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Abstract A method aimed at the optimization of locally
varying laminates is investigated. The structure is parti-
tioned into geometrical sections. These sections are covered
by global plies. A variable-length representation scheme
for an evolutionary algorithm is developed. This scheme
encodes the number of global plies, their thickness, material,
and orientation. A set of genetic variation operators tailored
to this particular representation is introduced. Sensitivity
information assists the genetic search in the placement of
reinforcements and optimization of ply angles. The method
is investigated on two benchmark applications. There it is
able to find significant improvements. A case study of an air-
plane’s side rudder illustrates the applicability of the method
to typical engineering problems.

Keywords Laminate optimization · Evolutionary
algorithm · Sensitivity analysis

1 Introduction

The sensitivity of the mechanical properties of laminated
structures to the choice of material systems employed,
the spatial distribution of different materials within the
structure, and the local orientation of fiber reinforcements
in the laminate offers for an application specific tuning.
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However, due to the large number of variables optimal
designs may be hidden from human intuition. Hence, numer-
ical optimization of laminated composites is a field of active
research.

A key to the numerical optimization of laminated struc-
tures lies in the parameterization of the laminate stack.
The most simple setup starts from existing designs and
takes ply angles as continuous decision variables. Analyti-
cal approaches to the optimization of ply angles (like e.g.,
Prager 1970; Pedersen 1989, 1991; Duvaut et al. 2000;
Khosravi and Sedaghati 2008; Vannucci et al. 2009) are
only available for geometrically simple cases. The applica-
tion of mathematical programming either risks to get stuck
in a local optimal solution (which may be accepted in some
situations, like e.g., Topal and Uzman 2008; Johansen et al.
2009) or requires extensive tuning of the optimizer itself in
order to converge to the global optimal solution (e.g., Moita
et al. 2000; Bruyneel and Fleury 2002). So far, a transforma-
tion of the original to a convex optimization problem e.g.,
by lamination parameters is not available for general shell
structures but only for simple geometries (Grenestedt 1990,
1991; Hammer et al. 1997; Miki 1982; Foldager et al. 1998;
Abdalla et al. 2007). Furthermore, the back-transformation
from optimal lamination parameters to a real lay-up is a
non-trivial task and may require a second optimization step
(cf. Autio 2000; Herencia et al. 2007). Although numeri-
cally expensive, evolutionary approaches have been applied
to ply angle optimization (e.g., Gürdal et al. 1999; Walker
and Smith 2003; Naik et al. 2008). In order to reduce the
computational requirements of a global search by evolu-
tionary algorithms (EAs) an iterative procedure including
a local gradient-based search is proposed by Huang and
Haftka (2005).

Combinations of ply angle optimization with the opti-
mization of ply materials (cf. e.g., Le Riche and Haftka
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1995; Le Riche et al. 1995) or the optimization of ply thick-
nesses (like Fukunaga and Vanderplaats 1991; Omkar et al.
2008) lead to problems with partially discrete search space.
Stochastic optimizers like EAs are employed there (Adali
et al. 2003; Lopez et al. 2009; Naik et al. 2008; Akbulut and
Sonmez 2008).

Whilst for in-plane loadings the laminate stiffness and
strength depends only on the fiber orientations, thicknesses,
and elastic properties of the single laminae, out-of-plane
(e.g., bending, buckling, or frequency) situations involve
the position of each lamina in the laminate stack as a further
decision variable.

Apart from mathematical programming (e.g., Tsau and
Liu 1995; Farshi and Rabiei 2007), stochastic optimizers
have repeatedly and successfully been applied to the opti-
mization of the laminate stack: These include variants of
EAs (Kogiso et al. 1994; Soremekun 1997; Todoroki and
Haftka 1997, 1998; Liu et al. 2000; Todoroki and Ishikawa
2004; Rao and Arvind 2005; Pelletier and Vel 2006; Cho
and Rowlands 2007; Kim 2007; Park et al. 2008; Pelegri and
Kedlaya 2008; Beluch 2007), heuristic branch-and-bound
methods (Matsuzaki and Todoroki 2007; Todoroki and
Sekishiro 2007), tabu-search (Pai et al. 2003), particle
swarm optimization (Suresh et al. 2007; Omkar et al. 2008),
or ant-colony optimization (Aymerich and Serra 2008).

A class of optimization methods for locally varying
laminate properties are pioneered by Zowe et al. (1997),
Kočvara and Zowe (1998) and Ben-Tal et al. (1999) under
the name free material approach (FMA). There, the elas-
tic properties at any point in the design space are decision
variables. The method generates an optimal material distri-
bution in terms of virtual homogenized material properties
by the means of a direct search method and finite elements.
In order to map the virtual elastic properties back to a
real and manufacturable lay-up, some potentially expensive
post-processing is required. A method to map the results
of FMA to a tape-laying lamination plan is proposed by
Hörnlein et al. (2001).

Voxel-based parameterization schemes covering the
structure with a predefined set of virtual plies, each associ-
ated with an existing real material, a thickness and ply angle,
and then searching for sets of voxels where these virtual
plies should become existent or vanish have been proposed
several times. The discrete material optimization (DMO)
approach has been pioneered by Lund and Stegmann (2005,
2006), Stegmann (2005) and Stegmann and Lund (2005).

A group of methods manually partitions the structure
into geometric regions (or sections) in a first step. Then, in
a second step a laminate parameterization scheme can be
applied to the sections independently. In order to ensure
the global cohesion of the structure, some plies covering
and hence connecting several sections have to be applied
(Adams et al. 2004; Seresta et al. 2007). Furthermore, the

optimization of the thickness of each section requires spe-
cial attention: Whilst some methods fall back on (quasi-)
isotropic models to determine thickness distributions (like
Rastogi 2004; Roche 2004), Giger and Ermanni (2005)
encode the physical existence of plies by additional decision
variables.

The genetic encoding of a locally variable laminate
consisting of global patches is developed. Prior investiga-
tions require a high number of structural evaluations (Giger
et al. 2008) or show a considerable spread in the opti-
mization results of different optimization runs (Giger 2007,
Chapter 7). This study aims at investigating possibilities to
embed gradient information in a genetic encoding in order
to improve the solution quality and the rate of convergence
of the method.

