligands.

We anticipate that a combination of several parame-
ters, such as blood circulation properties, vascular in-
tegrity, antigen abundance, tumour size and ligand kon
values, will crucially influence the targeting efficiency
for markers located on the luminal aspect of new blood
vessels.

Angiogenesis-related disorders

Cancer

Most of the current knowledge about angiogenesis stems
from investigations on tumoural angiogenesis. A large

number of molecules involved in angiogenesis have been
first identified in tumours and later confirmed in other
pathological conditions.

Many tumours in humans persist in situ without being
accompanied by angiogenesis [13, 14]. At that stage they
tend to be clinically undetectable and are rarely larger
than 1–2 mm in diameter because diffusion of oxygen
and nutrients limits their size. The high rate of prolifera-
tion in these tumours is compensated by abundant inter-
nal apoptosis as a consequence of insufficient blood 
supply.

As the tumour adopts an angiogenic phenotype, the
balance between pro-angiogenic and anti-angiogenic fac-
tors is upset and angiogenesis is triggered. The tumour
mass is allowed to overtake the apoptotic rate and ex-
pands. This process is referred to as “angiogenic switch”
[5, 15]. Not only is angiogenesis required for tumours to
grow beyond a certain size, but it also enables tumour
cells to migrate into surrounding tissue and to colonise
distant sites, forming metastases. Metastases again can
only grow to a threatening size if the metastatic cells are
able to trigger angiogenesis [5].

Although the mechanisms eliciting the angiogenic
switch are not entirely understood to date, it is believed
that besides tumour-suppressor mutation and oncogene
activation, hypoxia plays a pivotal role [16]. There are 
at least two hypoxia-dependent regulatory mechanisms
which lead to VEGF expression. The first mechanism re-
lies on the transcription factor hypoxia-inducible factor
(HIF-1), which controls VEGF transcription [17]. The
alpha subunit of HIF-1, HIF-1α, is degraded under nor-
moxic conditions and stabilised under hypoxia [6, 18,
19]. Second, VEGF mRNA becomes stabilised under
hypoxic conditions [20]. VEGF concentrations stimulate
proliferation of endothelial cells, which in turn produce
many unspecific angiogenic stimulators, including basic
fibroblast growth factor (bFGF), acid fibroblast growth
factor (aFGF), transforming growth factor α and β
(TGFα and TGFβ) and platelet-derived endothelial cell
growth factor (PD-ECGF). Additionally, tumour cells
produce proteases, among which are matrix metallopro-
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Fig. 1. Schematic representa-
tion of the tumour neovascula-
ture as a target for biomedical
intervention. Markers of angio-
genesis can be located on the
luminal (blue) or the abluminal
(green) aspect of new blood
vessels. Proteins of the extra-
cellular matrix are mainly situ-
ated on the abluminal side, pos-
sibly impairing their accessibil-
ity from the bloodstream. How-
ever, while markers on the lu-
minal side are better accessible,
they may be less abundant and
less stable



teinases (MMP) and serine proteases like urokinase plas-
minogen activator (uPA) or tissue plasminogen activator.
Endothelial cells display cell adhesion molecules such as
integrins αvβ3 and αvβ5 which mediate interaction with
the extracellular matrix. Laminin, type IV collagen and
tenascin are synthesised to constitute the new basement
membrane.

Reduced oxygen tension promotes angiogenesis not
only by stimulating the production of inducers but also
by reducing the production of inhibitors. Thrombospon-
din-1 was the first angiostatic protein for which anoxia-
triggered downregulation during tumourigenesis was
demonstrated [21]. Since then, a number of endogenous
angiogenesis inhibitors have been identified.

The tumour vessels differ from their normal counter-
parts: architecturally, they are irregularly shaped, dilated
and tortuous, and even contain dead ends [22]. Extensive
fenestration, an abnormal basement membrane and un-
usually wide gaps between adjacent endothelial cells
make them leaky [23–25].

The treatment of cancer with an anti-angiogenic ap-
proach was first proposed more than two decades ago
[13]. Accordingly, various anti-angiogenic strategies
have been investigated pre-clinically. This extensive re-
search has culminated in the recent approval of beva-
cizumab (Avastin, Genentech) as first-line treatment for
metastatic colon carcinoma [9, 26].

