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Abstract Pathogenic mutations in TMPRSS3, which
encodes a transmembrane serine protease, cause non-
syndromic deafness DFNB8/10. Missense mutations
map in the low density-lipoprotein receptor A (LDLRA),
scavenger-receptor cysteine-rich (SRCR), and protease
domains of the protein, indicating that all domains are
important for its function. TMPRSS3 undergoes prote-
olytic cleavage and activates the ENaC sodium channel
in a Xenopus oocyte model system. To assess the
importance of this gene in non-syndromic childhood or
congenital deafness in Turkey, we screened for mutations
affected members of 25 unrelated Turkish families. The
three families with the highest LOD score for linkage to
chromosome 21g22.3 were shown to harbor P404L,
R216L, or Q398X mutations, suggesting that mutations

in TMPRSS3 are a considerable contributor to non-
syndromic deafness in the Turkish population. The mu-
tant TMPRSS3 harboring the novel R216L missense
mutation within the predicted cleavage site of the protein
fails to undergo proteolytic cleavage and is unable to
activate ENaC, thus providing evidence that pre-cleav-
age of TMPRSS3 is mandatory for normal function.

Introduction

Congenital hearing loss is the most common sensory
defect in humans, with an incidence of about one in 1000
births. One additional child in 1000 becomes deaf before
adulthood. Hearing loss is classified as syndromic if
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deafness is associated with other manifestations, or as
non-syndromic if deafness is the isolated phenotype.
Approximately half of childhood deafness cases have a
genetic origin (reviewed in Petit 1996). Pathogenic
mutations in 38 different genes have already been de-
scribed for non-syndromic deafness and 43 other loci
have been described (http://www.uia.ac.be/dnalab/hhh/).
Despite this extensive heterogeneity, mutations involving
a single locus, DFNBI, account for most cases of genetic
non-syndromic deafness in most populations (Nance and
Kearsey 2004). DFNBI1 corresponds to mutations in
GJB2 encoding connexin26. We have described the ge-
netic cause of the recessive non-syndromic deafness
DFNBS§/10 that map on chromosome 21 (Bonne-Tamir
et al. 1996; Veske et al. 1996), which is due to pathogenic
mutations in the TMPRSS3 gene (Scott et al. 2001).
TMPRSS3 encodes a type Il transmembrane serine
protease (TTSP) expressed in fetal cochlea. It can acti-
vate the sodium channel ENaC and has been shown to
undergo proteolytic cleavage (Guipponi et al. 2002). We
and others have identified ten different TMPRSS3
mutations in deaf patients. The missense mutations affect
all functional domains of the protein (Ben-Yosef et al.
2001; Masmoudi et al. 2001; Scott et al. 2001; Watt-
enhofer et al. 2002; Ahmed et al. 2004).

In the present study, we report the analysis of 25
Turkish families with non-syndromic autosomal recessive
childhood deafness without mutations in GJB2. We found
pathogenic mutations in TMPRSS3 in three families,
indicating that mutations in this gene are a significant
cause of childhood non-syndromic deafness in the Turk-
ish population (12% among the families negative for
GJB2 mutations). Two of the three families harbor novel
mutations. Interestingly, one of the novel mutations
identified in this study maps in the predicted TMPRSS3
cleavage site. We show that this mutant protein does not
undergo proteolytic cleavage and fails to activate ENaC.

Materials and methods
Patients

Twenty-five Turkish families from Trabzon, Rize, and
Ordu, which segregated either congenital or childhood
deafness, with at least two affected members, were in-
cluded in this study. A high frequency of consanguinity
(77% of the families) suggests an autosomal recessive
mode of inheritance in the majority of the families.
There was no evidence for an autosomal dominant or X-
linked mode of inheritance, or any obvious syndrome.
Audiometric results of unaffected sibs were normal.
Affected family members showed severe to profound
sensorineural childhood non-syndromic deafness, with
both males and females being affected. No information
was available regarding walking age. Informed consent
was obtained for all participating family members.
Peripheral blood was obtained from members of all 25
families, and genomic DNA was isolated from blood
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lymphocytes (Grimberg et al. 1989). The Tunisian
patients S17, S19, and S42 are members of family S,
previously described (Masmoudi et al. 2001).
Audiometric ISO values for patients
TMPRSS3 mutation can be found in Table 2.

