
Int J Soc Robot (2012) 4:331–342
DOI 10.1007/s12369-012-0161-z

Robot Learning from Failed Demonstrations

Daniel H. Grollman · Aude G. Billard

Accepted: 13 June 2012 / Published online: 30 June 2012
© Springer Science & Business Media BV 2012

Abstract Robot Learning from Demonstration (RLfD)
seeks to enable lay users to encode desired robot behaviors
as autonomous controllers. Current work uses a human’s
demonstration of the target task to initialize the robot’s pol-
icy, and then improves its performance either through prac-
tice (with a known reward function), or additional human
interaction. In this article, we focus on the initialization
step and consider what can be learned when the humans do
not provide successful examples. We develop probabilistic
approaches that avoid reproducing observed failures while
leveraging the variance across multiple attempts to drive
exploration. Our experiments indicate that failure data do
contain information that can be used to discover successful
means to accomplish tasks. However, in higher dimensions,
additional information from the user will most likely be nec-
essary to enable efficient failure-based learning.

Keywords Robot Learning from Demonstration · Learning
from Failure

1 Motivation

The standard Robot Learning from Demonstration (RLfD)
scenario has an end-user who wants to adapt a robot to per-
form a new task, perform an old task in a new way, or operate
in a new environment. Rather than hiring a roboticist to per-
form multiple rounds of analysis, modeling, programming,

D.H. Grollman (�) · A.G. Billard
Learning Algorithms and Systems Laboratory, Ecole
Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
e-mail: daniel.grollman@epfl.ch

A.G. Billard
e-mail: aude.billard@epfl.ch

debugging and testing, RLfD aims to let one simply demon-
strate the task (perhaps several times) in order to teach it to
the robot. It can be similarly adjusted later if the user’s need
or situation change [2, 3].

This approach is well suited for tasks that humans can
easily perform, but would rather not. Ideally, data collection
is trivial: The robot watches a human as he or she does the
task normally. Eventually, the robot learns the task and takes
over, and the human then attends to other matters. Research
has developed many methods for deriving autonomous con-
trollers from observations of human performance, particu-
larly focused on determining acceptable variance in execu-
tion and generalization over initial conditions and perturba-
tions [7, 9].

However, the real world falls short of the ideal, and of-
ten passive observations are not enough for robot education.
Instead, additional information is needed from the teacher,
such as further demonstrations focused on correcting robot
errors or specific modifications to the learned model. RLfD
can then become a more interactive paradigm, sometimes
called tutelage, where the robot observes, learns, performs,
and gets feedback from the human to improve itself. Re-
search has focused on making this process as intuitive for
the human as possible, likening teaching the robot to the way
one would teach a child [4, 11, 24].

Autonomous practice is another way in which robots can
improve their performance. Using a known reward function,
a robot can score itself and modify its behavior accordingly
[5]. A benefit to this approach is that the human need not ob-
serve all of the robot’s attempts. Downsides include the fact
that the human must first explicitly write down the reward
function (which may be non-trivial), and that the robot’s re-
peated attempts may take more time and cause damage to
the robot or the environment (if not performed in simula-
tion). Recent work in Inverse Reinforcement Learning [22]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159148594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:daniel.grollman@epfl.ch
mailto:aude.billard@epfl.ch

332 Int J Soc Robot (2012) 4:331–342

addresses this first issue by attempting to estimate the reward
function from observed task performance.

In all approaches where the robot improves its perfor-
mance, an added advantage is that the robot can eventually
learn to perform the task better than in the human’s demon-
strations. Often, techniques are compared based on the qual-
ity of the final controller, the amount of time spent learning,
and possibly the amount of time spent teaching. However,
there is a hidden cost not generally reported: the amount of
time it takes the human to master the task themselves.

Almost all current RLfD approaches start with a success-
ful (perhaps suboptimal) human demonstration of the task.
For relatively simple tasks, such as pick-and-place [17],
point to point motion [12], or washing a surface [8], such
demonstrations are easily obtainable from nearly any human
teacher with minimal overhead and can immediately be used
for training. However, for more complicated tasks such as
acrobatic helicopter flight [1], ball-in-cup [15], or unicycle
riding [6], successful demonstrations are harder to come by.
Indeed, often experimenters must either compensate trained
experts, or learn the skills themselves, discarding data from
failed attempts. In both cases, the often unreported expense
(in time or money) to collect the demonstrations should be
taken into account when evaluating the entire system.

From an end-user perspective, the requirement of suc-
cessful demonstrations means that a user who wishes a robot
to perform a task they themselves cannot do must either
pay someone who can do it to teach their robot (similar
to paying a programmer), or first learn the task themselves.
However, if a robot could learn from unsuccessful (but non-
catastrophic) attempts at performing the task, the user may
still be able to teach it, using whatever limited skills they
already possess.

Previously, failure information has been used mainly as
a means to adjust a robot policy after it has been learnt
[19, 21]. However, it is known that humans are capable of
learning to perform tasks after only observing failed demon-
strations [18, 25]. In this article we develop and examine
RLfD approaches in an attempt to replicate that ability in
a robot, based on the idea that failed demonstrations have
educational worth in three respects: Firstly, they are exam-
ples of what not to do, so replication should be avoided.
Secondly, they are indicative of what the human thinks a
successful performance should be, so new attempts should
explore around them. And thirdly, that multiple attempts in-
dicate an appropriate breadth of exploration. From this point
of view we attempt to perform Learning from Failure (LfF).

In doing so, we expect to see tradeoffs between the qual-
ity of the final controller, the skill level of the demonstra-
tor, the number of demonstrations and the time spent learn-
ing. Similar to doing-it-yourself, a user would have to make
their own decision if such tradeoffs are acceptable, or if they
would rather pay a professional. What we attempt in this ar-
ticle is to lay the groundwork for providing them the tools

with which users can do it themselves, if they choose. Addi-
tionally, as the tasks that we teach our robots become more
complex, failed demonstrations may become more common,
and these approaches may be utilized to better leverage all
of the available data, rather than letting it be discarded.

