
A numerical analysis of dimensionality and heterogeneity effects
on advective dispersive seawater intrusion processes

Jaouher Kerrou & Philippe Renard

Abstract Two-dimensional (2D) and 3D numerical sim-
ulations of the dispersive Henry problem show that
heterogeneity affects seawater intrusion differently in 2D
and 3D. When the variance of a multi-Gaussian isotropic
hydraulic conductivity field increases, the penetration of
the saltwater wedge decreases in 2D while it increases in
3D. This is due to the combined influence of advective
and dispersive processes which are affected differently by
heterogeneity and problem dimensionality. First, the
equivalent hydraulic conductivity controls the mean head
gradient and therefore the position of the wedge. For an
isotropic medium, increasing the variance increases the
equivalent conductivity in 3D but not in 2D. Second, the
macrodispersion controls the rotation of the saltwater
wedge by affecting the magnitude of the density contrasts
along the saltwater wedge. An increased dispersion due to
heterogeneity leads to a decreasing density contrast and
therefore a smaller penetration of the wedge. The relative
magnitude of these two opposite effects depends on the
degree of heterogeneity, anisotropy of the medium, and
dimension. Investigating these effects in 3D is very heavy
numerically; as an alternative, one can simulate 2D
heterogeneous media that approximate the behaviour of
the 3D ones, provided that their statistical distribution is
rescaled.
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Introduction

In most coastal aquifers, the excess of freshwater flows
toward the sea. However, near the shoreline, heavier
seawater penetrates inland underneath freshwater due to
density-driven flows and forms a mixing zone between the
two fluids. Under natural conditions, the geometry of the
saltwater wedge depends on the hydraulic properties of
the aquifer, on the physical properties of the two fluids (e.g.
Glover 1959; Henry 1964; Voss and Souza 1987; Croucher
and O’Sullivan 1995), on the aquifer geometry (e.g. Abarca
et al. 2007b), and/or on the tidal patterns (e.g. Brovelli et al.
2007). The geometry and extension of the saltwater wedge
depends also on the degree of heterogeneity of the aquifer
(e.g. Dagan and Zeitoun 1998; Held et al. 2005).

To simulate the seawater intrusion (SWI), one can
either adopt a sharp interface or a density-dependent
dispersive model (Bear 2005). The sharp interface
approach was introduced by Badon-Ghyben (1888) and
Herzberg (1901). The freshwater and saltwater are
considered immiscible. This simplification allows for
treatment of the problem analytically (Glover 1959;
Dagan and Bear 1968; Fetter 1972; Strack 1976) or
numerically (Huyakorn et al. 1996) in a very efficient
manner. Reviews of this approach can be found in Reilly
and Goodman (1985) or Bear (1999). Despite the fact that
assuming a sharp interface allows the development of
solutions that are useful for understanding SWI and for
solving real-world problems, this approach does not
account for hydrodynamic dispersion. However, it is well
known that instead of a sharp interface between freshwater
and saltwater there is a transition zone since both fluids
are miscible (Henry 1964). Therefore several methods
have been developed to solve the coupled variable-density
flow and advective-dispersive solute transport equations.
These methods were reviewed by Simmons et al. (2001)
and Diersch and Kolditz (2002), who stated that one of the
major challenges in SWI modelling using both sharp
interface or density dependent dispersive transport is to
account for spatial heterogeneity.

