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Abstract In a recent article by Barletta and Nield (Transport in Porous Media, DOI 10.
1007/s11242-008-9320-y, 2009), the title problem for the fully developed parallel flow
regime was considered assuming isoflux/isothermal wall conditions. For the limiting cases
of the forced and the free convection, analytical solutions were reported; for the general case,
numerical solutions were reported. The aim of the present note is (i) to give an analytical
solution for the full problem in terms of the Weierstrass elliptic P-function, (ii) to illustrate
this general approach by two easily manageable examples, and (iii) to rise a couple of ques-
tions of basic physical interest concerning the interplay between the viscous dissipation and
the pressure work. In this context, the concept of “eigenflow” introduced by Barletta and
Nield is discussed in some detail.

Keywords Mixed convection · Laminar flow · Porous media · Viscous dissipation ·
Pressure work · Analytical solution

The basic boundary value problem of the approach of Barletta and Nield (2009) (herein-
after referred to as BN2009) for the dimensionless temperature field T = T (y) is specified
by the following differential equation and boundary conditions

T ′′ − Br (ε + R) (1 + RT ) (γ + T ) + Br (1 + RT )2 = 0 (1)

T ′ (0) = −1 (isoflux left wall) , T (1) = 0 (isothermal right wall) , (2)

where the prime denotes differentiation with respect to the transverse coordinate y. In terms
of T = T (y), the flow velocity u is obtained as u = 1+ RT . All the quantities involved in the
above equations are dimensionless and everywhere the notations of BN2009 are used. The
parameters γ and ε are related to the temperature scales, and R is the buoyancy parameter.
The second and the third term on the left-hand side of Eq. 1 represents the contribution of the
pressure work and the viscous dissipation, respectively. Both effects scale with the Brinkman
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number Br so that both are canceled simultaneously as Br → 0. This is the conduction
regime with solution T = 1 − y.

(i) As a first step toward the exact analytical solution, we transcribe Eq. 1 in the form

T ′′ = A1 + A2T + A3T 2, (3)

A1 = [
γ (ε + R) − 1

]
Br, A2 = [

γ R (ε + R) + ε − R
]

Br, A3 = εRBr. (4)

The second, and at the same time, the key step is to notice that Eq. 3 admits the first integral

T ′2 = 2A0 + 2A1T + A2T 2 + (2A3/3) T 3, (5)

where A0 is a constant of integration. Setting y = 1 in Eq. 5 and bearing in mind the Eq. 2,
we obtain the value of A0 in terms of the heat flux q1 = −T ′ (1) through the right isother-
mal wall as A0 = q2

1/2 ≥ 0. In the limiting case of the forced convection plug flow u = 1
corresponding to R = 0, we have A3 = 0. In this case Eq. 1 is linear, and its exact solution
has already been given in BN2009. Thus, we assume here that A3 �= 0 and change from T
to a new dependent variable P in Eq. 5 by the substitution

T (y) = −A2/ (2A3) + (6/A3) P (y) . (6)

After some algebra, we obtain

P ′2 = 4P3 − g2 P − g3, (7)

g2 = (
A2

2 − 4A1 A3
)
/12, g3 = (

6A1 A2 A3 − A3
2 − 12A0 A2

3

)
/63. (8)

Equation (7) coincides exactly with the differential equation of Weierstrass’ elliptic function
P (y) = P (y; g2, g3) (for the properties of P (y; g2, g3) see e.g., Abramowitz and Stegun

(1972), Chap. 18). The general solution of Eq. 7 can be written in the form P (y) = P(y+ y0;
g2, g3), where y0 is the second constant of integration of the problem. Accordingly, the gen-
eral solution of the problem (1) and (2) for the temperature field T (y) is

T (y) = −A2/ (2A3) + (6/A3) P (y + y0; g2, g3) . (9)

The two constants of integration y0 and A0 can be determined with the aid of the boundary
conditions (2), which now lead to the equations

P ′ (y0; g2, g3) = −A3/6, P (1 + y0; g2, g3) = A2/12. (10)

(ii) When its discriminant � = g3
2 −27g2

3 is non-vanishing, the P-function can be expressed
in terms of the Jacobian elliptic functions sn, cn and dn, and when �= 0, in terms of elemen-
tary functions. A comprehensive discussion of the solution (9) on this general background is
beyond the aim and scope of this article. However, in order to illustrate how the approach
works, we will consider here two special realizations of the case �= 0 shortly. To this end, we
first write the solution of equation �= 0 in the parametric form g2 = 4a4/3, g3 = 8a6/27
with a as parameter. The simplest realization of � = 0 is obtained for a = 0, when g2 =
g3 = 0 and the P-function reduces to