Portions of this research were previously presented in
[10]. Here we provide additional details in Sect. 3, and com-
pare with reward-based learning in Sect. 4.3. Sections 6
and 7 contain ideas and experiments in extending the work
to higher dimensions, and Sect. 8 concludes with future di-
rections for LfF.

2 Robot Controller

We follow our previous work in RLfD and model robot con-
trollers as autonomous dynamical systems (ADS) [12]. In
particular, we treat the relationship between the current D-
dimensional real-valued robot state (joint angles), ξ , and
their velocities, ξ̇ , as a nonlinear function, ξ̇ = fθ (ξ). The
function itself is represented with a Gaussian mixture model
(GMM) [23] in joint state-velocity space, with the probabil-
ity of a given state-velocity pair

PGMM(ξ, ξ̇ |θ) =
K∑

k=1

ρkN
(
ξ, ξ̇ |μk,Σk

)
(1)

with N as the standard normal distribution and collected
parameters θ = {K, {ρk,μk,Σk}Kk=1}. These are the num-
ber of components (positive integer) and the priors (positive
real,

∑K
k=1 ρk = 1), means (2D real vector) and covariances

(2D×2D positive semi-definite matrix) of each component.
This system is autonomous in that it is independent of

time. Instead, the velocity of the system depends only upon
the current state of the system, and the dynamics are defined
over the entire state space. Because of these features, ADS
controllers are robust to temporal and spatial perturbations,
making them well suited for noisy, dynamic tasks.

To compute ξ̇ = fθ (ξ) we first condition the GMM on
the state to get a conditional distribution over velocities.

PGMM(ξ̇ |ξ, θ) =
K∑

k=1

ρ̃k(ξ, θ)N
(
ξ̇ |μ̃k(ξ, θ), Σ̃k(θ)

)

μ̃k(ξ, θ) = μk

ξ̇
+ Σk

ξ̇ξ
Σk−1

ξξ

(
ξ − μk

ξ

)

(2)
Σ̃k(θ) = Σk

ξ̇ ξ̇
− Σk

ξ̇ξ
Σk−1

ξξ Σk

ξξ̇

ρ̃k(ξ, θ) = ρkN (ξ |μk
ξ ,Σ

k
ξξ)∑K

k=1 ρkN (ξ |μk
ξ ,Σ

k
ξξ)

The result is itself a GMM (with derived parameters indi-
cated by tildes) and can be used to generate (ξ̇) either prob-
abilistically (i.e., by sampling) or deterministically (i.e., by
expectation). Note that Σ̃k does not depend on the current
state. For clarity we drop the functional forms of the condi-
tional parameters and write μ̃k for μ̃k(ξ, θ), etc.

Int J Soc Robot (2012) 4:331–342 333

Fig. 1 Human demonstrations
of state-velocity pairs are
modeled as a GMM. Raw data
(top left) is clustered via
weighted K-means (top) and the
parameters are tuned with
Expectation Maximization
(bottom). The appropriate value
of K (2) is chosen by
minimizing the BIC (bottom
left). The resulting model can be
used to generate smooth
trajectories (red lines) by using
the expectation of the
conditional. When the training
data is from successful
demonstrations, this approach
can reproduce the desired task

2.1 Parameter Fitting

To fit the parameters of the GMM to data, we use a weighted
version of Expectation-Maximization (EM) [20]. Our data
is collected state-velocity pairs from human demonstra-
tion attempts. Each of S attempts gives us a trajectory,
τs = {ξt , ξ̇t }Ts

t=1, which we collect into a single dataset Ξ =
{τs}Ss=1 = {ξn, ξ̇n}Nn=1 consisting of N = ∑S

s=1 Ts points.
With each point we associate a weight wn.

For a given value of K , we initialize the μk randomly and
use weighted K-means to seed the EM process. In weighted
K-means, points are iteratively assigned to the nearest μ,
and then the μs are updated to the weighted mean of all
points assigned to them. These two steps alternate until no
assignments need to be changed. If during the process a μ

has no points assigned to it, it is re-initialized randomly.
From our K-means clusters, we initialize Σk as the co-

variance matrix of the datapoints in each cluster, and ρk as
the number of points in each cluster, normalized by the total
number of points. EM takes these initial values and itera-
tively adjusts them to maximize the likelihood L (Ξ |θ).

In general, increasing K improves the fit. To avoid over-
fitting we use the Bayesian Information Criterion (BIC)
[13]. We run EM for multiple K and compute

BIC(K) = −2 ln
(
L (Ξ |θ)

)

+ K

(
1 + D + D(1 + D)

2

)
ln(N) (3)

which penalizes the log-likelihood of the fit model based on
the number of free parameters (K and D dependent) that
must be fit. Over multiple random initializations we choose

the K with the minimum value. The full parameter fitting
process is illustrated in Fig. 1.

2.2 Learning from Success

When initialized with successful demonstrations, the learned
GMM can deterministically generate fθ (ξ) by taking the ex-
pectation of the conditional distribution in Eq. (2)

f success
θ (ξ) = Ẽ[ξ̇ |ξ, θ] =

K∑

k=1

ρ̃kμ̃k (4)

Doing so makes the assumption that all of the observed data
are initially correct, but corrupted by Gaussian noise. Alter-
natively, we could sample from the conditional distribution.
However, when used to control a robot, the random samples
may lead to large accelerations between timesteps and rapid
oscillations in the robot’s velocity. Using the expected value
instead guarantees a smooth motion as shown in Fig. 1.