2 Method

2.1 An asynchronous, parallel evolutionary algorithm
scheme

EAs are a class of biologically inspired, population-based
global search algorithms. One can discern four different
branches in evolutionary computation: evolutionary pro-
gramming, genetic algorithms, evolution strategies, and
genetic programming. In this study, the more modern term
EA coined by Bentley (1999) is preferred.

The investigated parallel algorithm is outlined in Algo-
rithm 1. A flowchart of its state is depicted in Fig. 1.
The main concepts are borrowed from König (2004) and
Wintermantel (2004). The state of the algorithm is character-
ized by a set of candidate solutions, i.e., a population of indi-
viduals. Each individual is equipped with a fitness, grading
how well it complies to the structural demands formulated
in the optimization problem. Based on the fitness, mating
selection (State 4) draws samples---the so-called genitors---
which are allowed for reproduction. Variation (State 5)
then either recombines the genetic information of several
genitor individuals (crossover) or induces random perturba-
tions (mutation) in order to generate offspring. Evaluation
(State 6) computes the fitness of new offspring. Environ-
mental selection (State 7) decides which individuals of
the former parent population and the new offspring build
the new parents. The term replacement is sometimes used
as a synonym for environmental selection, although it
only applies to one particular selection scheme where the
offspring replaces the parents. Hence, the more general term
environmental selection shall be preferred. The proposed
scheme executes mating selection, variation, environmental
selection, and evaluation in parallel. A fixed-size population
evolved over subsequent generations is replaced by a pool
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Fig. 1 Flowchart of evolutionary algorithm scheme (Algorithm 1)

M . The pool allows for continuous evaluations. The evalu-
ation state includes computationally expensive simulations.
Hence a parallelization of this state leads to a significant
speedup of the optimization run (cf. Cantu-Paz 1997). Vari-
ation operations embedding iterative local searches (as
detailed in the following) have considerably larger runtimes
than stochastic operations. Thus, asynchronous (i.e., non-
blocking) parallelization of the variation state is required
to fully exploit the system capacity. Asynchronous paral-
lelization requires adaptions in the environmental selection
state. An age-based mechanism is employed to shift selec-
tion operations from the population to the individual level.
An in-depth discussion of the parallel implementation is
outside the scope of this study but can be found in Keller

(2010a, b). The following sections focus on the represen-
tation concept, i.e., the structure of the information stored
in a candidate solution x. An overview of problem specific
representation concepts in evolutionary structural optimiza-
tion is given in e.g., Kicinger et al. (2005) and Giger (2007).
A representation concept includes two aspects: a descrip-
tion on how to encode attributes of candidate solutions
and a set of variation operations modifying these encoded
attributes. Thus, the variation state needs special consider-
ation when designing new genetic encodings. The imple-
mentation of the variation state in the investigated algorithm
is based on a proportional configuration already employed
in König (2004), Wintermantel (2004), Giger (2007),
Zehnder (2008) and Sauter (2008): Each single variation
operator is equipped with a user-defined application rate
ri . In each execution thread of the parallel implementation,
only one variation operation gets applied by chance. Hence,
mating selection is executed in order to identify the number
of genitors required as parent individuals for the particu-
lar choice of a variation operator. This is also illustrated in
Fig. 1 with an exemplary setup for the rates ri .

2.2 Building laminates from global plies

If locally varying laminates shall be used within a structure,
the global cohesion has to be assured. The patch concept
developed by Zehnder and Ermanni (2006) and Zehnder
(2008) enables for this by parameterizing global plies, i.e.,
patches. The position, size, shape, material, and orientation
of the patches may be optimized. Due to their overlappings,
patches form sections on the structure with different lami-
nates (Fig. 2). An extension of the method is proposed in
Giger (2007, Chapter 5) where a variable-length genotype
in an evolutionary algorithm enables to optimize the number
of patches as well. A finite element-wise approach to param-
eterize the shape of reinforcement patches is investigated in
Giger et al. (2008). An abstraction of this method to operate
on predefined geometrical zones instead of finite elements
can be found in Kaufmann (2006) (revisited in Chapter 7 of
Giger 2007).
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Fig. 2 Mapping of three patches (A, B, and C) to four sections (1, 2,
3, and 4). Section 1 consist of patches A and B, Section 2 of B and C,
Section 3 of only C, and Section 4 is a laminate from A and C

2.3 A laminate optimization problem formulated
on sections

The optimization problem in this study is formulated as:
given a shell-like structure partitioned to a set of geomet-
rical regions (further on called sections) S, find the number
and sequence and associated attributes of patches minimiz-
ing a criterion F . Each patch covers a connected subset of S
defining its shape. The connectivity of sections in S can be
determined from their geometrical adjacency, i.e., sections
sharing geometric edges are adjacent.

As already proposed in the references cited above, graph
operations enable for an elegant way to formulate the opti-
mization problem. Therefore, we introduce a section-graph
G = (S, E) as an abstract model of the structure to optimize.
The section-graph G is an undirected graph with the set
of sections S building its vertices. Geometrically adjacent
sections are connected by edges E (see Fig. 3).

Moreover, we consider the i th patch to be defined by its
shape Pi , a material mi from a list of available materials, an
orientation in the form of a rotation angle φi with respect
to a reference orientation, and a number of ply replicates
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Fig. 3 Geometry and corresponding section-graph of a curved panel
partitioned to six sections

ti . The actual thickness of the patch then corresponds to
ti multiplied by the raw thickness of the ply material mi---
a concession to manufacturing, where the thickness of a
reinforcement treatment can only vary in discrete steps.