P (y + y0; 0, 0) = (y + y0)
−2 (a = 0). (11)

When, however, a �= 0, the P-function with vanishing discriminant, � = 0, has the form

P
(
y + y0; 4a4/3, 8a6/27

) = − (
a2/3

) + a2 [sin (ay + ay0)]
−2 (a �= 0). (12)

There are several easily manageable cases of the temperature solution (9) with the P-func-
tion given by Eq. 12. In this article, however, we consider only the case related to a special
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solution, which was named in BN2009 as “eigenflow” solution. This issue will be discussed
under the point (iii) below. In the case of the P-function (11), we obtain for the temperature
solution (9) and the heat flux q (y) = −dT/dy, the expressions

T (y) = y3
0

2 (1 + y0)
2

[(
1 + y0

y + y0

)2

− 1

]

, q (y) =
(

y0

y + y0

)3

, (13)

where y0 is the real root of the cubic equation Ry3
0 − 2 (1 + y0)

2 = 0,

y0 = 2

3R

⎡

⎢
⎣1 +

4 (1 + 3R) +
(

8 + 36R + 27R2 + √
27 (8 + 27R) R3

)2/3

(
8 + 36R + 27R2 + √

27 (8 + 27R) R3
)1/3

⎤

⎥
⎦ > 0. (14)

We see that in this special case, a given value of R fixes also the value of y0 uniquely. The
same holds for γ , as well as for the product εBr , which are determined by the relationships
γ = 1/R and εBr = 12/

(
Ry3

0

)
, respectively. In spite of these restrictions (which originate

from the simplifying assumption g2 = g3 = 0), the above equations yield quite reasonable
values. Indeed, taking, e.g., R = 0.025 and Br = 0.05, we obtain y0 = 81.96, γ = 40, and
ε = 0.0174. In this case, T (y) decreases monotonically from T (0) = 0.982 to T (1) = 0
and q (y) from q (0) = 1 to q (1) = 0.964. The corresponding mixed convection temperature
profile (13) is close to the conduction profile T = 1 − y.

(iii) We now turn to the third issue mentioned in the Abstract and ask the four questions
listed below. Our answers will be supported by exact analytical calculations.

(1) Is it possible that the heat generated by viscous dissipation is fully consumed by the pres-
sure work, so that the incoming heat flux q0 = 1 passes the porous channel unchanged,
i.e., q1 = q0 = 1?

(2) Could it happen that the outgoing heat flux q1 becomes larger than the incoming one,
e.g., twice as much as this, i.e., q1 = 2q0 = 2?

(3) Is it possible that the heat flux q1 through the right wall becomes equal but opposite to
the heat flux q0 prescribed at the left wall, i.e., q1 = −q0 = −1?

(4) Is there a possibility that the isothermal right wall becomes adiabatic, i.e., q1 = 0?

In Case 1 the channel would act as an ideal heat conductor, in Case 2 as a heat multiplier,
(heating device) in Case 3 as a heat absorber (cooling device), and in Case 4 as an ideal heat
insulator. Bearing in mind that the active work is done by the driving pressure gradient (and
in a downward flow additionally by the gravity), there is no violation of the First Principle
threats. For the sake of greatest transparency, we first give the answer for the questions 1–4
in the limiting case of the forced convection plug flow, R = 0, u = 1, since in this case the
temperature solution is available in a simple analytical form (see Eq. 18) of BN2009). Based
on this solution, the answer for all the questions 1–4 is decidedly YES regarding that the
parameters γ , ε, and Br satisfy certain conditions. These conditions are collected in Table 1
together with the corresponding values of the wall temperature T (0) ≡ T0. Concerning these
rigorous mathematical results, however, several comments are in order.

A hasty inspection of Fig. 2 of BN2009 would suggest that all the forced convection tem-
perature profiles decrease monotonically from some T0 > 0 to T (1) = 0, and that all of
them lie above the conduction profile T (y) = 1 − y. This, however, is not always so. In our
Case 3, none of these two features holds, whereas in Case 4, only the former property is true,
but the corresponding temperature profile lies markedly below of T (y) = 1 − y as shown
in Fig. 1. Indeed, in Case 3, Eq. 18 of BN2009 goes over in
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Table 1 In the limiting case of the forced convection plug flow, R = 0, u = 1, the answer for all the four
questions 1–4 is YES, when the indicated conditions are satisfied