Age-related macular degeneration (ARMD) 
and proliferative diabetic retinopathy

Ocular neovascularisation is associated with many ocular
diseases and is responsible for the majority of cases of
irreversible blindness in the developed world. Abnormal
ocular angiogenesis may ultimately cause severe vitreous
cavity bleeding, retinal detachment and glaucoma lead-
ing to blindness. Proliferative diabetic retinopathy and
age-related macular degeneration (ARMD), which are
the two most common angiogenesis-related eye diseases,
are therefore of high socio-economic impact [27].

The stimulus giving rise to diabetic retinopathy is un-
known, but it is likely that hyperglycaemia leads to vascu-
lar abnormalities and to ocular ischaemia, a process which
probably involves leucocytes or platelets [28–30]. The
hypoxic portions of the retina release VEGF, which in turn
promotes pathological vasoproliferation in the retina [31,
32]. Recently, an angiogenic inhibitor responsible for the
avascularity of the cornea and the vitreous was identified
as pigment epithelium-derived factor and found to be defi-
cient in diabetic retinopathy [33, 34]. Inhibition of VEGF
with a soluble VEGF receptor chimeric protein was found
to suppress retinal neovascularisation in a mouse model
[35]. A number of strategies based on VEGF inhibition
are currently undergoing clinical investigation.

ARMD is the main cause of blindness in elderly peo-
ple. Macular degeneration refers to the breakdown of

cells in the centre of the retina. Ten percent of ARMD
patients are affected by choroidal neovascularisation,
which is responsible for most of the vision loss [27].
Vessels arising from the choroidal vasculature grow into
the plane of the retinal pigment epithelium and sub-reti-
nal space. This occurs nearly exclusively in the macular
and perimacular regions of the retina. The newly formed
vessels are structurally weak and lack integrity, which
results in loss of photoreceptors. As with diabetic reti-
nopathy, the causes of ARMD have not yet been eluci-
dated. Besides local tissue hypoxia as a consequence of
local ischaemia, inflammation has been implicated in
ARMD [36].

Psoriasis

Psoriasis is a chronic inflammatory skin disease that af-
fects approximately 1–3% of the Western population
[37]. Clinically psoriasis appears as symmetrical, well-
demarcated erythematous plaques topped with silvery
white scales, most commonly on the scalp, knees, el-
bows and trunk. Although rarely fatal, it severely im-
pairs quality of life. The disease is characterised by hy-
perproliferation of keratinocytes, infiltration of inflam-
matory cells and increased cytokine levels. The last-
mentioned are responsible for activation of keratinocytes
and lymphocyte invasion by cytokine-mediated upregu-
lation of adhesion molecules on endothelial cells.

Psoriasis is accompanied by expansion of the superfi-
cial dermal microvasculature and elongation of capillary
loops passing into the dermal papillae and the papillary
tip [38]. Although angiogenesis may not be a primary
event in psoriasis, it occurs at an early stage. Several an-
giogenic stimuli have been implicated in psoriasis: pro-
angiogenic VEGF and IL-8 expression was found to be
upregulated while thrombospondin-1 was downregulated
in epidermal keratinocytes [39–41]. Aberrant expression
of a wide range of angiogenic molecules in psoriatic skin
has been reported in the literature, these molecules in-
cluding integrin αvβ3, angiopoietin-2, TGFα and IL-15
[42–45]. As early as 1972, it was recognised that psoria-
sis therapy could rely on inhibition of angiogenesis [46].
Current medications for psoriasis possess a certain anti-
angiogenic activity, e.g. cyclosporin A or retinoids [47,
48].

Rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic destructive mus-
culoskeletal autoimmune disorder associated with thick-
ening of the synovial membrane lining the joints, inflam-
mation, hyperproliferation of synovial cells and forma-
tion of a proliferating pannus. It involves a pro-inflam-
matory cytokine cascade, leucocyte invasion, damage of
the affected cartilage and joints and bone erosion. The
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extensive hyperplasia of the synovium requires a com-
pensatory increase in the number of blood vessels to
nourish and oxygenate the tissue. Hence, angiogenesis is
central in the pathological course of RA.

Over-expression of a number of angiogenic factors is
responsible for a pro-angiogenic imbalance in RA.
VEGF is expressed in RA synovium and elevated in the
serum of RA patients. Serum levels of VEGF further
correlate with disease activity, and improvement in the
clinical symptoms of RA is associated with a reduction
in VEGF levels. Inactivation of VEGF has been exploit-
ed as a therapeutic approach for RA therapy [49, 50].