Hence, the laminate optimization problem can be formu-
lated as:

min
x∈{〈Pi ,mi ,φi ,ti 〉n}

F (x) (1)

subject to:

n ∈ Z, nmin ≤ n ≤ nmax (number of patches) (2)

Pi ⊂ G,Pi connected (subgraph of G) (3)

mi ∈ {M0, . . . , Mm} (ply material) (4)

φi ∈ R, −90◦ < φi ≤ 90◦ (ply angle) (5)

ti ∈ Z, 1 ≤ t ≤ tmax (number of ply replicates) (6)

This problem formulation has some notable traits: The
representation is of variable-length, i.e., the number of
dimensions n in the search space is not a priori defined but
a variable to be optimized. The search space is structured
in blocks of equal form, namely tuples 〈Pi , mi , φi , ti 〉 rep-
resenting one reinforcement patch each. The sequence of
patches in x is sensitive to ordering, since its order deter-
mines the stacking sequence in the laminate. The patch
attributes are heterogeneous, i.e., graph-, string-, real-, and
integer-valued.

An analogous, fixed-length problem could be found by
introducing nmax virtual patches and parameterizing their
physical existence either by an additional boolean value or
by allowing a zero thickness. As shown in Giger (2007)
this approach would suffer from a potentially large number
of variables representing attributes of physically inexistent
patches. These so-called non-coding regions would par-
ticipate in the optimization process without affecting the
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objective. Hence, they could affect the performance of the
optimization method especially if there is a considerable
difference between nmin and nmax.

For the following discussion we introduce the notation
|x|P to designate the number of plies in a candidate solution
and xi for its i th ply, i.e., x = {x0, x1, . . . , xn−1} and n =
|x|P .

In order to ensure the cohesion of the structure, the design
is covered by a very compliant layer. This approach is bor-
rowed from earlier investigations (Giger et al. 2008). The
properties of this compliant layer are given for the follow-
ing examples. In order to minimize the influence of the fill
layer on the simulated structural response, its stiffness and
mass properties are set as low as possible. A lower bound
is set by the condition of the finite element system, i.e., too
low values may induce numerical instabilities.

2.4 Section categories

In order to develop operations modifying the shape of single
patches, we first characterize the sections in the patch graph
Pi of a single patch i . Figure 4 illustrates a rectangular panel
partitioned into an irregular set of sections indicated by thin

neighbor section

articulation section

patch boundary sectionsection boundary

patch boundary

core section

Fig. 4 Illustration of different types of sections in a structure with
non-regular sections and a single patch

solid lines. The panel is reinforced by a single patch inside
the region surrounded by the thick solid line. Based on their
adjacency, the different sections can be classified. There-
fore, we introduce the notation for some common graph
functions: v (G) returns the set of vertices in a graph G,
vadj (v, G) returns the set of vertices adjacent to vertex v in
a graph G, and vart (G) returns the articulation vertices (also
called cut vertices) of a graph G. The set of patch sections,
i.e., all sections contained in the i th patch is written as:

{
vpatch

} = {v ∈ v (Pi )} (7)

The set of sections adjacent to patch i can be written as

{
vneighbor

} = {v ∈ v (G) : v /∈ v (Pi ) ,

vadj (v, G) ∩ v (Pi ) 
= ∅
}

(8)

And the set of section on the boundary of it is computed
from

{
vboundary

} ={v ∈ v (Pi ) ,

vadj (v, G) ∩ {
vneighbor

} 
= ∅
}

(9)

The set of articulation sections {varticulation} is a subset of the
boundary sections: The removal of one articulation section
splits Pi into two or more components.

{varticulation} = vart (Pi ) (10)

2.5 Section rankings with gradient information

Gradient information is used to indicate whether a section’s
thickness has to be increased or decreased. Therefore, each
section j in S is accompanied by a scalar parameter τ j

called the section’s thickness multiplier. In the analysis
model the ply thickness of each ply covering section j is
multiplied by τ j which finally multiplies the laminates thick-
ness by τ j . By setting the section multiplier τ j to 1 does
not actually change the physical expression of the laminate
but nonetheless allows for the computation of the deriva-
tive ∇τ F (x) = [

∂ F (x) /∂τ j
]
. The number of sections is

constant during the optimization and typically considerably
smaller than the number of finite elements in the analysis
model. The computation of these derivatives can be done by
sensitivity analysis at an affordable additional cost (Mateus
et al. 1991, 1997; Lund 1994; van Keulen et al. 2005).

The information available from these section thickness
derivatives is injected into genetic operators locally modify-
ing the laminate. We introduce rank (e, e) as an expression
for the index of item e in a sequence e ordered in ascend-
ing order. rank (e, e) is an integer number in the interval
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[0, |e| − 1]. A rank value of zero indicates that e has the
lowest value in e whilst a rank |e|− 1 designates the highest
value. The section rank of section j is then computed as:

� j = rank

(
∂ F (x)

∂τ j
, ∇τ F (x)

)
(11)

Sections with low (thus potentially negative) thickness
derivatives have low ranks � j . Hence, increasing the thick-
ness of a section with low rank will lower (or at least only
little increase) the objective of a candidate solution x. The
same holds for decreasing the thickness of sections with
high rank.

Thus, section rankings can indicate a tendency on where
reinforcements in the form of the considered patches shall
be applied or where these reinforcements shall be removed.
However, they depend on the local laminate already existing
in the corresponding section. Thus, section rankings may
miss-estimate the influence of a reinforcement treatment if
there are significant differences in the homogenized proper-
ties of the existing laminate and a potential reinforcement
patch. Hence, section rankings are embedded in stochastic
operations. There, they shall bias operations modifying the
patch shapes without affecting the global search properties
of the EA scheme.

2.6 Basic operations on the patch shape

Based on the above introduced section rankings basic oper-
ations modifying patch shapes can be developed. Add one
section (Algorithm 2) adds a new neighbor section to an
existing patch shape. The choice on which section to add is
based on section rankings. The exponent in the power law
(State 3) influences the balance between a random and a
deterministic choice: an exponent of zero corresponds to a
uniform random selection. For this study the exponent is set
to 5.

Remove one section (Algorithm 3) removes a boundary
section from an existing patch shape. Articulation sections
are not considered for removal in order to keep the patch
graph connected. The choice on which section to remove is

again based on section rankings. The power law (State 5) to
compute the selection weights is complementary to the one
in Algorithm 2.

2.7 Genetic variation operators

Typical genetic variation operators inherit from either
crossover or mutation. In most common implementations,
crossover is a binary operator recombining genetic informa-
tion of two parent individuals and creating two offspring.
And mutation is an unary operation creating one offspring
from one parent by adding some random perturbation.

