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Abstract Maintaining the functional integrity of mito-

chondria is pivotal for cellular survival. It appears that

neuronal homeostasis depends on high-fidelity mitochon-

dria, in particular. Consequently, mitochondrial dysfunction

is a fundamental problem associated with a significant

number of neurological diseases, including Parkinson’s

disease (PD), Huntington’s disease (HD), Alzheimer’s

disease (AD), amyotrophic lateral sclerosis (ALS) and

various peripheral neuropathies, as well as the normal aging

process. To ensure optimal mitochondrial function, diverse,

evolutionarily conserved mitochondrial quality control

mechanisms are in place, including the scavenging of toxic

reactive oxygen species (ROS) and degradation of damaged

mitochondrial proteins, but also turnover of whole organ-

elles. In this review we will discuss various mitochondria-

associated conditions, focusing on the role of protein

turnover in mitochondrial maintenance with special

emphasis on neurodegenerative disorders.

Introduction

The involvement of mitochondria and their dysfunction in

the pathogenic context of neurological disorders has been

extensively debated and is now generally accepted [23,

110]. While mitochondria have long been known for their

role in ATP generation through oxidative phosphorylation

(OxPhos), many more diverse (patho)physiological roles

for these organelles have been described during the last two

decades. The traditional view of mitochondria as power-

houses quietly lingering around/resting in the cytosol of

cells is now replaced by the perspective of a dynamic

mitochondrial network that not only physically connects

remote cellular compartments (such as neuronal synapses)

to the soma but which is also intrinsically involved in

major cellular life and death decisions [99, 129]. Beyond

ATP generation, mitochondria are also involved in a

number of critical pathways, including the buffering of

calcium ions [89], lipid metabolism [35], the synthesis of

iron-sulfur clusters [105], and the regulation of pro-

grammed cell death [137].

This deep integration of mitochondria into cellular

physiology is reflected by the sometimes dramatic conse-

quences linked to mitochondrial dysfunction. Physiological

aging as well as age-related diseases are frequently asso-

ciated with decreased mitochondrial function. Thus,

diverse maintenance mechanisms, operating to keep mito-

chondria in a peak functional state, are of uttermost

importance to prevent mitochondrial dysfunction-linked

diseases, premature aging and associated cell death.
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Mitochondrial damage and neurodegeneration:

targets and triggers

Overview

Mitochondria are thought to be remnants of an ancient

endosymbiotic event between an anaerobic, glycolytic

eubacterium and an a-proteo bacterium around 1.5–2 bil-

lion years ago that formed modern aerobic eukaryotic cells

[52, 57, 107]. The presence of bacterial chromosome-like,

circular mitochondrial DNA (mtDNA), a bacterial-type

protein translation apparatus, and the double membrane

similar to that found in a-proteo bacteria still bear witness

of this union. This symbiotic relationship, while obviously

beneficial, comes with its own set of challenges. Whereas

the mitochondrial proteome consists of at least 1,000 pro-

teins [100], mtDNA only codes for 13 of these proteins [6].

Through mitochondrial gene-transfer to the host cell gen-

ome, the vast majority of originally a-proteo bacterial

proteins is translated in the cytosol and has to be imported

into mitochondria. Since the mitochondrial electron trans-

port chain (ETC) consists of large multi-protein complexes

with their subunits encoded by both the nuclear and

mitochondrial genomes, nuclear as well as mitochondrial

protein expression has to be tightly coordinated to avoid

the production of superfluous and potentially harmful ETC

subunits. Mitochondrial DNA is organized in a large, cir-

cular, plasmid-like chromosome devoid of introns and

histons, with each mitochondrial subunit harboring several

hundred individual copies organized in so-called nucleoids

located in the mitochondrial matrix compartment. Each

nucleoid contains on average 1.4 copies of mtDNA, and

although histones are not present, other proteins coat the

mtDNA and seem to confer some protection [14, 78]. Since

the matrix-enclosing inner mitochondrial membrane

(IMM) is the site of OxPhos, mtDNA is in close vicinity to

the toxic by-products of OxPhos in the form of reactive

oxygen species (ROS) [18]. Although a wide variety of

DNA repair mechanisms that act on mtDNA are in place

[13], clonal analyses of aged cells show the expansion of

large mtDNA deletion mutants in single cells causing

ultimately failure of the ETC as evidenced by isolated

cytochrome c oxidase negative muscle fibers [48]. But

DNA is not the only target for oxidative damage. Proteins

are also susceptible to modification, for example carbon-

ylation [37], rendering them inactive, thus potentially

impacting proper mitochondrial function [38].

Mitochondrial energy production

The components of the ETC is responsible for the transfer

of electrons from nutrients to oxygen are localized in the

IMM [118]. Unlike most other cell types, neurons are

unable to meet their energy needs through glycolysis alone,

and therefore are particularly dependent on a highly effi-

cient ETC [113]. Consequently, insufficient mitochondrial

energy production, caused by mutations impairing OxPhos

components, is linked to mitochondrial disorders such as

LHON (Leber’s hereditary optic neuropathy), MELAS

(mitochondrial myopathy, encephalopathy, lactic acidosis,

and stroke-like episodes), MERRF (myoclonic epilepsy

with ragged red fibers), Kearns-Sayre syndrome or CPEO

(chronic progressive external ophthalmoplegia). These

diseases manifest themselves with neurological symptoms

such as loss of vision, deafness, ataxia, seizures, external

ophthalmoplegia, and cognitive impairment, but also

muscle weakness [20, 21, 29, 87]. However, mutations

directly affecting mitochondrial energy production (mostly

mtDNA mutations) comprise a relatively small number of

neurodegenerative diseases. This is in contrast to the large

number of patients affected with sporadic, late-onset neu-

rodegenerative disorders such as Parkinson’s (PD),

Alzheimer’s (AD) or Huntington’s disease (HD). Although

failure of mitochondrial energy production is associated

with late-onset neurodegenerative diseases, it is still under

debate whether diminished mitochondrial function is the

primary cause of the disease. It is possible that subtle

disturbances in mitochondrial maintenance and/or (protein)

quality control, perhaps induced by dysfunctions in other

cellular pathways, may over extended periods of time result

in the accumulation of low-fidelity mitochondria unable to

maintain sufficient ATP levels, thus leading to neuronal

cell degeneration.