Other pro-angiogenic factors like tumour necrosis
factor-alpha (TNFα), IL-1, or TGFβ are elevated in the
synovial fluid of RA patients, and their blockade has
also evolved as a strategy for the treatment of RA
[51–53]. The most promising therapies available nowa-
days are TNFα-neutralising molecules. Anti-TNFα ther-
apy has been found to ameliorate essentially all aspects
of RA and, importantly, halts joint destruction; it has be-
come the standard for RA therapy [54].

Markers of angiogenesis

Markers of angiogenesis for vascular targeting

A number of protein antigens expressed either in the ves-
sel or in the adjacent matrix of the vessel have been
characterised as targets for the selective delivery of anti-
bodies (or peptides) to the tumour neovasculature. For
some of these markers, both clinical and pre-clinical data
are already available. This section presents the authors’
views on the most promising tumour vascular targets
which have been characterised in the recent past. The list
of antigens includes proteins which are preferentially ex-
pressed on the surface of endothelial cells in tumour
blood vessels, as well as components of the modified ex-
tracellular matrix which surrounds the tumour neovascu-
lature.

Fibronectin extra-domain B

Fibronectin is a large glycoprotein, which is present in
large amounts in plasma and tissues. The extra-domain B
of fibronectin (EDB) is a domain of 91 amino acids
which, in normal conditions, is not present in the fibro-
nectin molecule [55]. However, the EDB domain is typi-
cally inserted in the fibronectin molecules at sites of tis-
sue remodelling by a mechanism of alternative splicing
at the level of the primary transcript. The EDB domain
has an identical sequence in mouse, rat, rabbit, dog,
monkey and man. This sequence conservation greatly fa-
cilitates the pre-clinical and clinical development of
EDB targeting agents, as it allows the same EDB binding
molecule to be used in different immunocompetent syn-

geneic animal models of pathologies and in patients. An-
tibodies recognising a cryptic epitope on domain VII of
fibronectin (which is adjacent to EDB) have been avail-
able since the late 1980s [56, 57]. However, possibly be-
cause of tolerance, the isolation of anti-EDB monoclonal
antibodies using hybridoma technology has not been
possible until now, and antisera to EDB have been
shown to recognise EDB-containing fibronectin only af-
ter N-glycanase treatment [58].

Using human antibody phage technology [59, 60] and
other recombinant antibody technologies [61], our group
(in collaboration with the group of L. Zardi in Genoa) has
isolated a number of human monoclonal antibodies to
EDB [62–64]. In particular, scFv(L19) is a human anti-
body fragment with subnanomolar affinity to EDB [64],
which has been shown to efficiently localise on tumoural
and non-tumoural neovasculature both in animal models
[65–67] and in patients with cancer [68]. Figure 2 shows
single-photon emission computed tomography (SPECT)
images from a patient with liver metastases of colorectal
cancer. Selective uptake of the radiolabelled scFv(L19) in
the lesions is clearly visible in the transaxial, coronal and
sagittal projections. A careful biodistribution analysis of
the L19 antibody in scFv, mini-antibody and IgG format
has recently been reported [69].

A large number of derivatives of the L19 antibody
have been produced and tested in pre-clinical animal
models, including conjugates with photosensitisers [70],
therapeutic radionuclides (unpublished), drugs (unpub-
lished), liposomes [71], procoagulant agents [72], cy-
tokines [73–77], enzymes [78] and other binding pro-
teins [79, 80].
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Fig. 2. SPECT images obtained 21 h after injection of radioiodi-
nated scFv(L19), showing the transaxial, sagittal and coronal pro-
jections of the abdomen of a patient with liver metastases of colo-
rectal cancer, were matched to the CT scan of the abdomen of the
same patient. Adapted from [68]



EDB is essentially undetectable in most normal adult
tissues, with the notable exceptions of the endometrium
in the proliferative phase and some vessels of the
ovaries. However, EDB is abundantly expressed in a va-
riety of solid tumours [56, 62, 81–85] as well as in ocu-
lar angiogenesis [70, 86], RA [87] and wound healing
[88]. Typically, the pattern of EDB expression in tu-
mours either is predominantly perivascular or exhibits a
diffuse staining of the tumour stroma. In different condi-
tions, tumour cells, fibroblasts and/or endothelial cells
may contribute to the synthesis of EDB-containing fibro-
nectin. In mice, the targeted deletion of the EDB exon
resulted in transgenic mice which developed normally,
healed bone fractures normally and which could develop
tumours, thus suggesting that the function of EDB is re-
dundant in mice.