3 Learning from Failure

Using the expected value of the conditional only makes
sense when observed data are evenly distributed around suc-
cess, which is a very strong assumption in the case of failed
demonstrations. We thus propose an approach based on a
novel distribution, which we develop with three aims in
mind, connected to the three ways in which failure data can
be useful:

1. The probability of performing the same action as the hu-
man demonstration is reduced.

334 Int J Soc Robot (2012) 4:331–342

Fig. 2 When fit to failure data, the mean (solid) may no longer be an
appropriate response. Instead, we aim to generate exploratory trajec-
tories (dotted) that utilize variance in human demonstrations to mimic
the human in areas of high confidence (green) and explore in areas of
low confidence (red). Dots are values actually generated by our system

2. Areas around the human demonstration should have in-
creased probability.

3. The span of exploration should be related to the variance
in human demonstration.

Consider the failed demonstrations in Fig. 2. Rather than
only producing the mean trajectory (solid line), we wish
to also generate exploratory trajectories (dotted lines). Note
that in areas of high demonstrated variance (red) we gener-
ate velocities that are further away from the observed data,
and in areas of low variance (green) the velocities are closer
to the human’s demonstrations.

3.1 Donut Distribution

To generate our desired trajectories we introduce the Donut
distribution, the center-off distribution with a variable width
shown in Fig. 3. Our general approach will replace each
component of the conditional distribution in Eq. (2) with a
Donut, and use the most likely velocity for execution.

The Donut distribution is a difference of 2 Gaussians

D(x|μα,μβ,Σα,Σβ,γ) = γN (x|μα,Σα)

− (γ − 1)N (x|μβ,Σβ) (5)

where γ > 1 and we know that the priors must sum to 1.
Our aim is to have a distribution that smoothly moves

from maximally to minimally likely at the center. In or-
der to reach 0 at the center, while remaining positive ev-
erywhere else, we set μα = μβ . We further base this dis-
tribution on and compare to a standard Normal distribu-
tion N (μ,Σ), so we take all of the μs to be the same.
Likewise, we re-parameterize the donut distribution in terms

Fig. 3 The Donut distribution, a center-off distribution with variable
width. Shown are the family of distributions generated by the simpli-
fied notation in Sect. 3.2.3

of the scalar ratios of the variance of this base distribu-
tion to that of the donut’s two components, rα and rβ , such
that Σα = 1

r2
α
Σ,Σβ = 1

r2
β

Σ . This parameterization keeps the

shape of the covariance constant, as desired.

D(x|μ,Σ, rα, rβ, γ) = γN
(
x|μ,Σ/r2

α

)

−(γ − 1)N
(
x|μ,Σ/r2

β

)
(6)

Example donut distributions generated by the parameter-
ization we will develop in comparison with a base distribu-
tion are shown in Fig. 3.

3.1.1 Height

Of interest is the height of this distribution at the mean, the
likelihood of reproducing the demonstrations. Setting x = μ

D(μ|μ,Σ, rα, rβ, γ)

= γN

(
μ|μ,

Σ

r2
α

)
− (γ − 1)N

(
μ|μ,

Σ

r2
β

)

= γ√
(2π)D|Σ/r2

α| − γ − 1√
(2π)D|Σ/r2

β |

= 1

(2π)D/2
√|Σ |

[
γ rD

α − (γ − 1)rD
β

]

We recognize in the coefficient the height of the base dis-
tribution at x = μ and so state the ratio of the height of the
donut distribution to that of the base distribution as

η = D(μ|μ,Σ, rα, rβ, γ)

N (μ|μ,Σ)
= γ rD

α − (γ − 1)rD
β (7)

Int J Soc Robot (2012) 4:331–342 335

3.1.2 Width

We are also interested in the location of the maximum of the
donut distribution with respect to that of the base distribu-
tion (the mean). This measurement is the radius of a hyper-
sphere centered at the mean, which we relate to the standard
deviation of the base distribution and call the width, corre-
sponding to the area of exploration. To compute its value,
we first need the gradient of the donut distribution:

∇xD(x|μ,Σα,Σβ,γ)

= −γN (x|μ,Σα)Σ−1
α (x − μ)

+ (γ − 1)N (x|μ,Σβ)Σ−1
β (x − μ) (8)

We solve for 0 to obtain:

−
2 log[γ

γ−1 (rα
rβ

)D+2]
(r2

β − r2
α)

= (x − μ)�Σ−1(x − μ) (9)

Without loss of generality, we can assume μ = 0 and
Σ = I. The width λ is the absolute value of the offset from
the mean proportional to norm of the variance, equal to the
square root of the left-hand side:

λ2 =
2 log[γ

γ−1 (rα
rβ

)D+2]
(r2

α − r2
β)

(10)

3.2 Limits

Using the notions of height and width, we can more simply
state our desired behavior. When imitating success, we want
a distribution that is high and narrow, much like the stan-
dard Gaussian. However, when avoiding failure, we would
want one that is low and wide. We can smoothly transition
between these extremes to represent different levels of con-
fidence in the fact that the mean is indeed a failure.

We must determine ways of setting rα and rβ to achieve
this behavior. Additionally, we must ensure that we generate
a valid distribution. In other words, that it is everywhere pos-
itive and that the width is real. The fact that the distribution
integrates to one is in the definition, in that γ − (γ − 1) = 1.

3.2.1 Positive

Without loss of generality we assume that μ = 0, and to en-
sure that D is everywhere positive it must be that

γN
(
x|0,Σ/r2

α

) ≥ (γ − 1)N
(
x|0,Σ/r2

β

)

γ√|Σα| exp
(−0.5x�Σ−1

α x
) ≥ γ − 1√|Σβ | exp

(−0.5x�Σ−1
β x

)

exp
(−0.5x�(

Σ−1
α − Σ−1

β

)
x
) ≥ (γ − 1)

√|Σα|
γ
√|Σβ |

−0.5x�Σ−1x
(
r2
α − r2

β

) ≥ log

(
γ − 1

γ

)
+ log

(√
|Σα|
|Σβ |

)

Fig. 4 A slice through rα, rβ , γ space at γ = 2 showing which com-
binations of rα and rβ produce valid donut distributions for dimen-
sionality D = 1. Also shown are the location where we most closely
approximate the base distribution rb , and where we obtain the predeter-
mined (λ∗ = 3) maximum exploration (r∗), as well as the exploration
line between them

Since x�Σ−1x is always positive, we require that (r2
α − r2

β)

is always negative, so that the left side is always positive and
thus has a lower bound. Therefore we require that rα < rβ .
This bound, indicated by the dash-dot green line in Fig. 4, is
a necessary, but not generally sufficient condition, but suffi-
cient for our needs when combined with the following.