with a

Genotyping, linkage analysis, and mutation search

PCR amplification of polymorphic microsatellite markers
D21S212 and D21S1225 was carried out in 12.5 pl with
100 ng genomic DNA and 2 pmol of each primer.
Amplification products were run on a 6% (19:1, acryl-
amide:bisacrylamide) denaturing polyacrylamide gel.
Haplotypes were reconstructed for all persons in the 25
pedigrees by using chromosome 21 markers D2/S5212 and
D21S1225 adjacent to TMPRSS3 on 21¢g22.3. Linkage
analyses were performed using the MLINK software. The
disease was modeled as an autosomal recessive trait with
complete penetrance at birth. Two-point LOD-scores (Z)
in these families were calculated. Inbreeding loops were
preserved in the pedigrees. Haplotype analysis of poly-
morphic markers adjacent to the TMPRSS3 gene on
chromosome 21q22.3 on DNA of Turkish patients 53-1,
53-2, and 53-3 and on the Tunisian patients S17, S19, and
S42 was performed as previously described (Berry et al.
2000). All 12 coding exons of TM PRSS3 and their splice
junctions were PCR amplified as described elsewhere
(Wattenhofer et al. 2002) and sequenced.

Functional analysis of TMPRSS3 missense mutations
in Xenopus oocytes

The construction of plasmids pSDSTMPRSS3 Wt and
pSDSTMPRSS3 P404L is described elsewhere (Guipponi
et al. 2002). Mutant R216L was generated using the
QuickChange mutagenesis system following the manu-
facturer’s instructions (Stratagene). This construct was
verified by sequencing. Transcription was performed on
1 pg vector linearized with Scal, using 0.5 TU/ul SP6
RNA polymerase (Promega) in a reaction mix of: 40 mM
Tris—HCI (pH 7.5), 6 mM MgCl,, 10 mM NaCl, 2 mM
spermidine, 1.5 mM each ATP, CTP, UTP, 0.3 mM
GTP, 0.5 mM GpppG, 10 mM DTT, 1 IU/ul RNAsin,
and 8 ng/ul BSA, 1 h at 40°C. Template was removed
with RNAse-free DNAse I, and the cRNA purified on
RNeasy mini spin-columns (Quiagen). Oocytes in stage
V/VI from Xenopus laevis (Noerdhoek, South Africa)
were injected with 0.25 ng of each cRNA coding for the
rat a-, B-, and y-ENaC subunits in the presence or ab-
sence of 2.5 ng of wild type or mutant TMPRSS3 cRNA
in a total volume of 100 nl. Oocytes were incubated in
modified Barth saline (MBS) solution, and 24 h after
injection, electrophysiological measurements were per-
formed. The amiloride-sensitive current (Iy,) was mea-
sured by two-electrode voltage clamp in the presence of
120 mM Na™ in Frog Ringer with 5 ptM amiloride at a
holding potential of —100 mV. Three series of experi-
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ments were performed, each with four to eight oocytes
per condition. In each series, the individual current val-
ues measured were normalized to the average of the
ENaC + H,O values of that series. The results are re-
ported as the means of all normalized values for each
condition, +SEM. Kruskal-Wallis test followed by a
Dunn’s multiple comparison post-test were performed to
determine significance. The means of absolute Iy, values
for ENaC+H,O in the three series were 337 +50.6,
446+46.4, and 4533+980.8 nA. These values for
ENaC+TMPRSS3 wild type were 4386 +£1642, 2117+
717.4, and 13,517 +2414 nA.

Western blot analysis

Injected Xenopus oocytes were incubated in MBS for
24 h. Microsomal membrane protein extracts were ob-
tained from oocytes lysed as previously described
(Geering et al. 1989). Protein extract corresponding to
25% of the total protein content of a single oocyte was
loaded in each lane. Proteins were separated on a 10%
SDS—polyacrylamide gel under reducing and denaturing
conditions and transferred to a nitrocellulose membrane
(Protran from Schleicher & Schuell). The membrane was
processed using rabbit anti-TMPRSS3 serum (Covalab,
dilution 1/1000) and anti-rabbit IgG horseradish per-
oxidase linked antibody (Amersham Biosciences, dilu-
tion 1/10,000) according to standard procedures.