Large tenascin-C isoforms

Several isoforms of tenascin-C can be generated as a re-
sult of alternative splicing which may lead to the inclu-
sion of (multiple) domains in the central part of this pro-
tein, ranging from domain A1 to domain D [89, 90]. Tra-
ditionally, one has referred to the large isoform of
tenascin-C for tenascin molecules which would putative-
ly contain all the extra domains, and to the small
tenascin-C isoform whenever the extra domains were ab-
sent. A strong over-expression of the large isoform of
tenascin-C has been reported for a number of tumours
[90], and two monoclonal antibodies specific for do-
mains A1 and D, respectively [91–95], have been exten-
sively characterised in the clinic.

Figure 3 shows tumour sections stained with the L19
antibody specific to EDB and with a human monoclonal
antibody specific to a large isoform of tenascin-C. In both
cases, tumour vascular structures are strongly stained in
red.

Recently, we have reported (in collaboration with the
Zardi group) that the extra domain C of tenascin-C dis-
plays a more restricted pattern of expression compared
with the other extra domains of tenascin-C [96], with a

predominantly perivascular staining as depicted with im-
munohistochemistry. The C domain of tenascin-C is un-
detectable in most normal adult tissues, but is over-ex-
pressed in high-grade astrocytomas [96] and other tu-
mour types (unpublished).

Integrins αvβ3 and αvβ5

Integrins αvβ3 and αvβ5 have been proposed as markers
of angiogenesis [36, 97–99] and as targets both for anti-
body-based inhibitory strategies and for the ligand-based
delivery of therapeutics to the tumour neovasculature.
While these integrins are over-expressed in several solid
tumours, expression in normal tissues has been reported
in immunohistochemical studies [100]. A high-affinity
human monoclonal antibody to the integrin αvβ3 has
been studied in an exploratory immunoscintigraphic clin-
ical study, but yielded disappointing results for tumour
imaging [101].

Prostate-specific membrane antigen (PSMA)

Prostate-specific membrane antigen (PSMA) is a mem-
brane glycoprotein with hydrolytic activity, which is pre-
dominantly expressed in the prostate and whose concen-
trations have been found to be elevated in patients with
prostate cancer [102]. PSMA is present in virtually every
prostate cancer, and its levels are elevated in higher
grade cancers, metastatic disease and hormone-refractory
prostate cancer [103, 104]. The interest in vascular tar-
geting applications of PSMA has been stimulated by the
observation that PSMA is over-expressed in the neovas-
culature of several solid tumour types [105, 106], while
expression around blood vessels in normal tissues is lim-
ited to breast, kidney, duodenum and prostate [107]. The
monoclonal antibody J591 has been used in clinical im-
munoscintigraphy studies for the imaging of progressing
hormone-independent prostate cancer [108, 109].
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Fig. 3. a Frozen tissue section
of a human squamous cell carci-
noma of the tonsils, stained with
an antibody specific to a large
isoform of tenascin-C (red).
Counterstaining was performed
with Gill’s haematoxylin. 
b Frozen tissue section of a sub-
cutaneously grown mouse F9
teratocarcinoma, stained with
L19, a human antibody specific
to the oncofetal fibronectin iso-
form (red) and counterstained
with Gill’s haematoxylin



Endoglin (CD105)

Endoglin (CD105) is a TGFβ co-receptor which is over-
expressed in tumour neovasculature [110, 111]. Even
though recent immunohistochemical studies have shown
the expression of endoglin in normal adult tissues [112,
113], monoclonal antibodies to endoglin have been used
in biodistribution studies and for imaging purposes in
animal models of cancer [114, 115].

VEGF and VEGF-receptor complex

The discovery of VEGFs (and especially VEGF-A) as
prime mediators of angiogenesis has stimulated interest
in the use of VEGFs, VEGF receptors and their com-
plexes as antigens for the targeted delivery of antibody
derivatives to the tumour neovasculature. The over-
expression of VEGFs and VEGF receptors in tumours is
well documented [116, 117]. The selective localisation
of monoclonal antibodies to VEGF-A [118, 119], VEGF
receptor 2 [120, 121] and VEGF-A/VEGF receptor 2
complex [122] has been documented previously. Howev-
er, the targeting efficiencies reported until now have not
been spectacular, probably reflecting the relatively low
absolute amounts of antigen in the tumour.