3.2.2 Real

We do not allow λ to be imaginary, so we can constrain:

2 log[(rα
rβ

)D+2 γ
γ−1]

(r2
α − r2

β)
≥ 0

2 log

[(
rα

rβ

)D+2
γ

γ − 1

]
≤ 0

(
rα

rβ

)D+2
γ

γ − 1
≤ 1

rα

rβ
≤ D+2

√
γ − 1

γ

Where we have used the fact that (r2
α − r2

β) < 0. This limit,
indicated by the dashed green line in Fig. 4, supersedes the
previous result.

3.2.3 Exploration

We further constrain 0 ≤ η ≤ 1 (red and green solid lines)
and show the space of valid settings of rα and rβ by the
white area in Fig. 4. To simplify our parameterization and
aid in selecting these scalar values, we introduce an explo-

336 Int J Soc Robot (2012) 4:331–342

ration parameter, ε to control the behavior of the donut dis-
tribution, and make the covariance coefficients functions of
it. Namely, when ε = 0, the distribution should most closely
resemble the original normal distribution, corresponding
to behaving in the standard learning-from-success fashion.
This behavior is obtained by setting η = 1, λ = 0 and deriv-
ing

rβ(ε = 0) =
[
γ

(
γ − 1

γ

) D
D+2 − (γ − 1)

]−1/D

, (11)

rα(ε = 0) = rβ(0) D+2

√
γ − 1

γ
(12)

Likewise, when ε = 1 we wish to obtain maximum explo-
ration, where the likelihood of reproducing the observations
is minimized (η = 0). We use a hyper-parameter λ∗ to set
the maximum width and derive

rβ(ε = 1) =

√√√√√
4 log[γ−1

γ
]

λ∗2([γ−1
γ

] 2
D − 1)D

, (13)

rα(ε = 1) = rβ(1) D

√
γ − 1

γ
(14)

We can smoothly transition from one extreme to the other
by computing the coefficients as a function of exploration as:

r◦(ε) = (1 − ε)
(
r◦(0) − r◦(1)

) + r◦(1) (15)

Giving rise to the blue-dashed line of exploration in
Fig. 4, and the family of distributions in Fig. 3.

3.3 Donut Mixture Model

To perform learning from failure, we build a GMM from hu-
man demonstrations as usual, but instead of using the mean
of the conditional as in Eq. (4), we find a maximum of the
corresponding Donut Mixture Model (DMM):

PDMM(ξ̇ |ξ) =
K∑

k=1

ρ̃kD
(
ξ̇ |μ̃k, Σ̃k, ε

)
(16)

We take γ = 2 as a constant, and the conditional means,
covariances, and priors are computed as usual as in Eq. (2).
For exploration, we set ε = 1 − 1

1+‖Ṽ [ξ̇ |ξ,θ]‖ , where

Ṽ [ξ̇ |ξ, θ] = −Ẽ[ξ̇ |ξ, θ]Ẽ[ξ̇ |ξ, θ]� +
∑

k

ρk

(
μkμ

�
k + Σk

)

(17)

is the overall variance of the GMM. In doing so we connect
the human demonstrator’s own variance with the exploration
of our system. ε then tends towards 1 in areas of high human
variability, and 0 in areas of low variability, as desired.

We would like to generate the most likely velocity from
this conditional distribution for use, but there is no analyt-
ical solution for the maxima of the DMM. Instead, we use

gradient ascent, where the gradient of the entire DMM is
equal to the weighted sum of the gradients of each individual
component, as given by Eq. (8). As gradient ascent is only
guaranteed to find a local maximum, there is some danger of
being caught at a suboptimal value. In practice, we initialize
the first gradient ascent step of every trajectory randomly
from the overall distribution, and each successive step with
the previously found maximum. To illustrate the approach,
Fig. 2 shows all of the possible trajectories, determined via
exhaustive search, that could be generated from the data.

3.3.1 Parameter Update

As we are learning from failure, there is no reason to expect
that our first attempt will succeed. Thus, it becomes neces-
sary to update the parameters of the DMM after each new
trial. If the new trial is a failure like the human’s demonstra-
tions, the naive approach is to collect all of the data (demon-
strations and trials) and re-estimate θ using EM. However,
as the number of datapoints grows, the time necessary for
EM does as well. We instead formulate a sparse update by
making use of the weights in our weighted EM approach.

Given a θ derived from N datapoints, and a new trajec-
tory τ ′ consisting of N ′ datapoints, we use a sample and
merge approach to create a new θ ′. First we sample N ′
points from our current model, and give them weight N/N ′.
We then add in the new data, with all points having weight
1. Rather than re-initializing with K-means, we start with θ

and run EM from there to reach θ ′, holding K constant.

4 Experiments

To test if Learning from Failure is a viable approach, we here
examine learning solely from failed demonstrations, future
work may merge in techniques for learning from success as
well. Our entire LfF framework is outlined in Algorithm 1,
and all data in our experiments is collected informally, from
members of our lab, using kinesthetic demonstration, where
the robot is physically guided through to perform the task.

4.1 Tasks

We start with 2 one-DOF tasks. While success in 1D is by
no means a guarantee that these techniques will scale up,
failure to learn these tasks would be a strong indication that
they certainly will not. Further, both of these tasks require
accurate velocity control at certain points in time, so suc-
cessful policies are unlikely to be discovered by random ex-
ploration. For each task we collect two initial failed attempts
by a human for use as training data.