Results

To evaluate the importance of mutations in TMPRSS3
in childhood non-syndromic deafness in Turkey, we
collected pedigrees with at least two affected individuals.
We have ascertained 25 Turkish families comprising
members likely to be affected by non-syndromic child-
hood hearing impairment. Affected and unaffected
members of each family were examined by clinical
evaluation and pure tone audiometry. The pedigrees
were compatible with congenital/childhood onset,

autosomal recessive, severe to profound sensorineural
deafness. No additional phenotypes were observed.
The segregation of D21S212 and D21SI1225, two
highly polymorphic microsatellite markers flanking
TMPRSS3, was studied for linkage with the phenotype.
We reconstructed the haplotypes of all available mem-
bers of the 25 families. No recombinants were found
between the two tested markers and the deafness phe-
notype in six of the families (Table 1). At 6=0, the LOD
score at D21S212, which is 0.5 Mb centromeric to
TMPRSS3, was between 0.125 and 1.646 in the six
families with potential linkage to TM PRSS3. The DNA
from one affected member of these six families was used
for mutation analysis. We identified TM PRSS3 patho-
genic mutations in three patients and confirmed co-
segregation of the mutation and the phenotype in these
families by sequencing DNA of other family members.
Consistently, linkage analysis in these families (families
40, 53, and 88) showed the highest LOD score (Table 1).
In family 53 (Fig. 1a), the proband 53-1 is homozy-
gous for the transition ¢.1211C — T, a mutation previ-
ously identified in a Tunisian family that substitutes P404
by Leu (Masmoudi et al. 2001). The deaf father (53-2)
and deaf father’s cousin (53-9) are also homozygous for
this transition, whereas the hearing mother (53-3) is
heterozygous. All affected members of family 53 were
hearing until the age of 6 or 7 years, whereas in the
Tunisian family, deafness was congenital (Table 2). To
assess if the P404L mutation in both families has a single
origin, we analyzed microsatellite markers around
the TM PRSS3 locus in both families. The haplotypes in
the two families are different at both the 5" and 3’ of the
mutation favoring a different origin hypothesis (Fig. 2).
In family 88 (Fig. 1b), patient 88-1 is homozygous for
the transition ¢.1192C — T. This newly identified
nucleotide change leads to a Q398X nonsense codon. In
addition, patient 88-1 is heterozygous for the
c.1367G — A SNP, excluding a large deletion as the
second mutant allele in 88-1. In this family, the deafness
phenotype is congenital for all affected members.
We identified another novel mutation in family 40
(Fig. 1c), a transversion ¢.647G — T. This nucleotide

Table 1 Linkage analysis in families with potential linkage of hearing impairment to the TMPRSS3 locus

Family Marker Zath
0.00 0.05 0.1 0.2 0.3 0.4
40 D21S212 0.727 0.639 0.549 0.367 0.193 0.055
D21S1225 0.727 0.639 0.549 0.367 0.193 0.055
50 D21S212 0.125 0.086 0.056 0.018 0.004 0.000
D21S1225 0.125 0.086 0.056 0.018 0.004 0.000
53 D21S212 1.646 1.439 1.228 0.803 0.409 0.112
D21S1225 0.857 0.744 0.630 0.408 0.208 0.057
69 D21S212 0.301 0.258 0.215 0.134 0.064 0.017
D21S1225 0.301 0.258 0.215 0.134 0.064 0.017
70 D21S212 0.301 0.258 0.215 0.134 0.064 0.017
D21S1225 0.602 0.515 0.430 0.267 0.129 0.034
88 D21S212 1.492 1.298 1.099 0.696 0.329 0.080
D21S1225 1.492 1.298 1.101 0.705 0.344 0.088
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substitution modifies an arginine-to-leucine codon at
position 216 (R216L). The proband (40-1) and his deaf
brother (40-4) are homozygous for this mutation, while
both parents (40-2 and 40-3) are heterozygous. The
hearing sister (40-5) is homozygous for the normal allele.
Amino acid residue R216 is well conserved among serine
proteases and is usually R or K (Fig. 3). This substitu-
tion was not observed in 10 and 383 Turkish and
European Mediterranean unrelated individuals, respec-
tively, either by SSCP or sequencing (Wattenhofer et al.
2002). These results are concordant with ¢.647G — T
being a recessive pathogenic mutation. Deafness in pa-
tient 40-1 was detected when he was 1.5 years old be-

UCSC coordinates Marker
on chromosome 21
42362325-42362523 834A1.CA78

42589753-42589883 ABCG1 (White)

42665938 TMPRSS3 1367 G>A
42669030 TMPRSS3 P404L
42680431-42680699  169B4.GT118
42772808-42772978  994GS8.CAS2
43033739-43034036  D21S1411
834A1.CAT8

ABCG1 (White)

TMPRSS3 1367 G>A

TMPRSS3 P404L
169B4.GT118
994G8.CA82
D2181411

cause of speech delay. In contrast, deafness in his
younger brother, 40-4, was diagnosed at birth. Because
patient 40-1 was the first case of a deafness-affected child
in this family and his parents were thus not aware of a
deafness possibility, we cannot exclude the hypothesis
that 40-1 was indeed deaf at birth.