CD44

The monoclonal antibody TES-23, specific to an isoform
of CD44, has been associated with some of the most im-
pressive tumour targeting performances in rodent models
of cancer. Tumour values as high as 50–150% injected
dose per gram (%ID/g) have been reported as early as 1 h
after intravenous injection [123]. CD44 is a cell surface
receptor of great molecular heterogeneity, due to both al-
ternative splicing of at least ten out of 20 exons and ex-
tensive post-translational modifications. CD44 is a ubiq-
uitous antigen that was initially discovered as a surface
antigen on T-lymphocytes and granulocytes and later im-
plicated in various physiological and pathophysiological
processes, including embryogenesis, haematopoiesis, in-
flammation and tumour progression. TES-23 recognises a
widely distributed form of CD44 lacking variant exons,
termed CD44H. However, the epitope was shown to in-
clude a post-translational modification which is found in
an activated, tumour-associated form of CD44H [124].

CD44 splice variants which contain exon 6, CD44v6,
are involved in tumour progression [125, 126]. Antibod-
ies specific for CD44v6 (CD44 splice variants which
contain exon 6) are currently undergoing clinical trials
[127].

Phosphatidyl serine phospholipids

Phosphatidyl serine phospholipids (PS) are major com-
ponents of the cell membrane which, in normal condi-
tions, are confined to the inner leaflet of the lipid bilayer.
However, under conditions of cellular stress and apopto-
sis (and particularly in proliferating endothelial cells),
the exposure of phosphatidyl serine to the outer leaflet 
of endothelial cell membranes (making it “visible” for
targeting molecules) has been reported. Annexin V and
monoclonal antibodies have been used to confirm the
surface accessibility of the phosphatidyl serine moiety
on endothelial cells in vitro (for example, after treatment
with hydrogen peroxide) and in vivo [128]. The impres-
sive microscopic analysis of tumour targeting perfor-
mance by monoclonal antibodies to PS has not yet been
complemented by a quantitative biodistribution analysis,
but the 9D2 antibody displayed a potent anti-tumour ac-
tivity even when used as naked antibody in rodent mod-
els of cancer.

The surface display of PS on activated platelets has
been reported previously [129, 130], and it remains to be
seen whether this property may facilitate tumour target-
ing applications (in view of the fact that blood coagula-
tion often leads to the formation of a provisional extra-
cellular matrix in solid tumours) or may hinder the selec-
tive localisation of monoclonal antibodies to tumour
neovasculature.

Magic roundabout (ROBO-4)

Over the past few years, the Bicknell group has devel-
oped bioinformatic strategies that utilise the wealth of
information now accessible in the public databases to
identify novel endothelial-specific genes. One of the
genes identified is magic roundabout (MR or ROBO-4)
[131]. The roundabout family of genes comprises several
closely related genes (three in man) that were previously
thought to be present only in neuronal tissue and to be
involved in axon guidance. Roundabouts have five IgG
and three fibronectin-like extracellular domains. They
are large transmembrane receptors for ligands known as
slits (three in man). The discovery of an endothelial-spe-
cific roundabout was quite unexpected. Analysis of MR
expression by a combination of Northern blotting, in situ
hybridisation and immunohistochemistry has shown it to
be highly restricted. Thus, MR is absent from adult tis-
sues except at sites of active angiogenesis, including tu-
mours. It is highly expressed in the embryo and it is pre-
sumed that it is a gene intimately involved in the devel-
opment of the vasculature. This expression pattern is
highly unusual and has previously been found only for
delta4, an endothelial-specific member of the delta fami-
ly. The pattern of MR expression makes it ideally suited
to vascular targeting. The latter has been known for
many years to be an effective strategy to eradicate large
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solid tumours in mouse models but its development in
man has been hindered by the lack of a suitable target.
Biodistribution studies with radiolabelled ligands (e.g.
monoclonal antibodies) are badly needed, in order to as-
sess the real potential of ROBO-4 as a target for imaging
and/or biomolecular therapeutic intervention.

Other markers: aminopeptidase N, annexin A1

Recent proteomic methodologies (such as in vivo pep-
tide phage panning or silica bead-based recovery of en-
dothelial cell proteins—see “Methodologies to discover
novel markers of angiogenesis”)—have identified a vas-
cular form of aminopeptidase N (CD13) [132] and an-
nexin A1 [117] as markers of tumour angiogenesis,
which are readily accessible from the bloodstream. For
CD13 ligands, evidence of vascular targeting activity has
been indirect until now, and was mainly based on immu-
nohistochemical studies of tissue sections following in-
travenous injection of phage peptide [132] or on the im-
proved anticancer therapeutic index of TNF-peptide fu-
sion proteins compared with native TNF [133].