Case q1 ≡ q (1) T0 ≡ T (0) Conditions

1 1 2
σ tanh σ

2 γ = 1
ε − 1

σ tanh σ
2

2 2 3
σ tanh σ

2 γ = 1
ε − 1

σ tanh σ
2 − 1

σ tanh σ

3 −1 0 γ = 1
ε + 1

σ tanh σ
2

4 0 1
σ tanh σ

2 γ = 1
ε + 1

σ sinh σ

Fig. 1 Shown are the forced
convection temperatures in the
four cases of Table 1 for
ε = 0.015 and Br = 10. The
corresponding γ -values are γ1 =
66.17, γ2 = 59.18, γ3 = 80.17,
and γ4 = 73.17, respectively.
The temperature T (y) = 1 − y
of the conduction regime
separates the temperature profiles
corresponding to q (1) > 1 and
q (1) ≤ 1 from each other. In
Case 1, with q (1) = 1, the
temperature profile (black curve)
lies very close to T (y) = 1 − y
(green line)
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Fig. 2 Shown is the symmetric temperature profile (19) of the mixed convection eigenflow corresponding to
the eigenvalue a0 = π/2 (blue curve), as well as its nonsymmetric dual counterpart (red curve)

T (y) = − 2 sinh (σ y/2) sinh [σ (1 − y) /2]

σ sinh (σ/2)
, σ ≡ √

εBr , (15)

which clearly shows that T (y) is negative everywhere across the flow, while at the walls
T (0) = T (1) = 0 holds. Thus, the temperature (15) is the forced convection counterpart

123



Comment 393

of the mixed convection “eigenflow” temperatures shown in Figures 6 and 7 of BN2009 and
associated (for γ = 50 and ε = 0.01) with the “eigenvalues” Br = 0.45212 (forR = 0.1)
and Br = 0.048125 (for R = 1). However, according to Figure 10 of BN2009 (and the corre-
sponding explanation at the end of Sect. 6), a mixed convection eigenflow solution can only
exist for R > 0.01, but not in the forced convection limit R = 0. Hence, according to this
numerical finding, the present forced convection eigenflow solution (15) should not exist at
all. The explanation of this contradiction can easily be found in the “Condition” correspond-
ing to the Case 3 of Table 1. Indeed, this relationship shows that (forR = 0) an eigenvalue
of Br only can exist when γ > 1/ε (in case of the corresponding curve of Fig. 1, where
1/ε = 1/0.015 = 66.67 and γ = 80.1663, the eigenvalue is exactly Br = 10). When,
however, (1/ε) → γ , the eigenvalue Br goes to infinity, and for γ < 1/ε, it disappears.
Therefore, the lower limit R > 0.01 for the existence of the mixed convection eigenflows
reported by Barletta and Nield (2009) is in fact a consequence of their choice of the parameter
values γ = 50 and ε = 0.01 with the property γ < 1/ε, regardless of the intrinsic R-depen-
dence of the governing equations. The mixed convection eigenflows must exist down to the
forced convection limit R = 0, when γ > 1/ε is chosen. Then, the corresponding eigenvalue
Br is the root of the transcendental equation

(1/ε) + [
(εBr)1/2 tanh (εBr/4)1/2]−1 = γ (16)

The fact that already the eigenflow temperature (15) is everywhere smaller than the wall tem-
peratures T (0) = T (1) = 0 in the forced convection regime (R = 0), is a quite surprising
result. Indeed, in Case 3, both heat fluxes q (0) = 1 and q (1) = −1 are directed from the
respective walls toward the fluid. In spite of this, the fluid temperature becomes everywhere
lower than the boundary temperatures. This can only happen when the upward moving fluid
experiences an extremely vigorous expansion, so that the expansion work does consume (i)
the whole incoming heat supplied by both the walls, (ii) the whole heat generated by viscous
dissipation and in addition, (iii) it also withdraws a part of the internal energy of the fluid,
diminishing in this way its temperature. Whether this expansion cooling with heat supply
is actually compatible with the incompressibility assumption adopted in BN2009 is still an
open question. It is also worth emphasizing here that the symmetry of the “eigenflow” tem-
perature profiles with respect to the mid-plane of the channel is a necessary consequence of
the corresponding boundary values T (0) = T (1) = 0 and q (0) = −q (1) = 1 which render
the “left” and “right” walls physically undistinguishable. In the case of the forced convection
profile (15) this feature becomes clearly manifest. Indeed, it is seen that the transformation
y → 1 − y which interchanges the left and right boundaries, leaves the expression (15)
invariant.

As already mentioned above, the temperature profile of Case 4, although monotonically
decreasing, lies not above but below the conduction profile. This later feature holds not only
for Cases 3 and 4, but also for all Br �= 0 whenever the heat flux q1 is smaller than or equal
to 1 (i.e. in all cases of Table 1, except for Case 2, as it can be seen in Fig. 1).