The aforementioned traits of the investigated genetic rep-
resentation influence the choice and design of variation
operators applicable to it. Since it is structured on two differ-
ent hierarchical levels---namely a laminate level and a patch
level---there have to be variation operators changing infor-
mation on both levels. The heterogeneous, variable-length
genotype is not suitable for standard mutation and crossover
operations available for bitstrings or real-valued encodings.
In order to have a complete representation, all attributes of
the genotype need to participate in the variation. A set of
only two variation operators like in conventional EAs would
hardly enable for non-disruptive changes in all attributes of
parent solutions (local and Lamarckian property, see Gen
and Cheng 2000). Thus, there is a set of different genetic
operations for each level and attribute-type. Variation oper-
ators are applied one at the time on the selected parents
according to the application rates ri as indicated in Fig. 1
and Algorithm 1.

The following operators modify information on the lami-
nate level: Stacking mutation changes the stacking sequence
in a laminate Algorithm 4. Add patch mutation adds a new
patch to the laminate (Algorithm 5). Remove patch mutation
removes a patch from the laminate (Algorithm 6). Split-and-
splice patch crossover cuts the laminate stack of two parent
solutions each at a random position and recombines the head
and tail segments to two new offspring.
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The following operators act on the patch level: Material
mutation selects a random patch from a parent solution and
creates one offspring by randomly exchanging the material
attribute of the selected patch. Gaussian ply-angle mutation
changes the ply-angles of all patches in a parent solution
by adding a random value from N (μ = φi , σ = 5◦). SR1-
ply-angle mutation uses a symmetric rank-1-updating (a
deterministic quasi Newton method) to locally optimize the
ply-angles in a parent solution. This operator requires by
itself a sequence of evaluations. This is enabled by the
parallel execution of the variation state in the employed

asynchronous EA scheme. Patch-thickness mutation sets
the patch thickness of a random patch in a parent solution to
a random integer in [1, tmax]. Grow-patch mutation selects
a random patch in a parent solution and adds an additional
section to the patch shape by Algorithm 2. Shrink-patch
mutation selects a random patch in a parent solution and
removes a section from the patch shape by Algorithm 3.
Move-patch mutation selects a random patch in a parent
solution. Then the patch shape is modified by first apply-
ing Algorithm 2 and later Algorithm 3. Thus, it adds
one section and removes potentially another one, i.e., it
changes the location of reinforcement patch. Patch-property
crossover recombines patch attributes in two parent solu-
tions (Algorithm 7). This operator exchanges ply materials
and employs arithmetic crossovers on ply thicknesses and
ply-angles (see e.g., König 2004). In general, the two par-
ents (p

1x, p
2x) have not the same length. Then, the patches

exchanging genetic information do not map one-to-one.
Hence, all patches of the shorter parent but only a subset of
the longer parent are candidates to exchange genetic infor-
mation. Furthermore, the sensitivity of the encoding to the
ordering information has to be respected. The mechanism
is given in detail in Algorithm 7. An illustration for an
example case is depicted in Fig. 5.

Fig. 5 Crossover pairings for
parents of different length in
Algorithm 7

p
1x

p
2x
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3 Implementation

The method is implemented in an object-oriented code in the
Python programming language1 (version 2.5). Grid Engine
6 N12 is employed as a queuing system on a heteroge-
neous cluster consisting of 28 blade computers and two
workstations with two CPUs each. MySQL 5.03 serves as
a database server, InnoDB4 is used as underlaying storage
engine. The database service as well as the scheduler run on
the same additional server computer. The commercial finite
element code ABAQUS (version 6.8) is employed for the
structural simulations. Sensitivities are computed by a direct
differentiation scheme (see Section 2.18 in ABAQUS 2008).
The implementation operates on ABAQUS-input files and
recognizes user defined element sets as sections. The section-
graph is constructed automatically from meshed shell struc-
tures with arbitrary geometry. A set of naming conventions
and regular expressions is employed to map candidate solu-
tions back to valid ABAQUS-input files. Special mapping
procedures for geometrically symmetric structures, regions
excluded from optimization, or symmetric laminates are
available. The lamination plan of each candidate solution
is fully parameterized in the corresponding input file.

4 Numerical experiments

4.1 Single-patch vibrating plate

A rectangular plate (Fig. 6) with an additional, non-central
mass shall be optimized for its first natural frequency f0,
subject to an upper limit constraint on the overall structural
mass M ≤ Mmax. The structure is covered by a very com-
pliant fill-material (isotropic, Young’s modulus E = 1 GPa,
Poisson’s ratio ν = 0.3, thickness 0.15 mm, area density
0.237 kg/m2). The shaded region in Fig. 6 is covered by
an additional mass layer (isotropic, E = 1 GPa, ν = 0.3,
thickness 10 mm, area density 158 kg/m2). In a first experi-
ment, the structure shall be reinforced by a single, additional
layer of an unidirectional carbon/epoxy prepreg (Table 1,
thickness 0.15 mm). The experiment corresponds to prob-
lem 5.3.1 presented in Giger (2007) (revisited in Section 7.5
in the same source and also presented in Giger et al. 2008).

The original optimization problem is formulated as:

max
x

f0 (x) (12)

subject to M (x) − Mmax ≤ 0 (13)

1http://www.python.org
2http://gridengine.sunsource.net
3http://www.mysql.com
4http://www.innodb.com
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Fig. 6 Geometry of the vibrating plate experiment: the rectangular
plate is simply supported on all edges. The shaded region corresponds
to an additional mass. All dimensions are in mm

An exterior penalty method and scaling is employed in order
to get an unconstrained, scalar valued fitness function (e.g.,
Bertsekas 1982):

min
x

F (x) = − f0 (x)

fs
+ p

[
max

{
0,

M (x) − Mmax

Ms

}]2

(14)

On the constraint (i.e., when M (x) = Mmax) the limit
value from the forbidden side of the constraint is taken as
derivative of F with respect to decision variables in x. For
the investigated problem, the values are set to Mmax =
0.436475 kg, Ms = 0.05 kg, p = 10, and fs = 2 Hz.
A reachable design identified by prior experiments has a
natural frequency in the range of 2 Hz. This motivates the
scaling factor fs . Some experiments lead to the choice for
the scaling and penalty factor for the mass constraint. The
number of patches (n) is restricted to one (nmin = nmax =
1), the ply material list contains only the above character-
ized unidirectional prepreg, and the number of raw material
layers in the reinforcement is set to one (tmin = tmax = 1).
An unbiased setup of fifty sections in a regular grid of five
along the short and ten along the long side of the plate
(cf. Fig. 8) is chosen. The finite element model contains 200
four-node, layered-shell elements in a square shape, thus,
each section is modeled by four elements.