By contrast, impressive tumour targeting data have
recently been reported for antibodies specific to rat an-
nexin A1 in a rat lung metastasis model of breast cancer.
Values of 34%ID/g have been reported in rat tumours as
early as 2 h after intravenous injection of the antibody,
radiolabelled with 125I. However, it is not clear from the
article whether one or more antibodies to rat annexin A1
were used for the tumour targeting experiment. More-
over, the 125I-labelled antibody was found to be therapeu-
tic in rats at relatively low doses (single injection of
50 µCi radiolabelled antibody per rat).

Methodologies to discover novel markers 
of angiogenesis

Transcriptomic analysis of tumour endothelial cells

The hypothesis that the tumour environment would trig-
ger the over-expression of certain genes in the endotheli-
al cells of tumour neovasculature triggered research ac-
tivities in which the transcriptomic profile of endothelial
cells in normal tissues and in tumours were compared.
The first approaches relied on subtractive hybridisation
techniques and led to the identification of H cadherin as
a protein which was over-expressed in the neovascula-
ture of certain tumours. The same antigen, however, was
also present in the vasculature of some normal organs
[134].

Shortly afterwards, St Croix and colleagues per-
formed a genome-wide comparison of normal and tu-
mour-derived endothelial cells using serial analysis of
gene expression (SAGE) [135]. The analysis pinpointed
genes (termed tumour endothelial markers, or “TEMs”)

which were preferentially found in tumour endothelial
cells. For some of these TEMs, preferential expression in
tumour endothelial cells was confirmed by in situ hy-
bridisation. Since this seminal paper, a number of groups
have worked on similar experimental approaches, im-
proving the methodologies for endothelial cell purifica-
tion and mRNA extraction, often preferring Affymetrix
gene chip technology for the genome-wide comparison
of transcriptomes.

As more and more transcriptomes of solid tumours
and of endothelial cells have become available, re-
searchers have started to compare these databases, with
the aim of discovering endothelial cell-specific tumour-
associated markers. Crossing of expression databases of
well-defined in vitro cell culture models of angiogenesis
with expression data from diagnostic samples of human
diseased tissues, followed by further prioritisation, re-
sulted in the identification of stanniocalcin as a putative
endothelial marker of cancer [136]. In situ hybridisation
analysis showed a striking over-expression of stanniocal-
cin in the neovasculature of colorectal cancer. The anti-
gen was undetectable in the normal colon mucosa. How-
ever, expression of stanniocalcin in various adult organs
(thyroid gland, ovary, prostate, kidney) at high levels has
been reported [137], although some discrepancies in the
literature about the tissue distribution of this protein
have emerged [138]. The bioinformatics approach which
has led to the identification of magic roundabout as a
marker of tumour angiogenesis has been described in
“Markers of angiogenesis for vascular targeting.”

Perfusion with silica beads

In principle, the most direct way to discover novel mark-
ers of angiogenesis consists in the in vivo labelling of
vascular structures, followed by recovery and compara-
tive proteomic analysis. The group of Jan Schnitzer re-
ported the use of colloidal silica for the in vivo coating
of the vasculature [139, 140]. The physical modification
enabled the enrichment of silica-coated structures such
as luminal cell plasma membranes and their caveolae.
Recently, 2D-PAGE analysis of silica-coated plasma
membranes from rat lungs bearing breast adenocarcino-
ma and from normal rat lungs led to the identification of
a number of tumour-specific vascular proteins [117].
Apart from proteins which were known to be specific 
for the tumour vasculature (VEGF receptors, endoglin, 
aminopeptidase N and others), some proteins without a
known association with the tumour vasculature have
been identified, like annexin A1.

In vivo biotinylation

Our group has developed a methodology for the in vivo
chemical labelling and identification of vascular proteins.
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We perform terminal perfusion of tumour-bearing mice
with a reactive ester of biotin (biotin-LC-sulfoNHS from
Pierce) [(Rybak et al., Proteomics, 2004, in press)]. This
compound covalently modifies primary amino groups
present in proteins and phospholipids. The charged sul-
phate moiety in the biotin derivative minimises the cross-
ing of cell membranes, which results in a preferential la-
belling of cell surface proteins that are readily accessible
from the bloodstream. A similar approach has previously
been used in an ex vivo system by De La Fuente and col-
leagues [141].