Our first task, illustrated in Fig. 5a, is to get a square foam
block to stand on end. The block is set at the edge of a ta-
ble, with a protruding side, but not fixed to the table. The

Int J Soc Robot (2012) 4:331–342 337

Fig. 5 Our robot tasks. (a) FlipUp: get the foam block to stand on end, (b) Basket: Launch the ball into the basket. Shown are successful trajectories
learned with the DMM-ADS approach from 2 initial failed demonstrations

Algorithm 1 Our DMM LfF approach
Collect S human failed attempts
Build a GMM (θ) as described in Sect. 2.1.
while robot has not succeeded do {Robot trials}

t = 0
ξt = Current state of the system
ξ̇t ∼ DMM(ξ̇ |ξ, θ)

while |ξ̇ | �= 0 and not timeout do
Maximize P(ξ̇t |ξt) with gradient ascent
apply ξ̇ to system
t = t + 1
ξt = Current state of the system {Nominally, ξt−1 +
ξ̇t−1}
ξ̇t = ξ̇t−1 {Start gradient ascent here}

end while
update θ as in Sect. 3.3.1

end while

robot’s end effector comes from below and makes contact
with the exposed portion of the block, but the setup is such
that the block cannot be lifted to a standing position while
maintaining contact. Instead, there must be a ‘flight’ phase,
so the robot must impart momentum to the block. However,
too much momentum and the block will topple over.

The second task, in Fig. 5b, has the robot launching a
small ball with a catapult. The goal is to get the ball to land
in a basket attached to the wall opposite. The initial position
has the robot’s end effector already touching the catapult, so
all necessary force must be built up relatively quickly.

4.2 Learning with no Reward

In the extreme, the robot has access only to the failed
demonstrations, and no further information (such as compar-
isons between them). Additionally, after each unsuccessful

robot trial, there is no scoring of the attempt. The robot then
keeps making different attempts at the task, until it succeeds.

Using the DMM based ADS technique with parameter
updating as described above, our system is able to learn suc-
cessful policies for these two tasks. For the FlipUp task, we
collect 10 different initial training sets, and our system av-
eraged 4.2 trials to discover success. For Basket, over 3 dif-
ferent training sets it averaged 6.7 trials to success.

4.3 Learning with Reward

To compare our approach with current state-of-the-art tech-
niques, we introduce a continuous reward function. Note
that in practice, reward functions for user-desired task may
be non-trivial to write down. Thus, being able to learn in the
absence of one would be a useful skill for an RLfD system.

To use DMM-ADS with continuous reward, we leverage
the weighted datapoint capabilities of EM. During initial pa-
rameter fitting, each datapoint is weighted by the reward as-
sociated with the entire trajectory it is in. For parameter up-
date, the total reward accrued replaces N .

We compare here against PoWER (Policy learning by
Weighing Exploration with the Rewards), a policy itera-
tion technique for robot motions [14]. It is generally initial-
ized with one successful demonstration and used to improve
robot performance beyond that of the human, but we here
apply it to learning from failure.

PoWER operates by weighing the parameters, rather than
the datapoints. From each failed demonstration we extract a
different set of parameters, θs , with an associated weight ωs .
A new trial’s parameters is then computed as the weighted
average of all previous trials, plus some Gaussian noise Σp

θ ′ ∼ N

(
1

∑S
s=1 ωs

S∑

s=1

ωsθs,Σp

)
(18)

Note that K must be constant across all θs.

338 Int J Soc Robot (2012) 4:331–342

Table 1 Summary of results (# of attempts to achieve success) for
learning with reward from failed demonstrations

FLIPUP BASKET

Donut 4.30 ± 0.48 7.67 ± 0.58

PoWER 4.60 ± 2.17 11.00 ± 5.29

Human 5.2 ± 3.11 3.50 ± 1.73

In the FlipUp task (Fig. 5a) there are two failure modes:
If the block falls back to the starting position, reward is mea-
sured as ω = exp(−argmint |φt |), with φ being the angle of
the block with respect to the normal of the table. If the block
instead passes to the other side, ω = exp(−6|φ̇t∗ |), where
t∗ is the time at which the block passes the upright posi-
tion, and 6 is a scaling constant to account for the magni-
tude difference between the φ and φ̇. For the Basket case
(Fig. 5b), reward is computed as ω = exp(−|y|), where y

is the vertical offset of the ball from the lip of the bas-
ket when it makes contact with the wall. For both tasks the
necessary information is extracted from a fast stereo vision
pair. We ran both algorithms on the same data sets (of two
failed demonstrations each), and show results in Table 1.
For comparative purposes we also show the number of tri-
als the humans took to successfully complete the task. We
note that the FlipUp task was learnt quicker by the robot
than the human, and vice-versa for the Basket task, indi-
cating that what seems easier for one does not carry to the
other.

We see that Donut slightly outperforms PoWER on the
FlipUp task, and that this difference is more noticeable on
the more complicated Basket task. Further, while the means
may not be significantly different, there is an order of mag-
nitude improvement in the variances. We believe this is due
to the more targeted way in which Donut explores.

5 Issues

We have thus successfully shown that failure data does con-
tain useful information for task learning, and have demon-
strated an approach that can use only that data to discover an
appropriate robot controller. However, there are several is-
sues with the DMM-ADS that will make scaling up to higher
dimensions and more complicated tasks difficult.

A first issue is how the system extrapolates beyond the
demonstrations. The GMM-ADS on which our system is
based is designed to represent observed data, capturing
well the nonlinearities of the distribution near the human’s
demonstrations. However, further away, the model breaks
down, and generated velocities may not accurately predict
what a human would have done, as shown in Fig. 6.

In 1D, we are never far from the observed data - no mat-
ter what velocity we apply, the system remains in the space

Fig. 6 An illustration of the extrapolation problem. Far from observed
data, a GMM-ADS may behave other than the human would have
(lower right)

explored by the human, so this issue is moot. However, even
just in 2D, the system quickly enters regions of the state
space that were unexplored during human attempts. With-
out a reasonable model of human behavior, using the donut
distribution does not make sense. To address this issue, we
will require an alternate representation of the robot’s mo-
tion.