In order to characterize more precisely the R216L
mutant, we functionally characterized the predicted en-
coded protein. It has been suggested that TMPRSS3 is
cleaved at the RIVGG zymogen activation site, between
amino acids R216 and 1217 (Guipponi et al. 2002). This
sequence is well conserved among serine proteases
(Fig. 3). Hence, we postulated that the transversion

—0 B0
S19 542 53-2 53-3
2713 43 314 113
2{J1 141 2|12 2{12
A|llG G||G AllA G|lA
P||L P|IL LIIL PIL
2{J1 1{J1 11 2{|1
2{|1 31 211 2{12
2{13 413 141 2{)11
n
S1 53-1
3113 4013
1)1 2112
GlIG AllA
L]|L LI|L
1§11 11
1111 112
3113 11

Fig. 2 Haplotype analysis of polymorphic markers on 21q22.3 in Tunisian family S (left) and Turkish family 53 (right). Complete black
symbols represent deaf patients, whereas complete white or black and white symbols represent hearing individuals, homozygous or
heterozygous at the TMPRSS3 locus, respectively. Black bars indicate the haplotypes linked to the deafness phenotype. At the left,
position of the polymorphic marker in the UCSC Genome Browser (http://genome.ucsc.edu/) is indicated (assembly of May 2004)
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Table 2 Clinical phenotype of patients with a TMPRSS3 muta-
tion. Audiometric ISO values are average of hearing threshold
values obtained for four different pure tone frequencies (500, 1000,
2000, and 4000 Hz) on the better hearing ear

missense mutation impairs TMPRSS3 proteolytic acti-
vation, thereby resulting in an inactive protein.

Family Patient Audiometric Age at deafness
ISO value (dB) detection (years)
40 40-1 91 1.5
40-4 87 Birth
53 53-1 94 6
53-2 99 6-7
53-4 85 67
53-8 92 6-7
53-9 86 67
88 88-1 98 Birth
88-5 87 Birth
88-10 96 Birth

present in family 40 would result in a TMPRSS3 mutant
protein that cannot be cleaved. To test this assumption,
we expressed both wild type and mutant TMPRSS3 in
Xenopus oocytes, isolated the membrane fraction, and
performed a Western blot using anti-TMPRSS3 serum
(Guipponi et al. 2002). The P404L mutant was previously
shown not to undergo proteolytic cleavage (Guipponi
et al. 2002). In contrast to the wild type TMPRSS3, and
similarly to the P404L mutant, the R216L variant fails to
undergo proteolytic cleavage (Fig. 4a). To investigate
whether this non-cleaved zymogen was functionally ac-
tive, we tested its capacity to activate ENaC. As expected
(Guipponi et al. 2002), co-expression of the human wild
type TMPRSS3 and rat ENaC subunits led to an increase
in ENaC mediated current (/,) compared to oocytes
expressing only the ENaC subunits (P<0.01) (Fig. 4b,
lane 2 versus lane 1). In contrast, and similarly to the
P404L mutation, the R216L mutant was totally inactive
(Fig. 4b). Thus, we can conclude that the R216L

Fig. 3 Partial aligqment of HsTMPRSS3 208
sl bumin e prtees
site. An asterisk denotes the HsTMPRSS2 247
position corresponding to the HsTMPRSS4 196
TMPRSS3 R216 residue HsTMPRSS5 209
HsTMPRSS6 568
HsTMPRSS7 326
HsPRSS1 f5i5)
HsPRSS2 L5
HsPRSS3/4 72
HsPRSS6 2%
HsPRSS7 716
HsPRSSS8 36
HsPRSS9/18 13
HsPRSS12 580
HsPRSS14 606
HsPRSS17 22
HsPRSS19 24
HsPRSS20 13
HsPRSS21 33