Ten independent optimization runs are carried out. For
each run, the pool size is set to 250 individuals, four demes
are employed, and migration frequency is set to 750 evalua-
tions. The application rates for the operators are set to 90%
for Patch-property crossover, 2% for Grow-patch-mutation,
2% for Shrink-patch-mutation, 2% for Move-patch muta-
tion, 2% for Gaussian ply-angle mutation, 2% SR1-ply-
angle mutation, and zero for the remaining operators. A pool
of 250 individuals is initialized by random for each run. The
optimization is stopped after 15,000 evaluations.

http://www.python.org
http://gridengine.sunsource.net
http://www.mysql.com
http://www.innodb.com
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Results and discussion Convergence plots for the first
eigenfrequency and the mass are given in Fig. 7. There, it
can be seen that from around 7,000 evaluations on, no run
is able to improve its best solution. As can be expected, all
allowed mass is invested in a reinforcement layer and hence
all solutions found are on the constraint. Moreover, nine
out of ten runs find a solution with an eigenfrequency in a
range between 2.036 and 2.047 Hz, only one run gets stuck
at 1.928 Hz.

The shape of the single reinforcement patch for the best
individual of each run is shown in Fig. 8. Although the
geometry of the structure has a horizontal symmetry, only
one reinforcement layer shows this symmetry (Fig. 8h) with

Fig. 7 Results of the single-ply vibrating plate experiment

Fig. 8 Best individuals identified in ten different runs for the single-
ply vibrating plate experiment with their first eigenfrequency f0, mass
M, and ply-angle φ. Reinforced sections are shaded

a symmetric patch shape and a ply-angle of approximately
90◦. Interestingly, this solution has the lowest eigenfre-
quency within the ten best solutions. Given the horizontal
symmetry, six out of ten solutions have the same patch
shape (Fig. 8a, b, d, f, g, and j). Their ply-angles are
in range of 87.91--89.92◦ and the corresponding eigenfre-
quency ranges from 2.040 to 2.042 Hz. The two best
solutions (Fig. 8e and i) feature a hole in the patch shape
where the mass layer is situated. This allows for making use
of the stiffness of the mass layer and at the same keeping
the mass in this critical region at the lowest value possible.
Since there is no operator inserting holes in a patch shape,
the patch has just grown around the mass section for these
two runs.

4.2 Twelve-patch vibrating plate

The vibrating plate experiment is repeated with the follow-
ing changes: a variable number of patches is allowed in
an interval 1 ≤ n ≤ 12. The maximum number of ply
replicates is set to tmax = 3. The fitness function (14) is
adapted to the heavier structure by setting fs = 30 Hz,
Mmax = 0.543125 kg, and Ms = 0.05 kg. The number of
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Fig. 9 Convergence plots for the twelve-ply vibrating plate experi-
ment for all three runs

patches and the corresponding value of the mass constraint
are taken from Giger (2007). The scaling factor fs is moti-
vated by reachable designs with its first natural frequency
in the range of 25--30 Hz identified in previous experiments.
The scaling factor Ms stays the same as in the single patch
experiment (Section 4.1).

The variation operator rates are set to: 50% Split-and-
splice patch crossover, 40% Patch-property crossover, and
1% for each of the remaining operators. In order to cope
with the larger search space the pool size is increased to
400 individuals in 16 demes, the migration frequency is
set to 1,200. The initial pool is generated randomly. Three
independent runs are carried out for 100,000 evaluations
each.

Results and discussion Convergence plots are given in
Fig. 9. The plies of the best solution of all runs (run 2) are
illustrated in Fig. 10. The best solution reaches an eigen-
frequency of 28.214 Hz at a mass of 0.543125 kg. The
remaining runs find a solution with f0 = 24.7396, M =
0.543125 kg and f0 = 24.9772 Hz, M = 0.53957 kg,
respectively.

The convergence plots in Fig. 9 show little improve-
ments over the last evaluations but not yet a stagnation after
100,000 function evaluations. Hence, the runs may not be

Fig. 10 Plies of the best individual for the twelve-ply vibrating
plate experiment with their corresponding ply angles φ and thickness
multipliers t . Reinforced sections are shaded
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fully converged. As expected, the mass constraint is reached
by all solutions. The patch shapes as well as the angles
shown in Fig. 10 do not allow for an intuitive interpretation.
However, as already observed in Giger (2007) the reinforce-
ment do not only concentrate on the mass region but also
the right half of the structure. This is due to the fact that rein-
forcing the mass region will shift the first eigenmode to the
yet weaker right half of the structure. The asymmetry with
respect to the geometric symmetry axis may be explained
by a kind of a self-excited instability: once an asymmet-
ric reinforcement is applied, there is potentially no longer a
pressure to remove this asymmetry. Further reinforcements
will even be shifted to exploit it. Hence, the effect already
observed in the single-ply experiment (Section 4.1), where
a majority of the runs found an asymmetric patch geometry
seems to be amplified in the investigated thicker laminates.

5 Application example: mass optimization
of an airplane side rudder

An airplane’s side rudder is a control surface attached to
the vertical tail and used to initiate a yaw moment. The

A

B

C

xy
z

(a) Isometric view (b) Spar and ribs

Fig. 11 Aircraft side rudder. The rudder is attached to the vertical
tail whereas the upper attachment point enables for rotations around
the vertical axis, the lower support is used to introduce the steering
moment (and is hence fixed in the analysis)

attachment allows for rotations around the aircraft’s yaw
axis (Fig. 11). For the investigated component of a short
range aircraft the steering moments are induced into the
nose part of the bottom rib. The second attachment point
is realized by two short supports on the eighth rib.