Biotinylated proteins can be purified on a streptavidin
column in the presence of SDS from homogenised tis-
sue. For proteomic investigation, several methodologies
can be considered, for instance 2D-PAGE, 1D-PAGE af-
ter chromatographic pre-fractionation or gel-free spec-
trometric analysis.

Ligand-based methodologies

Ruoslahti, Pasqualini and co-workers have pioneered the
in vivo biopanning of phage peptide libraries in an at-
tempt to identify binding specificities against different
vascular addresses in different tissues and/or tumours
[142, 143]. This approach has led to the discovery of
peptides specific for aminopeptidase N and for integrins
[132, 144]. In principle, binding specificities can be ob-
tained against unknown vascular proteins which are ac-
cessible from the luminal side of blood vessels. Binding
peptides may facilitate the identification of the cognate
antigen. Even though indirect evidence of tumour target-
ing is available (e.g. ex vivo immunohistochemical anal-
ysis from mice injected with phage peptides), biodistri-
bution studies with pure peptides are badly needed to
demonstrate the real potential of the technology and its
general applicability.

Ligands for targeting applications

Antibodies

The invention of hybridoma technology for the genera-
tion of monoclonal antibodies [3], followed by the iden-
tification of disease-associated antigens, has stimulated
myriad pre-clinical and clinical studies for the imaging
and/or therapy of angiogenesis-related diseases. It is now
well established that rodent antibodies are immunogenic
in humans.

In 1986, the group of Greg Winter pioneered the gen-
eration of humanised antibodies [145], obtained by trans-
planting the complementarity determining regions
(CDRs) of murine antibodies onto a human antibody
framework. Several humanised antibodies are now ap-
proved both in Europe and in the USA. Antibody hu-
manisation was later complemented by the generation of

human antibodies by immunisation of transgenic animals
carrying human immunoglobulin genes [146, 147] and
by antibody phage technology [59].

The display of antibody fragments on the surface of
filamentous phage allows the easy construction of large
(>109 antibodies) libraries of human antibodies, from
which monoclonal antibodies can be isolated by panning
the phage library onto an immobilised antigen. When re-
quired, antibody affinity can be “matured” using combi-
natorial mutagenesis of the antibody gene and stringent
selection strategies [64, 148–151]. Antibody phage tech-
nology directly yields antibody fragments (typically in
scFv or Fab format). However, other antibody formats
(e.g. IgG) can easily be obtained by transplanting the
genes coding for the variable antibody domains into suit-
able expression vectors.

Recently, ribosome display has been proposed as a
fully in vitro avenue for the isolation and affinity matu-
ration of human antibodies [152–154].

Peptides

A number of peptides have been suggested to be capable
of selective localisation on tumour neovasculature. In
addition to the phage peptides identified by the groups of
Ruoslahti and Pasqualini [142–144, 155], peptides re-
sulting from the degradation of extracellular matrix com-
ponents have been shown to target tumour blood vessels
using microscopic techniques [156, 157]. Quantitative
biodistribution studies in animals or scintigraphic studies
in patients are badly needed in order to confirm these
initial promising observations. Biodistribution studies in
animals with integrin-binding RGD-containing peptides
have so far yielded disappointing tumour/organ ratios.
Novel technologies for the isolation of high-affinity
binding peptides are available [158], but in vivo stability
of linear peptides remains a cause of concern. On the
other hand, the validated use of cyclic peptides (such as
somatostatin analogues) binding to internalising recep-
tors for tumour targeting applications suggests that such
molecular structures may also be suitable for the molecu-
lar targeting of angiogenesis one day.

Aptamers

Besides antibodies, aptamers (single-stranded nucleic ac-
ids capable of adopting a complex three-dimensional
structure) are possibly the only other class of molecules
from which specific binding molecules against a variety
of target antigens can be isolated (reviewed in [159]).
Aptamer technology relies on the fact that it is possible
to generate large (>1012 members) libraries of single-
stranded nucleic acids, which can be panned for their
binding to a target antigen. The nucleic acids (RNA or
DNA molecules) captured in this procedure can then be
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amplified using PCR-based techniques, and used to gen-
erate single-stranded material for further cycles of pan-
ning. The stability of RNA molecules can be improved
using Spiegelmer technology [160].

Promising imaging studies of rodent models of cancer
with radiolabelled aptamers specific to tenascin-C have
been described [161]. The potential of aptamers for tu-
mour targeting applications is now being investigated in
the clinic.