Oxidative stress

Closely linked to mitochondrial energy production, oxi-

dative stress caused by mitochondrial reactive oxygen

production (ROS) is often considered an underlying cause

of neurodegeneration [81]. Mitochondria consume large

amounts of oxygen during oxidative phosphorylation.

Leakage of electrons from the ETC results in the genera-

tion of superoxide anions (O2
-) and, consequently, in ROS

such as hydrogen peroxide or hydroxyl radicals [18]. These

highly reactive species are capable of damaging proteins,

membrane lipids, and DNA. Since the generation of O2
-

during OxPhos appears to be unavoidable and is quasi an

occupational hazard for mitochondria, several defense

mechanisms, including ROS scavengers and ROS con-

verting enzymes, are in place to deal with free radicals

[117] and damaged proteins or DNA, respectively [13,

122]. It is estimated that up to 2% of all electrons trafficked

through the ETC are transferred prematurely to oxygen in

one-electron reduction reactions causing the formation of

superoxide (O2
-) in a process called electron leakage [18],

although this value might be much lower in properly
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functioning mitochondria in vivo. Oxidative stress occurs

after the antioxidant defense is overwhelmed and damage

to proteins and DNA occurs. A sub-par working ETC now

is a major source of electrons available for transfer to

molecular oxygen [125] and an already damaged ETC

might incur even more oxidative damage causing a vicious

cycle that results in even more ROS production [7]. In

addition, under this scenario, oxidatively damaged mtDNA

would increase generation of mutated ETC components,

thus further increasing ROS production. This hypothesis

was first formulated by Harman [61] and ultimately led to

the free radical theory of aging in the mid-fifties. However,

this ‘‘vicious cycle’’ hypothesis has recently been chal-

lenged [124], and it is unclear to what degree

mitochondrial ROS can cause sufficient mtDNA damage to

impact the ETC in such a way that electron leakage is

increased [53]. Interestingly, single cell analyses of

mtDNA mutations revealed that individual cells contain

one particular mtDNA mutation (instead of various random

mutations) independently of the mutations found in

neighboring cells in aged tissue [17, 48]. In addition,

although the so called ‘‘mutator mouse’’ with an increased

mtDNA mutation rate did show signs of premature aging,

no elevated levels of ROS or oxidative damage were

observed [124]. While these observations would argue

against the ‘‘vicious cycle’’ hypothesis, it would support

aging through accumulated mtDNA damage. Nonetheless,

under certain conditions, increased ROS production is

linked to neurodegeneration as exemplified below.

Friedreich’s ataxia (FA), caused by mutations in the

gene coding for the mitochondrial protein frataxin [19], is

an example of a neurodegenerative disorder linked to

increased oxidative stress and ROS production [75]. Acting

as a chaperone in mitochondrial iron transport, frataxin

serves important functions in the biogenesis of iron–sulfur

clusters essential for ETC and tricarboxylic cycle function

[102]. In patients afflicted with Friedreich’s ataxia,

silencing mutations result in decreased frataxin activity,

causing the accumulation of Fe(II) in mitochondria, which

in turn leads to increased ROS production. Interestingly,

treatment of early stage FA patients with idebenone, an

analog of the ETC component coenzyme Q10 results in an

alleviation of neurological symptoms [56]. Another

prominent link between increased ROS production and

neurodegeneration is exemplified by toxins such as

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the

herbicide paraquat, or the pesticide rotenone, all known

inhibitors of ETC complex I. While there is still insuffi-

cient epidemiological data linking, e.g., chronic paraquat

exposure to neurodegeneration associated with PD, acute

exposure to MPTP causes PD-like symptoms in humans. In

addition, these complex I inhibitors are widely used in

inducible PD models in rodents [11].

In addition to the above-discussed conditions of PD and

FA, Leber’s hereditary optic neuropathy (LHON) impres-

sively highlights the link between energy production,

oxidative stress and neurodegeneration. LHON, occurring

at a prevalence of up to 1:20,000 in certain areas of Europe,

is usually caused by one of three mutations in subunits

within the NADH dehydrogenase (ETC complex I) [123].

The disease exhibits a maternal inheritance as expected

from mtDNA-based disease mutations. In addition, LHON

exhibits a strong male bias at a low penetration (up to 50%

in males; around 10% in females) whose basis is still

unclear [123]. Interestingly, the mitochondrial DNA-

haplogroup background seems to influence the clinical

expression of LHON mutations [65]. In most cases, LHON

occurs isolated to the optic nerve, with only a small sub-

group of patients displaying a plus-phenotype with

additional neurological symptoms such as cerebellar ataxia

or encephalomyopathy [58, 88, 95]. Intriguingly, depend-

ing on the underlying disease causing mtDNA mutation,

some patients experience partial vision recovery even

several years after disease onset [2]. Why LHON affects

both eyes simultaneously (or over a short period of time) in

mostly young, male adults is not clear. Although analyses

of cells harboring LHON mutations did reveal a reduction

of the respiratory capacity in the case of phenotypically

more severe mutations, ROS production seemed elevated

in LHON cells, independently of the underlying mutation

[138]. In addition, the pronounced male bias and the sud-

den, mostly bilateral onset suggest additional genetic but

also environmental factors. Indeed, a role for smoking in

triggering LHON onset was found [74], supporting the

notion that excess ROS production may be an important

factor in LHON pathogenesis. This notion gains further

support by the fact that antioxidant treatment may shorten

the interval between disease onset and potential vision

recovery [85], although final proof for such treatment of

LHON is still not available [9].