The rudder is subject to aerodynamic forces acting on
its skin. An additional, non-structural mass is positioned
in the front top section of the structure to balance steering
reactions. Depending on the flight state, this mass induces
considerable forces of inertia.

The structure is built from a single spar and ten ribs sup-
porting the aerodynamic active skin. The trailing edge gives
support to a trim-rudder. The structure is nearly symmetric
with respect to the x-z-plane. A slight asymmetry is induced
by the trailing edge which is inclined to the port side to give
place for the trim-rudder attachment and actuation devices.

For the analysis the different distributed and concentrated
loads of a dimensioning flight state are reduced to a set
of line-distributed forces and moments (Shear-Moment-and-
Torque, SMT) on the wing-box centerline. From there, they
are summed up to the rib positions and introduced into each
rib’s center point. These non-structural points are connected
by rigid body elements to the rib’s boundary (for a detailed
description of the SMT-method see e.g., Appendix A in
Ledermann 2006). The resulting displacement field for the
considered load case is a superposition of a torsional defor-
mation around the z-axis and two-point bending between
the support points.

Fig. 12 The skin of the rudder is partitioned to 36 lamination sections.
The laminate of the 18 sections illustrated here is mirrored at the x-
z-plane to the second half-shell. The reference coordinate system ξ -η
with angle φ is used to determine the fiber direction
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A composite structure shall be compared to a reference
metal construction manufactured from aluminum. The fiber
reinforced component shall be optimized for mass subject to
constraints on strength and stiffness, i.e., the displacements
at three reference points (A, B, and C in Fig. 11a) shall be
at most equal to the ones of the reference construction. The
reference points are positioned such that both bending and
torsional displacements can be captured. The optimization
problem is formulated as:

min
x

M (x) (15)

subject to: ‖ũ A (x) ‖ − ‖ũ A,ref‖ ≤ 0 (16)

‖ũ B (x) ‖ − ‖ũ B,ref‖ ≤ 0 (17)

‖ũC (x) ‖ − ‖ũC,ref‖ ≤ 0 (18)

max



{iTsaiHill (x)} − 1 ≤ 0 (19)

Where M denotes the structural mass and ‖ũ‖ a displace-
ment magnitude in the specified reference point. The Tsai-
Hill failure criterion is applied to predict a first ply failure:

The criterion computes a failure index iTsaiHill from the
direction-wise stresses in each ply. It is evaluated at every
layer top and bottom interface for each integration point for
each finite element in the structure 
. Failure is predicted
for iTsaiHill > 1.

Scaling and an exterior penalty method are used to trans-
form this problem to an unconstrained, scalar minimization
problem:

min
x

F (x) =M (x)

Mref

+ p

[

max

{
0,

‖ũ A (x) ‖ − ‖ũ A,ref‖
us

}2

+ max

{
0,

‖ũ B (x) ‖ − ‖ũ B,ref‖
us

}2

+ max

{
0,

‖ũC (x) ‖ − ‖ũC,ref‖
us

}2

+ max

{
0,

max
 {iTsaiHill (x)} − 1

is

}2
]

(20)

The values of the metal construction are taken as a refer-
ence: These are Mref = 4.08 kg, ‖ũ A,ref‖ = 0.6689 mm,
‖ũ B,ref‖ = 1.2938 mm, and ‖ũC,ref‖ = 1.3665 mm. The

Fig. 13 Convergence plots for the side rudder application. Mass M, displacements ‖ũ A‖, ‖ũ B‖, and ‖ũC‖, Tsai-Hill failure index iTsaiHill and
number of patches of the best solution in the pool as a function of the number of evaluations
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scaling values are set to us = 10−3 mm and is = 10−3. The
penalty factor is set to p = 10.

The internal structure on ribs, spar, and trailing edge are
covered by laminates from carbon/epoxy prepreg material
(Section 1): for the spar and the trailing edge [±30]s (0.4
mm thickness, zero-direction along the vertical axis) and
[±45]s for the ribs (0.4 mm thickness). The laminate on the
skin shall be optimized. It is initially covered by a ply of
a very compliant, isotropic fill material (Young’s modulus
E = 1 MPa, Poisson’s ration ν = 0, specific mass ρ = 0
kg/m3, thickness 0.01 mm). The skin is partitioned to 36
sections (Fig. 12). The section properties of the 18 starboard
sections are mirrored at the x-y-plane onto the port side in
order to obtain a structure with symmetric properties.

The skin reinforcement shall consist of either material 1
(Table 1, ply thickness 0.125 mm) or material 2 (Table 2,
ply thickness 0.1 mm). The reinforcement plies are applied
symmetrically on top and bottom surfaces of the laminate
in order to obtain symmetric laminates. A maximum num-
ber of ten patches shall be applied. Each patch may have a
thickness of at most ten times the raw material thickness.

Fig. 14 Plies of the side rudder optimization application with their
material m, orientation φ, and thickness multiplier t

Results and discussion Convergence plots are given in
Fig. 13. The best solution found has a mass M of 2.6040 kg.
The displacement values are ‖ũ A‖ = 0.6523 mm, ‖ũ B‖ =
1.2573 mm, and ‖ũC‖ = 1.32595 mm. The Tsai-Hill fail-
ure index iTsaiHill reaches 0.125088. Hence, the design is in
the feasible region. It is covered by five patches which are
illustrated in Fig. 14.

As seen from Fig. 13, the problem is dominated by
the displacement constraints. Strength does never reach a
critical level for the best solution in the pool. Two plies
cover almost the whole structure (Fig. 14a and b). One
ply (Fig. 14c) reinforces the nose between the two support
points against bending. The remaining two plies (Fig. 14d
and e) reinforce the support regions. Section 17 is covered
only by Ply 2. In a practical application this issue would be
eliminated if multiple load cases or additional constraints
on a minimal laminate thickness (e.g., driven by damage
tolerance requirements) had to be considered.