A second issue concerns the use of gradient ascent. While
the locations of the maxima of a single donut do have an an-
alytical solution, those of the entire DMM do not. Thus, we
are forced to use the slow and only locally optimal gradi-
ent ascent to generate velocities. While in 1D this process
can occur relatively quickly, in higher dimensions it will be
more difficult to ensure real-time computability.

Further, gradient ascent only guarantees finding a local
maximum. Due to the multi-modal nature of the DMM,
where each component can generate up to two peaks, there
are many suboptimal maxima that can be discovered. In
our experiments, we initialize our search at the last known
maximum, which alleviates this concern. However, in fur-
ther studies we have seen the system get stuck in subop-
tima.

Lastly, we are worried about the possible interference be-
tween donuts. While one donut is guaranteed to decrease the
likelihood of its mean as exploration increases, two donuts
in close proximity may accidentally increase each other’s
means, as in Fig. 7. Because we use the overall variance of
the GMM to set the exploration, this issue rarely arises, as
GMMs with components that are close to each other tend to
have small variances, leading to small exploration, and min-
imal overlap in the resulting donuts. However, as our models
increase in complexity, this situation may arise more often
and may lead to known failures being replicated.

Int J Soc Robot (2012) 4:331–342 339

Fig. 7 As exploration increases, two proximal donut distributions (red
and blue) may interfere, increasing the likelihood of each other’s means
in the overall distribution (black), contrary to design

6 Higher Dimensions

To address these issues, when moving to higher dimensions
we switch from gradient-based computation with a DMM in
state-velocity space to a sampling-based approach using one
distribution with multiple areas of low density (“holes”) in
parameter space. In this section we describe the approach,
and in the next some experiments to test its feasibility.

6.1 Parameter Representation

In 1D we used the donut distribution to directly modify the
velocities generated by an ADS. However, in higher dimen-
sions the system will inevitably move beyond the limits of
the observed data, rendering the ADS model insufficient. We
therefore ‘lift’ the donut into a parameter space which will
allow us to change the underlying representation as needed.

Given a set of parameters, {θs}Ss=1 from S human failed
demonstrations, we now build a distribution over parame-
ters. We will want the specific parameters that are known to
be bad to be unlikely, while the area around them is more
or less likely dependent upon the human’s own exploration.
As we now operate in parameter space, the underlying con-
troller can be changed. For example, a GMM-ADS can be
used, where θ is as before. Or, a spline controller could be
used, where θ would be the spline points and coefficients.

In operating over parameters, our approach is similar to
that of PoWER. Recall that PoWER draws θ ′ from a Gaus-
sian centered on the weighted mean of previous trials as in
Eq. (18). Comparing this with Eq. (4) we see that the mean
of PoWER’s distribution has the same form as the expec-
tation of a GMM, with K = S,ρk = ωs∑S

s=1 ωs

,μk = θs . We

can likewise use Eq. (17) to derive a (non-unique) setting

Fig. 8 A multidonut distribution, which avoids interference between
‘holes.’ Exploration around observed human failures is now controlled
by the width (variance) at each hole, as well as the overarching Gaus-
sian distribution

for Σk in terms of PoWER’s variance Σp . PoWER can then
be viewed as drawing from a Gaussian approximation of
a GMM, θ ′ ∼ N (Ẽ, Ṽ). An alternative would be to draw
from the full GMM instead, perhaps replacing each compo-
nent with a donut. However, when we did so we encountered
the interference problem discussed above.

6.2 MultiDonut

To avoid interference, we change from a mixture of Donuts
to a single distribution with K “holes,” which we call the
multidonut distribution. The probability of a point is

P(x) = 1

Z
N

(
x|μ0,Σ0)

×
K∏

k=1

(
1 − exp

(
−1

2

(
x − μk

)�

× Σk−1(
x − μk

)))
(19)

and a 1D illustration is shown in Fig. 8.
The naught distribution parametrized by μ0 and Σ0 con-

strains the data to be near the observed human demonstra-
tions. The ‘holes’ take the place of individual donuts and
are centered on the attempts and thus reduce the probabil-
ity of exactly replicating the known failures. The covariance
of each hole now plays the role of the exploration parame-
ter, and we will explore several different methods for setting
them. Because the holes are multiplied in, the probability
of a point can never be above the minimum probability of
any component, removing interference. Z is a normalization
constant to ensure that the distribution integrates to 1.

340 Int J Soc Robot (2012) 4:331–342

Fig. 9 The two fields used in our minigolf simulator. Users set the 4
(ball x/y, hitting speed and angle) parameters by drawing lines in 2D,
the endpoints of which determined values. The simulator execution de-

termined success or failure. Right, green areas are successful settings
in a 2D version of the golf simulator (position held constant). The large
set of successful parameters makes this task easy for humans

6.3 Sampling

As a single θ suffices for an entire trial, consistency be-
tween values is not an issue, so we can use sampling in-
stead of gradient ascent. To draw samples from the mul-
tidonut distribution, we use rejection sampling where we
first draw a possible sample from a proposal distribution
x ∼ h(x) = N (x|μ0,Σ0). Since the product of the ‘holey’
part of the multidonut distribution is no more than one, we
see that P(x) < 1

Z
h(x). We then accept x as a sample with

probability proportional to the ratio between P and 1
Z

h(x):

1
Z

N (x|μ0,Σ0)
∏K

k=1(1 − exp(− 1
2 (x − μk)�Σk−1

(x − μk)))

1
Z

N (x|μ0,Σ0)

The normalization constants cancel, as do the naught distri-
butions, leaving us with the probability of acceptance as

K∏

k=1

(
1 − exp

(
−1

2

(
x − μk

)�
Σk−1(

x − μk
)))

(20)

Drawing samples thus scales with the number of holes
and the widths (Σk). As we only need one sample to run an
entire trial, this issue is somewhat negligible.