Misfolded proteins

It is well established that in various neurodegenerative

diseases, misfolded proteins [e.g., mutated superoxide dis-

mutase in amyotrophic lateral sclerosis (ALS), mutant

huntingtin in HD or b-amyloid peptide in AD] accumulate

on mitochondria and cause the functional decline of these

organelles [47, 50, 80, 109, 128]. Recent evidence indicates

that accumulation of misfolded proteins on mitochondria

can lead to various functional defects of these organelles,

including inhibition of mitochondrial fusion, bioenergetic

defects as well as abnormal apoptosis [47, 49, 50, 109, 130].

Interestingly, the evidence indicates that mitochondrial

accumulation of ALS-linked mutant superoxide dismutase

1 (mSOD1) leads to dramatic changes in the proteome of
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spinal cord mitochondria [80]. ALS exhibits fast progress-

ing muscle weakness caused by the degeneration of upper

and lower motor neurons. It has been found that upon

exposure to mSOD1, levels of *50 mitochondrial proteins,

including several ETC components, as well as mitochon-

drial fusion factor Mfn2 were altered, indicating a possible

widespread effect of mSOD1 on mitochondrial function.

Furthermore, although observed decreases in some of the

mitochondrial proteins were attributed to mSOD1-induced

inhibition of mitochondrial protein import, increases in the

levels of several other proteins were also detected. It is

tempting to speculate that accumulation of ‘‘foreign’’ toxic

proteins on the surface of mitochondria might also affect

mitochondrial protein turnover, leading to further distur-

bances in mitochondrial proteostasis.

PD-causing misfolded a-synuclein mutants—that like

mSOD1 have also been shown to associate with the cyto-

plasmic site of the OMM and to induce mitochondrial

dysfunctions [90]—did not affect spinal cord mitochondria

in a similar to mSOD1 fashion. Thus, the question remains

of how disease-linked mutant proteins effect mitochondrial

function. However, alternative mechanisms underlying

mSOD1-induced mitochondrial toxicity, including inhibi-

tion of the voltage-dependent anion channel (VDAC),

activation of apoptosis, as well as ETC impairments, have

also been described for other mitochondria-toxic proteins,

including mutant huntingtin and a-synuclein mutant [47,

49, 50, 69, 109, 130] suggesting a common pathogenic

theme involving mitochondria. Further extending the

complexity of misfolded protein-induced mitochondrial

defects, a number of reports indicate that mitochondrial

fusion and fission are also affected by the exposure to these

toxic factors [90, 112, 115, 128, 130, 131]. Importantly,

either physical interaction with proteins implicated in

mitochondrial fusion or fission or direct association with

the OMM appears to be important for mitochondrial

dynamics impairment by mutant huntingtin [112, 115,

130], a-synuclein [90], b-amyloid [131] and mSOD1 [128],

indicating a close relationship between misfolded protein-

induced mitochondrial dysfunction and mitochondrial

fusion and fission machineries [36]. To sum up, although

the data strongly suggest that mitochondrial activity is

directly affected by abnormal accumulation of neurode-

generation-linked mutant proteins, the precise scenario of

the events, including primary triggers and the extent to

which mitochondrial defects contribute to disease patho-

genesis remain to be established.

Degradation of mitochondrial proteins

Maintenance of mitochondrial proteostasis is best per-

ceived as a three-tiered mechanism [122] (Fig. 1). Through

the first mechanism, damaged mitochondrial networks and

cells hosting them are removed by the induction of apop-

totic cell death pathways [79]. The second tier is

represented by the intracellular recycling/elimination of

entire dysfunctional mitochondria through mitophagy, a

mitochondria-specific form of autophagy [1, 73], with the

underlying molecular pathways being discussed in the

context of neurodegenerative disorders in the accompany-

ing article by Winklhofer (this issue). Another mechanism

of mitochondrial protein quality control—targeted protein

degradation or proteolytic processing of mitochondrial

proteins and its connection to neurological disorders—will

be covered in this review. It should be pointed out, though,

that these three levels of mitochondrial quality control do

not act autonomously, but are instead tightly linked to basic

physiological processes including mitochondrial morphol-

ogy regulation.

To maintain cellular and mitochondrial homeostasis,

adjusting the protein inventory to cellular needs and

removing superfluous and damaged proteins is essential.

Several protein processing and degradation mechanisms

are in place to perform protein quality control and ensure

proper mitochondrial function (Fig. 2).

Protein degradation in the mitochondrial matrix

The mitochondrial matrix is the site of the citric acid

(Krebs) cycle responsible for generating reduction equiv-

alents for use in the ETC across the IMM. Thus, protein

quality control in the matrix is crucial for maintaining

mitochondrial ATP production. Due to the close proximity

of matrix components to the ROS producing complexes of

the ETC, major oxidative damage to matrix resident pro-

teins can occur. The enzyme aconitase, responsible for the

conversion of citrate via cis-aconitate to iso-citrate in the
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Fig. 1 Mitochondrial quality control. Several mechanisms are in

place to prevent runaway mitochondrial damage in order to maintain

respiratory competence. Continuous removal of damaged proteins

paired with the autophagic digestion of non-functional mitochondrial

subunits uphold overall mitochondrial respiration. Extensive mito-

chondrial damage leads to the removal of the entire mitochondrial

network through programmed cell death, thus conserving overall

fidelity of the host organism
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Krebs cycle, is especially prone to oxidative damage. This

is due to the presence of an iron–sulfur cluster in the active

center of aconitase making this enzyme sensitive to inac-

tivation by reactive oxygen.