The evaluation of a single individual from given
genotype information to a scalar fitness takes about three
minutes. The number of parallel evaluations is mainly lim-
ited by the number of available licenses of the evaluation
software in our framework. The investigated side-rudder
optimization had a runtime of roughly one week.

6 Concluding remarks

A method for the global optimization of locally varying lam-
inates has been investigated. It builds on a genetic represen-
tation tailored to the requirements of laminate optimization
problems. The method employs graph concepts in the encod-
ing of the geometric region covered by a reinforcement
treatment. However, abandoning a purely graph-based geno-
type like in existing methods (Giger et al. 2008; Giger 2007;
Kaufmann 2006) leads to more compact representations.
The genetic search is assisted by gradient information in
operations modifying the patch shape and determining opti-
mal ply angles. The optimization method is applicable to
a wide set of laminate optimization problems. Applications
on eigenfrequency and stiffness- and strength-constrained
mass optimization problems are presented.

The methods behavior is investigated in two aca-
demic example problems. Whilst for the first experiment
(Section 4.1) the results are of reproducible quality, the
more complex experiment (Section 4.2) can not confirm
this assumption. However, also there, the method is able to
find significantly improved designs in all runs. The spread
in the single-patch experiment is considerably reduced over
previous approaches presented in Giger et al. (2008).

The application to a side rudder structure illustrates a
possible use-case of the method. There, an obvious partition-
ing of the structure into geometric sections is given by the
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construction. The method is able to find feasible solutions
in this constrained problem. In the single run investigated
the method finds rapid and large improvements over the
first 10,000 evaluations and shows quasi-stagnation after-
wards. The vertical-tail optimization presented in Giger et al.
(2008) is of comparable size and complexity. However,
there, the optimization discovered very small improvements
over subsequent generations and showed no stagnation even
after 25,000 evaluations---which is the maximum number
of evaluations investigated there. The number of evalua-
tions per unit time is roughly doubled for the side-rudder
application when compared to the vertical tail optimization
due to asynchronous (vs. synchronous) parallelization of the
algorithm scheme.
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Appendix: Material data

The following tables list homogenized, orthotropic mechan-
ical properties of the materials used in the numerical mod-
els (Young’s moduli E , shear moduli G, Poisson’s ratio
ν, specific mass ρ), strength values (tension Xt , Yt , Zt ,
compression Xc, Yc, Zc, shear S··).

Table 1 Material 1: unidirectionally reinforced carbon-epoxy prepreg

E11 135 GPa E22 10 GPa E33 10 GPa

G23 3.8 GPa G31 5 GPa G12 5 GPa

ν23 0.3 ν31 0.27 ν12 0.27

ρ 1,580 kg/m3

Xt 1,450 MPa Yt 55 MPa Zt 55 MPa

Xc 1,400 MPa Yc 170 MPa Zc 170 MPa

Syz 90 MPa Szx 90 MPa Sxy 90 MPa

Table 2 Material 2: unidirectionally reinforced carbon-epoxy prepreg

E11 220 GPa E22 7 GPa E33 7 GPa

G23 2.9 GPa G31 5 GPa G12 5 GPa

ν23 0.2 ν31 0.35 ν12 0.35

ρ 1,600 kg/m3

Xt 1,100 MPa Yt 50 MPa Zt 50 MPa

Xc 1,100 MPa Yc 150 MPa Zc 150 MPa

Syz 75 MPa Szx 75 MPa Sxy 75 MPa
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Kočvara M, Zowe J (1998) Free material optimization. In: Documenta
mathematica. Journal der deutschen Mathematikervereinigung.
Proceedings of the international congress of mathematicians.
Deutsche Mathematikervereinigung, vol 3, pp 707--716

Kogiso N, Watson LT, Gürdal Z, Haftka RT (1994) Genetics algo-
rithms with local improvement for composite laminte design.
Struct Optim 7(4):207--218

König O (2004) Evolutionary design optimization: tools and applica-
tions. PhD thesis, Swiss Federal Institute of Technology, Zürich,
diss. ETH no. 15486

Le Riche R, Haftka RT (1995) Improved genetic algorithm for mini-
mum thickness composite laminate design. Compos Eng 5:143--
161

Le Riche RG, Knopf-Lenoir C, Haftka RT (1995) A segregated
genetic algorithm for constrained structural optimization. In:
Eshelman L (ed) Proceedings of the sixth international confer-
ence on genetic algorithms. Morgan Kaufmann, San Francisco,
pp 558--565

Ledermann C (2006) Parametric associative CAE methods in pre-
liminary aircraft design. PhD thesis, Swiss Federal Institute of
Technology, Zürich, diss. ETH no. 16778

Liu B, Haftka R, Akgun M, Todoroki A (2000) Permutation genetic
algorithm for stacking sequence design of composite laminates.
Comput Methods Appl Mech Eng 186:357--372

Lopez R, Luersen M, Cursi E (2009) Optimization of laminated com-
posites considering different failure criteria. Compos, Part B
40:731--740

Lund E (1994) Finite element based design sensitivity analysis and
optimization. PhD thesis, Institute of Mechanical Engineering,
Aalborg University

Lund E, Stegmann J (2005) On structural optimization of compos-
ite shell structures using a discrete constitutive parametrization.
Wind Energy 8(1):109--124. doi:10.1002/we.132

Lund E, Stegmann J (2006) Eigenfrequency and buckling optimization
of laminated composite shell structures using discrete material
optimization. Solid Mech Appl 3:147--156

Mateus HC, Soares CMM, Soares CAM (1991) Sensitivity analy-
sis and optimal design of thin laminated composite structures.
Comput Struct 41:501--508

Mateus H, Rodrlgues H, Soares CM, Soares CM (1997) Sensitiv-
ity analysis and optimization of thin laminated structures with
a nonsmooth eigenvalue based criterion. Struct Optim 14:219--
224

Matsuzaki R, Todoroki A (2007) Stacking-sequence optimization
using fractal branch-and-bound method for unsymmetrical lami-
nates. Compos Struct 78:537--550

Miki M (1982) Material design of composite laminates with required
in-plane elastic properties. In: Hayashi T, Kawata K, Umekawa M
(eds) Progress in science and engineering of composites. Tokyo,
ICCM-IV, pp 1725--1731