7 High Dimensional Experiments

We now present some exploratory experiments to judge the
suitability of our sampling-based multidonut approach for
finding success when initialized with failure. These tests
used a simulated robot arm that played mini-golf, as shown
in Fig. 9. Previously, this setup was used to learn appropri-
ate hitting parameters, but only from successful demonstra-
tions [16]. The system takes 4 parameters, the x and y po-
sition of the ball, and the desired hitting speed and angle.
In some experiments we held the ball’s position constant,
and only varied speed and angle. A 2D GUI allowed hu-
man users to select the parameters for execution and view
the resulting shot. Due to the nature of the field, multiple
parameter settings can lead to success.

We used two fields, the ‘wavy’ field and the ‘arctan’ field,
shown in Fig. 9 left and center, respectively. We also used
an alternate abstract platform with only one ‘correct’ goal
point, where users received color-based feedback as they
tested parameters instead of viewing full golf swings.

Over all platforms, we collected data from 6 humans, de-
noted S, G, M, J, K, and D, who selected parameters until
they succeeded at the task. Some tasks, such as golf with
only 2 parameters, were noticeably easy, requiring only a
few (<10) human attempts to succeed, perhaps due to the
multiple possible successful settings as seen in Fig. 9 right.
Others, such as the abstract 4D space, required more (>50).

From varying amounts of human failure data (neglecting
the last, successful attempt) we built models that generated
new exploratory parameters. Each model was run until it dis-
covered success, and we compare them based on the number
of trials (averaged over multiple random restarts).

The models we tested were:

1. Positive only: Model all of the human’s demonstrations
with a single Gaussian (no holes).

2. Fixed-width Multidonut: The above Gaussian, with holes
at each of the demonstrations. All Σk are equal.

3. Incremental Multidonut: As above, but all newly gener-
ated robot trials are also used as holes.

4. Growing Multidonut: As 2, but each new failure widens
the holes proportional to how close they are to it.

Additionally, we explored the assumption that the human
improves over time, and so the later trials might be taken as
reverse tick ‘less bad’ than the earlier ones. Doing so led to
the models:

5. Weighted-Positive: Linear or Exponential weights are ap-
plied to the data before fitting the Gaussian.

6. Last: The above Gaussian has its mean set to be the last
human trial (a failure).

7. Variable-width Multidonut: The covariances of the holes
are scaled to match the weights on the data.

These models are illustrated in Fig. 10.

Int J Soc Robot (2012) 4:331–342 341

Fig. 10 An overview of the
distributions used in our
higher-dimensional
experiments. Shown in 2D,
lightness corresponds to the
likelihood of generating
arbitrary 2D parameters. Red
dots are human attempts, blue
are system-generated trials.
Incremental and growing
distributions initially start
identical to the fixed width
distribution

Table 2 Sample of results using various multidonut models

Human (S) Positive [1] Fixed [2] Last [6] Variable [7]

S (7) 3356 6547 335 4331

G (8) 13000 274418 64756 176828

M (18) 1061 759 420 597

K (33) 446 135 51 187

J (29) 60 59 198 56

D (9) 147 80 45 83

Over multiple humans, trials, and hyperparameter set-
tings, the best overall performer was model 6. Illustrative
(bad) results are presented in Table 2 for one of the more
difficult, single-point success cases.1 Note that for some
datasets (J, M), the negative models (2, 7) perform very well.
However, this behavior is not consistent over datasets. From
these results we infer that the “improving over time” as-
sumption for human attempts is valid, but that our model
of how to use the other failed attempts needs improvement.

8 Discussion

In this article, we demonstrate that failed demonstration data
is not without merit, to be discarded in favor of a single suc-
cessful one. Instead, it has information that can lead a robot

1In situations where success is more common, such as in Fig. 9 right,
all approaches faired generally equally.

to learn to perform a task it has never observed. Our pro-
posed method does this by explicitly avoiding the reproduc-
tion of known bad values while exploring based on some ba-
sic assumptions as to the nature of multiple human attempts.

In scaling our approach to higher dimensions, we ad-
dressed several issues such as interference between nega-
tive models, extrapolation beyond observations, and dealing
with local optima. We further introduced the assumption that
humans themselves improve over time, and used it to further
guide our exploration. Unfortunately, while we were able
in a few cases to lead to rapid convergence, our approach
was generally not competitive with a baseline “search near
the human’s last attempt” technique. From this we conclude
that the human, who has access to much richer feedback and
a better sense of the system’s dynamics, is a good guide.

Thus, we believe the main issue is a lack of feedback
from the human during the system’s exploratory trials. With-
out knowledge as to whether or not the behavior is improv-
ing, it is impossible to determine how the distribution over
parameters should change. The local density of human at-
tempts is not enough—a high concentration could indicate
either that the human believes success to be near, or that an
area has been ‘explored out’ and the system should try else-
where. Incorporating temporal information by weighing the
data was aimed at alleviating this, but it was insufficient.

If the system is able to monitor its own success, such as
with a reward function, then this dilemma can be resolved.
However, we believe that the requirement of an explicit re-
ward function may be too strong. Writing one down may
take extensive domain expertise or analytical skills that an
end user does not have. For many tasks, there are multiple

342 Int J Soc Robot (2012) 4:331–342

ways to fail, with some better than others. While people may
intrinsically be able to compare them, formulating an exact
mathematical statement may be beyond their ability.

Instead, one solution may be to incorporate aspects of
tutelage into the LfF framework. For example, the robot’s
exploratory trials could graded by a human observer. Ab-
stract grades such as “better,” “worse,” or “no change” might
provide enough local gradient information for the system to
converge. More detailed feedback such as critiquing and di-
rect modifications could also be used.

Additionally, it may be possible to use successful demon-
strations in conjunction with failed ones to guide the system
to self educate. A robot could start by replicating the human,
and then vary its behavior within the observed error bounds.
Doing so may give the robot a better sense of where the pol-
icy breaks down and help it be more robust to changes.