Stemming from the endosymbiotic origin of mito-

chondria, quality control in the matrix is performed by

specialized, bacterial-type proteases, namely Lon and ClpX

[122]. Lon belongs to the family of AAA? ATPases and

forms homomeric complexes enclosing a proteolytic

chamber analogous to cytosolic proteasomes. Lon is impli-

cated in the clearance of oxidized, carbonylated proteins

from the mitochondrial matrix with inactivated aconitase

being a major substrate [94]. In several aging models, an

age-dependent decrease in Lon activity was found [15]. Loss

of Lon activity over time causes the accumulation of dam-

aged aconitase, thus severely impacting mitochondrial

energy production. Interestingly, overexpression of Lon in a

fungal aging model caused considerable healthspan exten-

sion accompanied by an increased resistance to oxidative

stress and a decrease in carbonylated aconitase [83]. To date,

no distinct neurodegenerative disorder is connected to Lon.

However, it is tempting to speculate that a loss of Lon

activity, and thus a decline in mitochondrial health during

aging, might be a contributing or modifying factor triggering

neurodegenerative processes. Mitochondria already under

stress due to mutational alteration of key factors might

depend on Lon protease activity to buffer against mito-

chondrial dysfunction during preclinical stages of

neurodegenerative disorders.

Ubiquitin-dependent degradation of mitochondrial

proteins

While mitochondrial protein turnover was long thought to

be the domain of intramitochondrial specialized proteases,

a role for the ubiquitin (Ub)-proteasome system (UPS) in

maintaining mitochondrial function is now generally

accepted [82]. The attachment of the small protein Ub to

proteins, ubiquitination, is a versatile regulatory signal.

Ubiquitination is a three-tiered process involving the action

of Ub-activating (E1) and Ub-conjugating enzyme (E2s),

and finally, Ub ligases (E3s), which confer substrate

specificity to the final Ub transfer [32]. In most cases,

ubiquitination enables, as well as causes, the recognition

and subsequent proteolytic degradation of substrate pro-

teins by the proteasome, a large cytosolic protease

complex. The mitochondrial matrix, intermembrane space

and IMM are devoid of ubiquitination machinery; however,

several recently identified E3 Ub ligases residing in the

OMM target mitochondrial proteins for Ub and protea-

some-dependent degradation [71, 93]. In addition to the

OMM-anchored E3s, soluble cytosolic Ub ligases such as

Parkin (in-depth discussion by Winklhofer in the same

issue) also act on mitochondrial proteins [72].

Analogous to the endoplasmic reticulum (ER), where

damaged, misfolded or superfluous proteins are cleared

through the ER-associated degradation (ERAD) pathway,

mitochondrial proteins are under the surveillance of the

OMM-associated degradation (OMMAD) pathway [93].

Ub ligases currently known to play a role in mitochondrial

maintenance are the RING finger proteins MARCH5/

MITOL, MULAN, RTM9 (our unpublished observation) as

well as in-between-RING-proteins IBRDC2 and Parkin

[10, 16, 71, 121, 140]. There are striking parallels between

the ER and mitochondria in terms of their molecular

machineries for Ub-dependent protein degradation. Both

the mitochondria and the ER harbor membrane-anchored

RING finger Ub ligases facing the cytosol in a position to

engage the UPS localized in the cytoplasm. The interiors of

both organelles are devoid of ubiquitination machinery

as well as proteasomes. In addition, the ERAD and the

OMMAD pathways depend on the action of p97/valosin-

containing protein (VCP). It was recently shown that p97 is

involved in the retrotranslocation of ubiquitinated proteins

from mitochondria [135]. The AAA-ATPase p97 forms

hexameric rings which provide the necessary energy to

extract ubiquitinated proteins from or transport them across

Fig. 2 Mitochondrial protein quality control. Each of the four

mitochondrial compartments is under the surveillance of proteolytic

machineries. Mitochondrial matrix proteins are degraded by bacterial-

type Lon protease and by proteases anchored to the IMM. Proteases of

the AAA-type, anchored inside the IMM and facing the matrix and

the IMS compartment are responsible for degradation of membrane-

anchored proteins of the IMM, the matrix as well as the IMS. OMM-

anchored ubiquitin ligases cause the degradation of OMM and

potentially IMS localized proteins through a process termed OMMAD
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membranes for proteasomal degradation [26]. Interestingly,

mutations in p97 were found to be causative for inclusion

body myopathy with Paget disease of bone and fronto-

temporal dementia (IBMPFD), pointing to an important

role of p97 in neuronal survival [64, 132]. While ERAD is

a well-studied protein degradation mechanism, research

into the OMMAD pathway and its role in mitochondrial

protein quality control is still in its infancy. Interestingly,

certain neurodegenerative disorders are linked to failed

clearance of proteins from mitochondria. ALS might be

influenced by the OMMAD Ub ligase MARCH5 [136] and

mutated superoxide dismutase 1 (mSOD1) has been linked

to some forms of familial ALS. Mislocalization of mSOD1

to mitochondria seems to be a key factor for some of the

familial forms of ALS [69, 80, 128]. While there is still

controversy about the mechanism by which mSOD1 exerts

its deleterious effects, MARCH5 was recently shown to

cause the degradation of mSOD1, while MARCH5

knockdown by RNAi caused the stabilization of mSOD1

thus exacerbating cellular damage [136].

Besides its role in the degradation of mSOD1, MARCH5

is also involved in blunting polyQ toxicity. Expansion of a

polyQ track in ataxin-3 causes Machado-Joseph (MJD), a

neurological disease with late onset characterized by ataxia.

It was recently shown that expression of MARCH5 reduces

the accumulation of polyQ in mitochondria by inducing its

ubiquitination and subsequent proteasomal degradation.