Case 2 is also quite surprising. Indeed, while in Case 1, the effect of viscous dissipation
and the pressure work compensate each other exactly, in Case 2, their simultaneous effect
results in a net heat production, leading in turn to an outgoing heat flux q1 which is twice as
much as the incoming one q0. Moreover, with increasing values of Br , the outgoing heat flux
q1 may become arbitrary large. This can be seen in the case of the plug flow with uniform
core temperature, flanked by two narrow temperature boundary layers arising for B >> 1.
Indeed, for Br >> 1, Eq. 18 of BN2009 reduces to
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T (y) =
(

1

ε
− γ

) (
1 − e−σ(1−y)

)
+ e−σ y

σ
for y << 1, (17)

and

(
1

ε
− γ

) (
1 − e−σ(1−y)

)
else.

Thus, the outgoing heat flux q1 = (1 − εγ )
√

(Br/ε) can become arbitrarily large as
Br → ∞.

A deeper insight into the peculiar nature of the mixed convection eigenflows can be gained
with the aid of the exact solution (9) related to the case (12) of the P-function. Indeed, choos-
ing for a and y0 the values

a ≡ an = (2n + 1) π/2, y0 ≡ y0,n = π/ (4an) , n = 0, 1, 2, . . . (18)

the A‘s become A1 = 4an, A2 = 20a2
n , A3 = 24a3

n , and the corresponding solutions are

T (y) ≡ Tn (y) = − 1

2an

sin (2an y)

1 + sin (2an y)
. (19)

It is easy to see that all these solutions yield the wall values T (0) = 0, q(1) = −1, and thus,
they are actually mixed convection eigensolutions. Therefore, from the mathematical point of
view, the name eigenflow coined by Barletta and Nield (2009) is in fact a reasonable, properly
chosen name and not “just a conventional word.” However, except for the case n = 0, the
eigensolutions (19) always become singular so that, from physical point of view, the cases
with n = 1, 2, 3, . . . must be excluded. In this way, the eigenvalue spectrum (18) reduces
to the single eigenvalue a = a0 = π/2. Due to this circumstance, the proper meaning of
“eigenvalues” and “eigensolutions” goes down in a numerical study. The mixed convection
eigensolution (19) corresponding to the eigenvalue a0 = π/2 shares all the qualitative fea-
tures of the forced convection eigensolution (15), namely, it is symmetric with respect to the
mid-plane of the channel (invariant under y → 1 − y) and negative in the whole variation
range of y. A special feature of the eigensolution (19) is its apparent “universality,” in the
sense that it does not contain the physical parameters γ, ε, R, and Brof the problem explic-
itly. Only the corresponding eigenvalue a0 = π/2 is related to these parameters via Eqs. 5
and A1 = 4an, A2 = 20a2

n , A3 = 24a3
n . As the last point of this article, this connection will

be discussed here shortly.
The solution of the system of three equations (5) for the four parameters γ, ε, R, and Br

is not unique. Three of the parameters can be expressed in terms of the fourth them. Taking
Br as the “fourth” parameter, we obtain from the eigenvalue a = a0 = π/2, the following
two sets of solutions for R, ε, and γ

{
R1 = 3π

2
, ε1=2π2

Br
, γ1= 2 (2π+Br)

π (4π+3Br)

}
,

{
R2=π, ε2 = 3π2

Br
, γ2= 2π+Br

π (3π+Br)

}
.

(20)

We are thus faced with an astonishing result. The two different sets of values (20) of {R, ε, γ }
are associated with one and the same eigensolution T0 (y) given by Eq. 19, and this for all val-
ues of Br . Moreover, this eigensolution possesses also a dual counterpart which is obtained
for the “initial value” (wall temperature) T0 = −0.223078 and, similarly to (19), it is also
the same for both sets of values (20) (see Fig. 2).

The above considerations show that the problems (1) and (2) possess a very rich math-
ematical and physical content which is waiting for further research effort. Especially, the
property of doubly periodicity of the P-function could reveal subtle features of the flow
behavior.

123



Comment 395

References

Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)
Barletta, A., Nield, D.A.: Combined forced and free convective flow in a vertical porous channel: the effects of

viscous dissipation and pressure work. Transp. Porous Media (2009). DOI 10.1007/s11242-008-9320-y

123

http://dx.doi.org/10.1007/s11242-008-9320-y

	Comment on ``Combined Forced and Free Convective Flow in a Vertical Porous Channel: The Effects of Viscous Dissipation and Pressure Work'' by A. Barlettaand D. A. Nield, Transport in Porous Media,DOI 10.1007/s11242-008-9320-y, 2009
	Abstract


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