HsPRSS22/26 41
HsPRSS527 26

Discussion

TMPRSS3 encodes a serine protease with LDLRA and
SRCR domains and is the cause of deafness in DFNBS8/
10 families (Ben-Yosef et al. 2001; Masmoudi et al. 2001;
Scott et al. 2001; Wattenhofer et al. 2002). Mutations
identified so far map in all TMPRSS3 domains (re-
viewed in Wattenhofer et al. 2002), and all three do-
mains have been shown to be important for the ability of
TMPRSS3 to activate ENaC and for its catalytic activity
(Guipponi et al. 2002; Lee et al. 2003). ENaC is a so-
dium channel known to be regulated by serine protease
activity (Vallet et al. 1997). It is expressed in various
tissues, including the inner ear, where it has been pro-
posed to be involved in maintaining a low Na™ con-
centration in the endolymph (Couloigner et al. 2001). By
RT-PCR, we observed co-expression of TMPRSS3 and
the three ENaC genes both in the stria vascularis and in
the modiolus of P5 rats. In addition, in a Xenopus oocyte
model, TMPRSS3 wild type, but not all mutants iden-
tified in DFNB&/10, is able to activate ENaC (Guipponi
et al. 2002). Based on these results, we have proposed
ENaC as a potential substrate for TMPRSS3 in the in-
ner ear (Guipponi et al. 2002). Here, we report the
characterization of a new deafness-causing mutation,
R216L, which fails to activate the ENaC channel al-
though harboring non-mutated LDLRA, SRCR, and
serine protease domains. In addition, R216L does not
undergo proteolytic cleavage. We postulated that
TMPRSS3 requires a proteolytic cleavage in order to
become active (Guipponi et al. 2002). Similar to other
serine proteases, the predicted cleavage site is between
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Fig. 4 Functional analysis of the R216L. mutant in Xenopus oocytes. Oocytes were injected with rat ENaC subunits in the presence of
water (H,O, lane 1), TMPRSS3 wild type (wt, lane 2), or missense mutations (R216L, lane 3 and P404L, lane 4). Ni non-injected oocytes. a
Biochemical analysis of wild type and mutant TMPRSS3 by Western blot. Proteolytic cleavage of TMPRSS3 is partial. Both mutants
R216L and P404L proteins did not show the cleaved product indicated by an arrow. b Comparison of the effect of Wt-TMPRSS3 and
mutants on Iy, (sodium current) in Xenopus oocytes. *P <0.05 versus lane 1; **P <0.01 versus lane 1; ns non-significant versus lane 1.
n=15-18 for each condition, performed in a total of three series of experiments

R216 and 1217 in the context of the R/K-I-V-G-G
consensus sequence. The engineered mutant S401A of
TMPRSS3 catalytic site, which is unable to undergo
proteolytic cleavage (Guipponi et al. 2002), showed that
this cleavage is dependent on TMPRSS3 catalytic
capacity. This suggests that TMPRSS3 cleavage occurs
as the result of autocatalytic cleavage. Similar results
have been obtained for TMPRSS2: Western blot on cells
expressing a TMPRSS2 protein harboring a mutation of
the catalytic serine S441 to alanine showed that the
proteolytic cleavage is dependent on catalytic activity
(Afar et al. 2001). The non-cleavage of the R216L mu-
tant protein is consistent with our hypothesis of
TMPRSS3 as the protease responsible for this cleavage.

Pathogenic mutations in the R/K-IVGG consensus
have already been identified in several serine proteases,
including factor VII (Chaing et al. 1994; Wulff and
Herrmann 2000) and factor IX (Sommer et al. 1992),
both implicated in coagulation, and protein C (Grundy
et al. 1989). The mutation can affect any amino acid of
the consensus site and in all cases impairs the activating
cleavage. In contrast, the PRSSI (protea se serine 1)
pathogenic mutation N211I, which maps six amino acids
after the cleavage site, results in an increased propensity
to autoactivation, thus causing pancreatitis (Sahin-Toth
2000; Sahin-Toth and Toth 2000). All these observations
underscore the biological importance of activation
cleavage. Zymogen protease activation by proteolytic
cleavage is a regulatory mechanism to prevent undesired
proteolysis. The current accepted view is that all prote-
ases are synthesized as inactive zymogens. In the
majority of the cases, catalytic cleavage of the zymogen
induces a conformational change of the protease