Furthermore, knockdown of MARCH5 induced polyQ

aggregate formation subsequently causing cytochrome c

release and cell death [119]. However, MARCH5 is not

only involved in the quality control of mutated proteins

localized to mitochondria. Mitochondrial fission is also

impacted by MARCH5 through increased recruitment of the

fission protein Drp1 to mitochondrial scission sites fol-

lowing MARCH5 mutant expression [71]. Thus, MARCH5

seems to integrate two distinct mitochondrial quality con-

trol mechanisms: Ub-dependent protein degradation and

maintenance of mitochondrial dynamics.

While MARCH5 is the first identified and best studied

mitochondrial Ub ligase, other on mitochondria acting E3

Ub ligases were recently described. One of these mito-

chondrial Ub ligases, IBRDC2 [10], belongs to the class of

in-between-ring RING finger proteins characterized by a

RING finger domain flanked on both sides by additional

RING fingers. IBRDC2 was recently found to be involved

in the regulation of Bax-dependent programmed cell death

[10]. This puts IBRDC2 in the pathway of mitochondrial

quality control on the cellular level. Although no direct

connection between IBRDC2 and mitochondrial dysfunc-

tion during neurodegeneration has been established to date,

the involvement of this Ub ligase in apoptosis regulation

makes this protein an interesting candidate and target for

further studies.

A third E3 enzyme found to be integral to the OMM is

MAPL/GIDE/MULAN (will be referred to as MAPL

thereafter). MAPL was reported to promote ubiquitination

as well as sumoylation of substrate proteins. MAPL is

involved in NF-jB signaling and regulation of mitochon-

drial fission through the sumoylation of Drp1 [16], as well

as programmed cell death [140]. In addition, MAPL was

found to regulate a novel vesicle-based, cargo-selective

transport route between mitochondria and peroxisomes

[91].

The study of mitochondrial ubiquitin ligases and the

degradation pathways governed by them is still in its

infancy. Further research is needed to evaluate the

molecular mechanisms and general importance of these

proteins in maintaining mitochondrial function.

Protein processing and degradation on the IMM

The well-established connections between protein degrada-

tion and/or processing on the inner mitochondrial membrane

IMM and neurodegeneration highlight the importance of

protein quality control on this protein-richest cellular

membrane. Mitochondrial protein turnover and processing

on the IMM rely on specialized membrane-anchored prote-

ases part of a highly conserved family of AAA proteases and

evolutionary akin to the bacterial FtsH protease [84]. These

proteins are the IMS-facing i-AAA and the matrix-facing

m-AAA proteases. In mammals, the i-AAA protease is

composed of homo-oligomeric hexameric complexes

formed by YME1L. In humans, m-AAA protease has a

hexameric ring-like architecture made of either a hetero-

meric complex consisting of the subunits paraplegin and

AFG3L2 or a homomeric complex containing only AFG3L2

subunits [55]. Notably, dysfunctions of the m-AAA protease

have been linked to neurodegenerative diseases such as

hereditary spastic paraplegia (HSP) [22] and a form of

dominant spinocerebellar ataxia [42]. Autosomal dominant

spinocerebellar ataxias (SCA) are a heterogeneous group of

neurological diseases associated with cerebellum degener-

ation causing progressive gait, imbalance and limb ataxia.

SCA28 associated with mutations in the AFG3L2 gene

accounts for around 3% of SCA cases and is the only dom-

inant ataxia associated with mitochondrial dysfunction so far

[42]. Localization studies, where AFG3L2 was found to be

highly expressed in Purkinje cells and the large neurons of

the deep cerebellar nuclei, correlate the disease symptoms

with an important function of AFG3L2 in these neurons. In

addition, this tissue-specific expression of AFG3L2 might be

due to a specific protein quality control need for highly

complex neurons such as Purkinje cells, which can be pro-

vided only by high levels of AFG3L2, which might also

explain the highly selective neurological damage associated

with SCA28.
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The second neurological disorder involving the m-AAA

protease is associated with autosomal recessive mutations

in the SPG7 gene coding for paraplegin accounting for

around 5% of cases of HSP [22]. Progressive and cell-

specific axonal degeneration is a characteristic of HSP. In

its pure form, HSP is characterized by slowly progressive

spasticity and weakness of the limbs, with occasional mild

peripheral neuropathies [12]. Additional symptoms of HSP

may include cortical and cerebellar atrophy, amyotrophy,

peripheral neuropathy, optic atrophy, deafness, as well as

mental retardation [106]. The involvement of paraplegin

connects defective mitochondrial proteolysis and/or pro-

cessing with axonal degeneration. As for the pathogenesis

of the paraplegin-associated HSP, whether the processing

of a specific substrate or a general proteolytic defect is

responsible for the observed axonal degeneration is not

entirely clear. A defect in mitochondrial ribosome assem-

bly and thus mitochondrial protein translation was

suggested based on the observation of impaired processing

of MRPL32 in paraplegin-deficient mice [96]. MRPL32 is

a subunit of the 70S mitochondrial ribosome and as such

essential for the translation of the mtDNA-encoded sub-

units of the ETC. While this is an interesting potential

disease mechanism, paraplegin-containing m-AAA prote-

ase is also involved in the processing and degradation of

other proteins such as OPA1 as discussed below in a dif-

ferent context.

Disturbed mitochondrial morphology is involved

in neurodegeneration

The mitochondrial fission and fusion machineries are dee-

ply integrated into cellular physiology, and consequently,

mutations in mitochondrial morphogens do not only result

in aberrant morphology of the organelles, but are causally

associated with a wide spectrum of neuropathologies.

Regulation of mitochondrial dynamics

Unlike the classical textbook picture of a static bean-

shaped organelle living a solitary life in the cytosol,

mitochondria display a more dynamic behavior [99, 111,

133]. Most cells contain, at any given time, potentially

hundreds of individual mitochondria. However, this

organellar individuality is mostly short lived. Due to con-

stantly ongoing, antagonistically acting fusion and fission

events (Fig. 3), mitochondria form dynamic networks that

are constantly reshaped to meet diverse cellular demands.