Thus, we see LfF as a potential ‘afterburner’ supplement
to already existing LfD techniques. While learning from a
perfect demonstration may be the ideal, collecting that data
will become more difficult as task complexity increases.
Current techniques exist that can use suboptimal demonstra-
tions and improve their performance with further interac-
tion, but do not treat the known bad examples as such. By
modeling this fact explicitly, a robot may be able to better
leverage the data it is given, and decrease the total amount
of information needed from the user by not repeating the
same mistakes.

9 Conclusion

In this article, we argue that data from failed human demon-
strations of a task should not be discarded. Instead, we show
that it is possible to build models from this data that can
guide a robot system to discover a successful way to perform
a novel task. In higher dimensions, however, more informa-
tion may be needed to achieve good performance.

Acknowledgements This work was supported by the European
Commission under contract number FP7-248258 (First-MM).

References

1. Abbeel P, Coates A, Quigley M, Ng AY (2006) An application of
reinforcement learning to aerobatic helicopter flight. In: Neural inf
proc systems

2. Argall BD, Chernova S, Veloso M, Browning B (2009) A survey of
robot learning from demonstration. Robot Auton Syst 57(5):469–
483

3. Billard A, Calinon S, Dillmann R, Schaal S (2008) Survey:
robot programming by demonstration. Handbook of robotics. MIT
Press, Cambridge

4. Chernova S, Veloso M (2007) Confidence-based policy learning
from demonstration using Gaussian mixture models. In: Intl joint
conf on autonomous agents and multi-agent systems

5. Dayan P, Hinton G (1997) Using expectation-maximization for re-
inforcement learning. Neural Comput 9(2):271–278

6. Deisenroth MP, Rasmussen CE (2011) Pilco: a model-based and
data-efficient approach to policy search. In: Intl conf on machine
learning

7. Dong S, Williams B (2011) Motion learning in variable environ-
ments using probabilistic flow tubes. In: Intl conf on robotics and
automation

8. Gams A, Do M, Ude A, Asfour T, Dillmann R (2010) On-line pe-
riodic movement and force-profile learning for adaptation to new
surfaces. In: Intl conf on humanoid robots

9. Grimes DB, Chalodhorn R, Rao RPN (2006) Dynamic imitation in
a humanoid robot through nonparametric probabilistic inference.
In: Robotics: science and systems

10. Grollman DH, Billard A (2011) Donut as I do: Learning from
failed demonstrations. In: Intl conf on robotics and automation

11. Grollman DH, Jenkins OC (2007) Dogged learning for robots. In:
Intl conf on robotics and automation

12. Hersch M, Guenter F, Calinon S, Billard A (2008) Dynamical sys-
tem modulation for robot learning via kineshetic demonstrations.
Trans Robot, 1463–1467

13. Hu X, Xu L (2004) Investigation on several model selection cri-
teria for determining the number of cluster. Neural Inf Process -
Lett Rev 4(1):1–10

14. Kober J, Peters J (2010) Policy search for motor primitives in
robotics. Mach Learn 84(1–2):171–203

15. Kober J, Mohler B, Peters J (2008) Learning perceptual coupling
for motor primitives. In: Intl conf on intelligent robots and sys-
tems

16. Kronander K, Khansari Zadeh SM, Billard A (2011) Learning to
control planar hitting motions in a monigolf-like task. In: Intl conf
on intelligent robots and systems

17. Kuniyoshi Y, Inaba M, Inoue H (1994) Learning by watching: Ex-
tracting reusable task knowledge from visual observation of hu-
man performance. IEEE Trans Robot Autom 10(6):799–822

18. Meltzoff AN (1995) Understanding the intentions of others: re-
enactment of intended acts by 18-month-old children. Dev Psy-
chol 31(5):838–850

19. Mtsui T, Inuzuka N, Seki H (2002) Adapting to subsequent
changes of environment by learning policy preconditions. Int J
Comput Inf Sci 3(1):49–58

20. Neal R, Hinton GE (1998) A view of the EM algorithm that justi-
fies incremental, sparse, and other variants. In: Learning in graph-
ical models

21. Pastor P, Kalakrishnan M, Chitta S, Theodorou E, Schaal S (2011)
Skill learning and task outcome prediction for manipulation. In:
Intl conf on robotics and automation

22. Ramachandran D, Amir E (2007) Bayesian inverse reinforcement
learning. In: Intl joint conf on artificial intelligence

23. Sung HG (2004) Gaussian mixture regression and classification.
PhD thesis, Rice

24. Thomaz AL, Breazeal C (2008) Experiments in socially guided
exploration: lessons learned in building robots that learn with and
without human teachers. Connect Sci 20(2–3):91–110

25. Want SC, Harris PL (2001) Learning from other people’s mis-
takes: causal understanding in learning to use a tool. Child Dev
72(2):41–443

Daniel H. Grollman is a postdoctoral fellow at the LASA Labora-
tory at EPFL. He received his B.S. (2003) in Electrical Engineering
and Computer Science from Yale University, and his Sc.M. (2005) and
Ph.D. (2010) in Computer Science from Brown University.

Aude G. Billard is Associate Professor and head of the LASA Lab-
oratory at the School of Engineering at EPFL. She received her B.Sc.
(1994) and M.Sc. (1995) in Physics from EPFL, and a Ph.D. in Artifi-
cial Intelligence from the University of Edinburgh (1998).

	Robot Learning from Failed Demonstrations
	Abstract
	Motivation
	Robot Controller
	Parameter Fitting
	Learning from Success

	Learning from Failure
	Donut Distribution
	Height
	Width

	Limits
	Positive
	Real
	Exploration

	Donut Mixture Model
	Parameter Update

	Experiments
	Tasks
	Learning with no Reward
	Learning with Reward

	Issues
	Higher Dimensions
	Parameter Representation
	MultiDonut
	Sampling

	High Dimensional Experiments
	Discussion
	Conclusion
	Acknowledgements
	References