domain, allowing the formation of the active site and
thus an active protease (Lazure 2002). By analogy with
other proteases (Hedstrom 2002), we can surmise that in
the case of TMPRSS3, 1217 would form a salt bridge
with R400, allowing the formation of the active site and
the oxyanion hole. The identification and characteriza-
tion of the R216L. mutation demonstrates the impor-
tance of the activation cleavage for TMPRSS3 function
and emphasizes the currently accepted view of activation
sequences as major players in protease function. The
level of TMPRSS3 R2161L mutant in our Xenopus model
system does not seem lower than TMPRSS3 wild type.
Thus, our data do not argue in favor of an obvious
altered turnover of the mutant protein compared with
the wild type. The possibility that decreased ENaC
activation activity is due to increased degradation by the
ER protein quality control system in collaboration with
the proteosome is thus unlikely. Nevertheless, we cannot
exclude the possibility that the R216L mutation induces
a drastic conformational change thus masking the
cleavage activation site.

In the frame of this study we identified the
c.1221C — T transition that leads to the P404L mis-
sense, previously identified in a Tunisian family
(Masmoudi et al. 2001). Although the Turkish and the
Tunisian families harbor the same mutation, the deaf-
ness phenotype is different: in the Tunisian family
deafness was congenital (Masmoudi et al. 2001), whereas
in the Turkish family the onset of deafness was at age 6—
7 years. Consistently, the haplotypes of polymorphic
sites located in a region of 500 kb encompassing the
TMRSS3 mutation are different in the two families,
indicating an independent origin of the mutation
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(Fig. 4). We postulate that besides the ¢.1221C —» T
mutation, other genetic factors influence the severity of
the disease, leading to the phenotypic variability. A
similar situation has already been observed in the case of
sickle cell disease (Wood et al. 1980; Kulozik et al. 1987,
Serjeant 1989). Phenotypic variability among patients
harboring the same CFTR mutation has also been ob-
served in families with cystic fibrosis (Mekus et al. 2000).
It becomes evident that phenotypic variability of
monogenic disorders is modified by complex genetic and
environmental factors. The hearing phenotype associ-
ated with the TMPRSS3 P404L mutation is consistent
with the proposed idea that the current classification of
disorders into monogenic vs multifactorial diseases is an
oversimplification (Scriver and Waters 1999).

A significant part of recessive non-syndromic deaf-
ness can be attributed to mutations in the Connexin26
(GJB2) gene. However, this contribution varies between
populations. Forty-two percent of Americans (Green
et al. 1999), 42-46% of European Mediterraneans (Es-
tivill et al. 1998; Rabionet et al. 2000; Pampanos et al.
2002), 32% of Turks (Uyguner et al. 2003), 27% of
Japanese (Fuse et al. 1999), and 8% of Koreans (Park
et al. 2000) affected by non-syndromic recessive deafness
show GJB2 mutations, raising the possibility that other
gene(s) may contribute significantly to childhood non-
syndromic recessive deafness in the Turkish, Japanese,
and Korean populations. We collected 25 unrelated
Turkish families in schools for deaf. As we studied non-
syndromic deafness, we can consider that having col-
lected only families with children in deaf schools did not
include a bias in the enrolling procedure. Thus, the 25
families we collected can be considered as a representa-
tive sample of childhood non-syndromic onset deafness
in Turkey. In this manuscript, we present evidence
suggesting that in the Turkish population studied,
TMPRSS3 mutations significantly contribute to non-
syndromic recessive deafness. Hence, TMPRSS3 ap-
pears to be an important locus, in addition to GJB2,
involved in a substantial fraction of non-syndromic
deafness cases in a defined population. In the Turkish
population, we observe a prevalence of 11% of
TMPRSS3 mutations among patients with childhood
hearing loss and negative for GJB2 mutations, which
enables us to estimate that this locus plays a role in
about 8% of the total childhood deaf Turkish popula-
tion. Since we did not identify a recurrent mutation, we
can consider that there is no obvious founder effect.
Similar to GJB2, the contribution of TMPRSS3 differs
in different populations. Previously reported TMPRSS3
mutations have been identified in one Palestinian, five
Pakistani, and two Tunisian families, as well as in two
sporadic Caucasian patients from Spain and Greece
(Ben-Yosef et al. 2001; Masmoudi et al. 2001; Scott et al.
2001; Wattenhofer et al. 2002). All these analyses re-
ported very low percentages of TM PRSS3 mutations in
the studied deaf populations, i.e. 2.5% (4/159) in Paki-
stani, 0.4% (2/448) in European Mediterranean, and
even 0% (0/64) in North American populations.
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