Two separate molecular machineries govern mitochon-

drial morphology and dynamics. The coordinated fusion of

the OMM and IMM is achieved by the concerted action

of large GTPases [33]: whereas the OMM localized

mitofusins Mfn1 and Mfn2 are important for organelle

tethering and fusion of the OMM [77, 108], OPA1 [40],

localized to the IMM and the intermembrane space, regu-

lates fusion of the IMM. Mitochondrial fission is also

governed by a large GTPase, the dynamin-related protein

Drp1 [103], which is capable of forming custom-tailored

spirals around mitochondria that can constrict and mediate

mitochondrial division [66]. While the mitochondrial

fusion proteins are membrane-bound, Drp1 is cytosolic and

its mitochondrial association and activity in mammalian

cells depends on various accessory proteins [54, 70, 98,

101]. Drp1 is also regulated by posttranslational modifi-

cation [16, 24, 25, 30, 63, 120] as discussed in detail in the

accompanying review by Oettinghaus and colleagues.

One can imagine the highly fused mitochondria as a sys-

tem of power lines connecting the various cellular

compartments, allowing for the rapid transport of energy in

the form of the mitochondrial membrane potential required

for a balanced production of ATP across the cell. On the other

hand, fission of mitochondria produces small, mobile power

units that can easily be transported to sites of high energy

demand which the long, less mobile power lines cannot

reach, for example neuronal synapses [68]. Through axonal

transport small, highly efficient mitochondria are moved

toward synapses, while inefficient or damaged mitochondria

can be brought back to the soma either for repair or auto-

phagic removal [86]. Taking this perspective, it also becomes

apparent that disturbances in maintaining mitochondrial

dynamics and/or transport mechanisms might severely

impact cellular survival, especially that of neuronal cells [76].

The mitofusin Mfn2 and neurodegeneration

The connection between mitochondrial fission and neuro-

degeneration is discussed in depth by Oettinghaus and

Fig. 3 Mitochondrial morphogens. Fission and fusion of mitochon-

dria in mammalian cells are governed by large GTPases. Concerted

fusion of the two mitochondrial membranes is performed by the

action of the OMM localized mitofusins Mfn1 and Mfn2, and the

IMM and IMS resident Opa1 protein. Mitochondria are divided by

the action of the dynamin-related GTPase Drp1 after recruitment to

the OMM by accessory factors. Several regulatory mechanisms are in

place to shape the mitochondrial network according to cellular

demand. Ubiquitin-dependent degradation of mitofusins and proteo-

lytic processing of Opa1 modulate mitochondrial fusion rates
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colleagues in the same issue. Thus, we restrict our dis-

cussion to mitochondrial fusion processes and their

connection to neurodegenerative disorders. Mutations in

the mitofusin Mfn2 are causally linked to the development

of Charcot-Marie-Tooth disease Type 2A (CMT2A) [141].

CMT is a common, inherited peripheral neuropathy

affecting motor as well as sensory neurons. In CMT2A, an

autosomal-dominant inherited, axonal CMT subtype, the

severity of the disease varies, with some patients addi-

tionally developing hearing loss and optic atrophy

depending on the underlying Mfn2 mutation [31]. Inter-

estingly, although Mfn1 and Mfn2 share significant

sequence homology with each other, no connections

between mutations in Mfn1 and CMT have been reported.

While it has been suggested that mutated Mfn2 acts in a

dominant-negative manner [8], it is still somewhat unclear

how these mutations lead to neurodegeneration. Studies on

patient-derived fibroblasts carrying certain Mfn2 muta-

tions did not reveal obvious changes in mitochondrial

morphology [4]. Mfn1 can compensate for such mutations

through the formation of fusion-competent heteromeric

wildtype Mfn1/mutated Mfn2 complexes. Thus, tissue-

specific lack of Mfn1 expression might explain the

observed effect on mitochondrial morphology and disease

development. Alternatively, changes in Mfn2 activity

might be subtle and might manifest themselves in certain,

exquisitely sensitive tissues and only after extended peri-

ods of time, as seen for some CMT2A patients with late

onset and mild symptoms, where the typical manifestation

age is between 10 and 50 years [31]. This notion is sup-

ported by observations made in budding yeast where only

one mitofusin ortholog, Fzo1, exists: expression of Fzo1

modified to harbor equivalent pathogenic Mfn2 mutations

leads to severe impairment of fusion activity, accompanied

by changes in protein stability associated with such Mfn2

mutations [5]. Interestingly, mitochondrial fusion is

important for maintaining respiratory competence. Com-

plete loss of mitochondrial fusion activity through Fzo1

deletion results in loss of mtDNA and the development of

a petite phenotype in yeast [104]. In mice, severe

impairment of fusion through the deletion of Mfn1 or

Mfn2 results in the partial loss of mtDNA in fibroblasts. In

addition, aberrant mitochondrial morphology in Purkinje

cells from mfn2-/- mice is accompanied by impaired

dendritic outgrowth and spine formation, ultimately

resulting in the degeneration of these cells [27, 28]. Lastly,

it should be mentioned here that Mfn2 (but not Mfn1) is

also expressed on endoplasmic reticulum (ER) mem-

branes, forming a bridge between mitochondria and the

ER, essential for Ca2? homeostasis [39, 114]. However,

up to now, impaired calcium signaling due to Mfn2

mutations has not been implicated with CMT2A

pathogenesis.