Moita J, Barbosa JI, Soares CM, Soares CM (2000) Sensitivity analysis
and optimal design of geometrically non-linear laminated plates
and shells. Comput Struct 76:407--420

Naik GN, Gopalakrishnan S, Ganguli R (2008) Design optimiza-
tion of composites using genetic algorithms and failure mech-
anism based failure criterion. Compos Struct 83(4):354--367.
doi:10.1016/j.compstruct.2007.05.005

Omkar S, Mudigere D, Naik GN, Gopalakrishnan S (2008) Vec-
tor evaluated particle swarm optimization (VEPSO) for
multi-objective design optimization of composite structures.
Comput Struct 86(1--2):1--14. doi:10.1016/j.compstruc.2007.
06.004

Pai N, Kaw A, Weng M (2003) Optimization of laminate stack-
ing sequence for failure load maximization using tabu search.
Compos, Part B 43:405--413

Park CH, Lee WI, Han WS, Vautrin A (2008) Improved genetic algo-
rithm for multidisciplinary optimization of composite laminates.
Comput Struct 86:1894--1903

Pedersen P (1989) On optimal orientation of orthotropic materials.
Struct Multidisc Optim 1:101--106. doi:10.1007/BF0163766610.
1007/BF01637666

Pedersen P (1991) On thickness and orientational design with
orthotropic materials. Struct Multidisc Optim 3(2):69--78

Pelegri AA, Kedlaya DN (2008) Design of composites using a generic
unit cell model coupled with a hybrid genetic algorithm. Compos,
Part A 39:1433--1443

Pelletier JL, Vel SS (2006) Multi-objective optimization of fiber rein-
forced composite laminates for strength, stiffness and minimal
mass. Comput Struct 84:2065--2080

Prager W (1970) Optimization of structural design. J Optim Theory
Appl 6(1):1--21. doi:10.1007/BF00927037

Rao ARM, Arvind N (2005) A scatter search algorithm for stacking
sequence optimisation of laminate composites. Compos Struct
70:383--402

Rastogi N (2004) Stress analysis and lay-up optimization of an all-
composite pick-up truck chassis structure. Tech. rep., Visteon
Corporations

Roche D (2004) Formula 1 monocoque composite lay-up optimization.
Tech. rep., P+Z Engineering Ltd

Sauter M (2008) A graph-based optimization method for the design of
compliant mechanisms and structures. PhD thesis, ETH Zurich,
diss. ETH no. 17787

http://dx.doi.org/10.1007/s00158-005-0519-z
http://dx.doi.org/10.1007/s00158-005-0519-z
http://dx.doi.org/10.1016/j.cma.2009.02.033
http://dx.doi.org/10.1007/s00158-007-0207-2
http://dx.doi.org/10.1002/we.132
http://dx.doi.org/10.1016/j.compstruct.2007.05.005
http://dx.doi.org/10.1016/j.compstruc.2007.06.004
http://dx.doi.org/10.1016/j.compstruc.2007.06.004
http://dx.doi.org/10.1007/BF0163766610.1007/BF01637666
http://dx.doi.org/10.1007/BF0163766610.1007/BF01637666
http://dx.doi.org/10.1007/BF00927037


368 D. Keller

Seresta O, Gürdal Z, Adams DB, Watson LT (2007) Optimal design of
composite wing structures with blended laminates. Compos, Part
B 38:469--480,731

Soremekun GAE (1997) Genetic algorithms for composite laminate
design and optimization. Master’s thesis, Virginia Tech

Stegmann J (2005) Analysis and optimization of laminated composite
shell structures. PhD thesis, Institute of Mechanical Engineering,
Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg
East, Denmark

Stegmann J, Lund E (2005) Discrete material optimization of gen-
eral composite shell structures. Int J Numer Methods Eng 62(14):
2009--2027

Suresh S, Sujit P, Rao A (2007) Particle swarm optimization approach
for multi-objective composite box-beam design. Compos Struct
81(4):598--605. doi:10.1016/j.compstruct.2006.10.008

Todoroki A, Haftka RT (1997) Stacking sequence matching by two-
stage genetic algorithm with consanguineous initial population.
In: AIAA/ASME/ASCE/AHS/ASC structures, structural dynam-
ics, and materials conference and exhibit

Todoroki A, Haftka R (1998) Stacking sequence optimization by a
genetic algorithm with a new recessive gene like repair strategy.
Compos, Part B: Eng 29:277--285

Todoroki A, Ishikawa T (2004) Design of experiments for stacking
sequence optimizations with genetic algorithm using response
surface approximation. Compos Struct 64:349--357

Todoroki A, Sekishiro M (2007) New iteration fractal branch and
bound method for stacking sequence optimizations of multiple
laminates. Compos Struct 81:419--426

Topal U, Uzman U (2008) Strength optimization of laminated
composite plates. J Compos Mater 42:1731--1746. doi:10.1177/
0021998308093368

Tsau LR, Liu CH (1995) A comparison between two optimization
methods on the stacking sequence of fiber-reinforced com-
posite laminate. Comput Struct 55:515--525. doi:10.1016/0045-
7949(95)98877-S

van Keulen F, Haftka R, Kim N (2005) Review of options for struc-
tural design sensitivity analysis. Part 1: linear systems. Comput
Methods Appl Mech Eng 194:3213--3243

Vannucci P, Barsotti R, Bennati S (2009) Exact optimal flexural
design of laminates. Compos Struct 90(3):337--345. doi:10.1016/
j.compstruct.2009.03.017

Walker M, Smith RE (2003) A technique for the multiobjective optimi-
sation of laminated composite structures using genetic algorithms
and finite element analysis. Compos Struct 62:123--128

Wintermantel M (2004) Design-encoding for evolutionary algorithms
in the field of structural optimization. PhD thesis, Swiss Federal
Institute of Technology, Zürich, diss. ETH no. 15323

Zehnder N (2008) Global optimization of laminated structures. PhD
thesis, ETH Zürich, diss. ETH no. 17573

Zehnder N, Ermanni P (2006) A methodology for the global opti-
mization of laminated composite structures. Compos Struct 72:
311--320
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