Small organic drugs

In contrast to antibody technology, the isolation of high-
affinity small organic binders to protein antigens can be
a difficult task, which often fails when the epitopes to be
recognised do not contain hydrophobic pockets [162].
An increasing amount of experimental evidence suggests
that bidentate ligands, recognising adjacent but non-
overlapping surfaces of the target protein, may display
high binding affinity and specificity as a result of the
chelate effect [163]. Methods for the identification of
such bidentate ligands include “SAR by NMR” (where-
by structure-activity relationships are obtained from nu-
clear magnetic resonance [164]), dynamic combinatorial
chemistry [165] and tethering approaches [166]. We
have developed encoded self-assembling chemical libra-
ry technology (ESACHEL) as an avenue for the con-
struction of large DNA-coded libraries of bidentate com-
pounds [167]. ESACHEL libraries are generated by the
stable self-assembly of pharmacophores, forming higher
order structures (dimers, trimers or tetramers). In a typi-
cal implementation, organic molecules are linked to indi-
vidual oligonucleotides, which mediate the self-assembly
of the library and provide a code associated to each bind-
ing moiety. The resulting library can be very large, as it
originates by the combinatorial self-assembly of smaller
sub-libraries. After the capture of the desired binding
specificities on the target of interest, the “binding code”
can be “decoded” by a number of experimental tech-
niques (e.g. hybridisation on DNA chips, by a modified
PCR technique followed by sequencing). We have de-
scribed the isolation of ESACHEL-derived bidentate
molecules with nanomolar affinity to carbonic anhydrase
II [167]. A number of carbonic anhydrases are over-ex-
pressed at sites of hypoxia in physiological and patho-
logical conditions [168–170].

Concluding remarks

Interest in the study of pathological angiogenesis has
grown steadily in the last three decades. The recognition
that angiogenesis supports the development and mainte-
nance of a wide range of serious diseases, together with
the accessibility of markers of angiogenesis for pharma-
ceutical agents in the bloodstream, has stimulated re-

search activities both for the identification of angiogene-
sis-associated antigens and for the development of spe-
cific binding molecules (antibodies, aptamers, peptides,
etc.). The molecular targeting of angiogenesis is now re-
cognised as a pharmaceutical strategy with considerable
potential for the imaging and therapy of cancer and other
angiogenesis-related diseases. However, only a small
number of antigens have been subjected to a sufficiently
detailed analysis in terms of immunohistochemical char-
acterisation and biodistribution studies using well-char-
acterised binding molecules (e.g. high-affinity antibod-
ies). An even smaller fraction of ligands have entered
clinical development programmes, making it difficult to
evaluate the potential biomedical value of the cognate
antigen. A more efficient translation of diagnostic and
therapeutic approaches from the bench to the clinic will
continue to be one of the main challenges in biomedical
research in the coming years.

Our experience with monoclonal antibodies to the
EDB domain of fibronectin has convinced us of the rele-
vance of using (whenever possible) specific binding
molecules capable of antigen recognition in different an-
imal species. This cross-reactivity allows a careful eval-
uation of targeting agents, which are specific for markers
of angiogenesis, in a syngeneic setting and immunocom-
petent animals, thereby offering more powerful predic-
tion of the challenges and opportunities for clinical de-
velopment activities.

In the past, monoclonal antibodies have been the sole
class of binding molecules which could be generated
against a wide variety of antigens, and they have there-
fore dominated research activities aimed at the selective
delivery of bioactive molecules to sites of angiogenesis.
However, the emergence of novel technologies (ap-
tamers, encoded self-assembling chemical libraries, etc.)
suggests that in the not too distant future it will be possi-
ble to perform targeting experiments with a variety of
molecular agents. Perhaps we will then be able to assess
the relative merits of different targeting technologies, as
well as the relative value of different classes of
molecules for the imaging and therapy of angiogenesis-
related diseases.

Evaluation of the biomedical potential of markers of
angiogenesis located on either the luminal or the ablumi-
nal aspect of new blood vessels represents one of the
most controversial areas in pathological angiogenesis re-
search. While in the past most of the best-studied anti-
gens have been components of the modified extracellular
matrix, modern technologies such as silica bead perfu-
sion or in vivo biotinylation allow the identification of
accessible markers of angiogenesis located in the lumi-
nal aspect of new blood vessels. Quantitative biodistri-
bution studies with well-characterised binding molecules
(e.g. antibodies) are urgently needed to shed light on the
pharmaceutical potential of these classes of antigen.
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