OPA1 processing and disease

Mitochondrial fusion is impacted on the posttranslational

level by the ubiquitin-dependent turnover of mitofusin [92,

93, 121], as well as the proteolytic processing of OPA1

[45]. Furthermore, proteolytic processing of OPA1 also

appears to be important for cellular and in particular neu-

ronal homeostasis. OPA1 resides in the mitochondrial

intermembrane space and is involved in IMM fusion, as

well as in the regulation of mitochondrial cristae mor-

phology [34, 79, 97]. Inhibition of OPA1 leads to

spontaneous apoptosis, indicating that mitochondrial fusion

and/or cristae regulation by this protein are critical for the

control of mitochondrial steps in apoptosis [79, 97]. Human

mitochondria contain at least eight OPA1 isoforms that

arise from alternative splicing, generating OPA1 isoforms

that also contain sites for proteolytic processing generating

even more shorter OPA1 isoforms [41, 67]. Present in

approximately equal proportions, balanced expression of

long and short OPA1 isoforms is required for mitochon-

drial fusion [116]. The pattern of OPA1 isoforms, and,

therefore, OPA1 processing, strongly depends on the

functional competence of mitochondria. Consistent with

this notion, the dissipation of the mitochondrial membrane

potential (Dwm), or mitochondria-targeting apoptotic

stimuli induce OPA1 cleavage, the loss of long isoforms,

and thus, subsequent inhibition of mitochondrial fusion

[43, 59]. The link between functional integrity of mito-

chondria, OPA1 processing and mitochondrial fusion

suggests that proteostasis of OPA1 might be central for

coordinating mitochondrial deterioration, including the

dissipation of Dwm together with the activation of mito-

chondrial quality control mechanisms. Indeed, it has been

suggested that fusion-deficient mitochondria are separated

from the dynamic network of these organelles to facilitate

their efficient mitophagic removal [126].

The generation of the various OPA1 isoforms through

proteolytic processing is a field of intense research. The

proteolytic processing of OPA1 (Mgm1 in yeast) is a

conserved process from yeast to human; however, its role

and especially the proteases involved differ [84]. Most

likely due to the additional roles OPA1 has acquired,

especially the anti-apoptotic function, several proteases are

involved in OPA1 processing in mammals. OPA1 possess

three protease cleavage sites, one of which is only present

after alternative splicing. While all OPA1 variants contain

a recognition site for metallopeptidase for the removal of

the mitochondrial targeting sequence and the m-AAA

protease S1 cleavage site, OPA1 splice variants that

include alternative exon 5b contain an additional i-AAA

protease S2 cleavage site. It was found that homo-oligo-

meric m-AAA protease isoforms containing AFG3L2

appear to be more efficient in OPA1 processing than
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paraplegin-containing isoforms of this protease [84].

However, paraplegin seems to have a role in OPA1 pro-

cessing which might be crucial under certain conditions or

certain tissues, e.g., neurons. Recently, OMA1, another

mitochondrial protease, was linked to OPA1 processing,

independently from the m-AAA protease during mito-

chondrial dysfunction [45, 62]. The role of the rhomboid-

like protease PARL in OPA1 processing, based on studies

in budding yeast suggested to be a processing protease for

OPA1, however, is still debated [34, 59].

OPA1 mutations are linked to about 60% of autosomal

dominant optic atrophy (ADOA) cases [3, 40]; the most

common inherited optic atrophy. ADOA is characterized

by vision impairment resulting from loss of retinal gan-

glion cells. Notably, ADOA shows marked variations in

clinical phenotypes and varying degrees of vision loss,

even among siblings carrying identical mutations in OPA1.

Thus, one might speculate that mitochondrial defects,

including mtDNA mutations or abnormal mitochondrial

ROS generation could serve as an additional trigger leading

to optic nerve loss in OPA1 mutation-linked ADOA. Since

mitochondrial oxidative phosphorylation compensation

may preserve vision in patients with OPA1-linked ADOA

[127], disease-linked OPA1 mutations likely affect the

activity of ETC. Whether this is due to inhibition of

mitochondrial fusion changes in mitochondrial cristae

morphology, or a more direct effect on the ETC remains to

be established. However, in contrast to OPA1 protein

depletion that results in almost complete inhibition of

mitochondrial fusion, ADOA-linked mutations have no or

only mild effects on this process [139]. Aberrant OPA1

processing, namely decreases in long isoforms of this

protein, as well as abnormal mitochondrial network orga-

nization also occur in a genetic model of premature aging

(the ‘‘mutator mouse’’ that is expressing a proof-reading-

deficient mutant of mtDNA polymerase-c [43]), suggesting

a more common role for OPA1 in aging and disease.

The mechanisms by which lowered fusion of mito-

chondria and/or abnormal cristae structure could affect

organelle function are not yet understood within the

complex as a whole. Yet, the high rates of mitochondrial

network remodeling, including fusion of these organelles,

have been thought to facilitate the complementation of

mtDNA. Likely, mitochondrial fusion could serve as a

mechanism of mitochondrial quality control by eliminat-

ing locally concentrated defects in mitochondrial proteins

by diluting them, in a similar manner as mtDNA mutations

are complemented. Reciprocally, abnormally lowered

fusion of mitochondria could lead to an increase in the

local abundance of oxidatively modified macromolecules.

Therefore, it is likely that minor defects in mitochondrial

fusion might lead to partial degeneration of mitochondria

in affected cells, and only cells particularly sensitive to

mitochondrial dysfunction would display more severe

phenotypic changes.

Interestingly, mutations of paraplegin, an m-AAA pro-

tease that is required for mitochondrial processing of OPA1

[67] have been linked to HSP [46, 134]. Around 5% of

cases of HSP are caused by mutations in SPG7, encoding

paraplegin. In its pure form, HSP is characterized by

slowly progressive spasticity and weakness of leg and hip

muscles [51], with occasional mild peripheral neuropa-

thies. As in ADOA, severity of symptoms and age of onset

can vary widely, even within the same family. The link

between paraplegin mutations and OPA1 processing in the

development of the disease needs to be further clarified.

However, a number of proteases, including YME1 [60,

116], peptidase OMA1 [45, 62], and m-AAA protease

subunits other than paraplegin [44], can also mediate OPA1

processing, suggesting that the mechanism of OPA1 pro-

cessing may vary between different cells and be regulated

by distinct stimuli. Furthermore, abnormal processing of

other m-AAA protease substrates besides OPA1 might also

be critical for spastic paraplegia pathogenesis.

The prevalence of optic nerve degeneration

among mitochondrial disorders

When considering mitochondrial maintenance and function

in connection to neurodegenerative disorders, the very

common and often most prominent involvement of the

Fig. 4 Distribution of mitochondria around the optic nerve head. A

section of human nerve was stained with anti-Cox4 antibodies to

assess mitochondrial distribution. Shown is the optic nerve head with

the retinal layers on the top. Note the strong Cox4 reactivity in the

nerve fiber layer (NFL) before and especially after the axon left

the globe (asterisk) and crossed the lamina cribrosa (LC). Also note

the sharp decline in mitochondrial staining along the optic nerve. This

coincides with the region where myelination of the optic nerve begins
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optic nerve is striking. LHON and ADOA are mono-

symptomatic and restricted to retinal ganglion cell (RGC)

death. For other more complex syndromes, such as Leigh’s

disease, MELAS, or MERRF, vision loss due to RGC

degeneration is reported [21]. In addition, careful exami-

nation of patients suffering from CMT2A and Friedreich’s

ataxia, as well as Mohr-Tranebjerg syndrome, revealed

optic nerve involvement. Why RGCs are especially vul-

nerable to disturbances in mitochondrial dysfunction is still

debated. Current models of optic neurodegeneration con-

nected to mitochondrial dysfunction cite the special

architecture of RGCs with mitochondria-enriched, non-

myelinated parts in the retina and the optic nerve head and

comparably mitochondria-poor, myelinated tracts along the

optic nerve (Fig. 4). It seems plausible to postulate that

maintaining this mitochondrial gradient requires high

fidelity on all levels of mitochondrial maintenance, namely

fission/fusion, transport and biogenesis. In addition, com-

pensatory mechanisms potentially active in other cell types

might not be available under these circumstances. While

increased mitochondrial mass may be sufficient to alleviate

minor deficiencies in energy production due to mutations in

the ETC, the already high local concentration of mito-

chondria in the unmyelinated part of RGCs might not allow

for such a mechanism.

Another interesting aspect is the often less well-defined

set of clinical manifestations of the above-mentioned dis-

eases, which often feature a remarkable phenotypic

overlap. For example, carriers of OPA1 mutations might

present with the classical features of ADOA but may also

present with peripheral neuropathy as seen in CMT or

neurological symptoms as reported for HSP patients. The

same is true of LHON and ADOA. While LHON normally

follows an acute course and ADOA presents as a slowly

progressive optic neuropathy, certain LHON cases follow

the ADOA pattern of neuropathy while there are reports of

ADOA patients with acute vision loss. These findings again

highlight the shared common mitochondrial dysfunctions

that might manifest themselves in different ways based on

other genetic or environmental modifiers (Fig. 5). In

addition, these shared common features might allow gen-

eralizing findings based on the study of these different

disease entities and lead to a better understanding of neu-

rodegenerative processes.

Fig. 5 Attack points of mitochondrial diseases. Protein degradation,

balanced mitochondrial morphology and mitophagy promote the

maintenance of a high fidelity, respiratory-competent mitochondrial

network. Disturbances in mitochondrial morphology, impaired ETC

through either acquired or inherited mtDNA mutations, as well as

protein damage through oxidative stress cause damage to the

mitochondrial network. The impact points of various neurodegener-

ative diseases and their direct and also indirect effects on

mitochondrial health are illustrated. Mitochondrial protein degrada-

tion and processing is directly affected by disease mutations in SPG7/

paraplegin (mutated in hereditary spastic paraplegia) and AFG3L2

(mutated in spinocerebellar ataxia). Protein damage and oxidative

stress are increased in patients suffering from Friedreich’s ataxia (FA)

and amyotrophic lateral sclerosis (ALS). Inherited and also acquired

mtDNA mutations impact the fidelity of the ETC in MELAS

(mitochondrial encephalopathy, lactic acidosis, and stroke-like epi-

sodes), MERRF (myoclonic epilepsy with ragged red fibers), LHON

(Leber’s hereditary optic neuropathy) but also familial PD (Parkin-

son’s disease). In addition, ETC function is indirectly affected via

disturbed mitochondrial morphology in ADOA (autosomal dominant

optic atrophy) as well as CMT2A (Charcott–Marie-Tooth Type 2A)
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Conclusions

Mitochondrial dysfunction is at the heart of neurodegener-

ative processes. The long-held belief that defects in

mitochondrial respiration are responsible for the degener-

ation and death of neurons during the course of most, if not

all, neurodegenerative disorders is now being expanded by

integrating more mitochondrial functions. While bioener-

getics and associated oxidative stress are still crucial to the

etiology of neurodegenerative diseases, mitochondrial

protein quality control, mitochondrial dynamics and pro-

grammed cell death pathways need to be integrated for a

more comprehensive understanding of the link between

mitochondrial dysfunction and neurodegeneration. With the

understanding of the fundamental pathogenetic mechanisms

leading to neurodegeneration, a clearer picture of differ-

ences and similarities between different clinical disease

entities emerges. In addition, the oftentimes striking degree

of phenotypic expression of disease causing mutations and

the symptomatic overlap between different diseases will

likely be better understood with further acquisition of in-

depth knowledge of the underlying mechanisms involving

mitochondrial maintenance. In the future, an even more

integrative view of mitochondrial dysfunction in the context

of neurodegeneration is imperative for the successful

development of effective treatment strategies aimed at

combating common neurodegenerative diseases.
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