In the case of unstable variable density flow and
transport, Simmons et al. (2001) have shown that
heterogeneity can affect transport over many length scales.
In the case of stable SWI, Dagan and Zeitoun (1998)
studied the effect of a layered one-dimensional (1D)
heterogeneity on a 2D vertical section assuming a sharp
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interface model. Al-Bitar and Ababou (2005) also used a
sharp interface model to investigate on a 2D horizontal
section the impact of a multi-Gaussian heterogeneity on
SWI. They developed an analytical expression for the first
two moments of the position of the interface and
compared it with the results of a numerical model.
Another group of authors (Schwarz 1999; Darvini et al.
2002; Held et al. 2005; Abarca 2006) investigated the
effects of heterogeneity of hydraulic conductivity on 2D
vertical sections inspired by the Henry problem (1964).
Held et al. (2005) used homogenization theory to derive
expressions for the effective hydraulic conductivity and
dispersivities in 2D isotropic and anisotropic heteroge-
neous permeability fields. They showed that for an
isotropic heterogeneous medium whose small scale (local)
log permeabilities follow a multi-Gaussian statistical
distribution, the effective permeability corresponds to the
geometric mean of the local permeabilities. This finding is
in agreement with the theoretical effective conductivity for
log multi-Gaussian fields under uniform flow conditions
and constant fluid density (Matheron 1967). For an
anisotropic medium, the expression derived by Held et
al. (2005) is identical to that of Gelhar (1993) for the case
without density effects. In addition, Held et al. (2005)
showed that the dispersion coefficients that should be used
to model SWI in an equivalent homogeneous medium
correspond to the local dispersion coefficients rather than
the macroscopic coefficients. In other words, according to
the results of Held et al. (2005), it is not necessary to
upscale the dispersivity coefficient to reproduce accurately
the mean behaviour of the SWI wedge in a heterogeneous
medium. More generally, the behaviour of the SWI as a
function of the degree of heterogeneity of the medium has
been well described in 2D by Held et al. (2005) or Abarca
(2006). One aim of the present paper is to investigate
whether these results are also applicable in 3D.

Related to the question of heterogeneity, one has also
to consider the problem of dimensionality when modelling
seawater intrusion in a heterogeneous aquifer. Indeed, it is
common practice to model groundwater flow and transport
problems in 2D or 1D because of limited computing
resources even if the real problem is 3D. When the reality
is assumed homogeneous, exact results can be obtained
with a reduced dimension if the appropriate boundary
conditions and model size are taken into account.
However, this is not sufficient when heterogeneity has to
be considered. The choice of dimensionality can lead to
significant differences in the outputs of the models (Gelhar
and Axness 1983). Burnett and Frind (1987) pointed out
such effects on transport model predictions (without
density variation) when reducing a 3D system to a 2D
one. They showed that the simulated plume advances
farther in a 2D vertical cross-section than in the reference
3D plume simulation. They also showed that vertical
averaging of a 3D system would not give sufficiently
correct predictions in the case of a vertically extensive
plume. Shapiro and Cvetkovic (1990) also compared 2D
and 3D interpretations of stochastic solute transport in
porous media without density effects. They showed that

the longitudinal and transversal dispersion of the solute
plume is underestimated in the case of a 2D simulation
(vertical averaging of 3D hydraulic conductivity field).
Pohll et al. (2000) investigated the error associated with a
2D model for the simulation of solute breakthrough. They
found that the removal of the vertical dimension and its
hydraulic conductivity variability introduces a 5–10%
underestimation of the solute velocities. Given the find-
ings of previous studies, it is expected that dimensionality
also affects the result of density-dependent flow and
transport models. That is why this paper investigates
jointly the effects of heterogeneity and problem dimen-
sionality on density-dependent SWI.

The research is conducted using numerical modelling
and Monte Carlo simulations. The conceptual framework
follows previous works on the effect of heterogeneity on
2D density dependent problems (Held et al. 2005; Abarca
2006; Abarca et al. 2007a) and is extended in 3D. The
heterogeneity is modelled with a multi-Gaussian approach
and considers isotropic and anisotropic media. This
approach allows for investigation of the progressive
transition from a 3D medium (finite correlation lengths
in the three directions) to a 2D medium (infinite
correlation along the sea shore). Varying the variance of
the log hydraulic conductivity allows one to study the
effect of increasing level of heterogeneity. Systematic
Monte Carlo simulations are then used to investigate the
behaviour of the SWI in heterogeneous media. The
effective hydraulic conductivities of the 2D and 3D media
are estimated using standard upscaling techniques, and the
SWI in the homogeneous media is computed too. The
analysis of these results show that different behaviours
(even sometime opposite) can be observed when compar-
ing the evolution of the saltwater wedge position as a
function of increasing levels of heterogeneity in 2D and
3D configurations. These results indicate that previous
observations (e.g. Abarca 2006; Held et al. 2005) were
valid only for the 2D case and cannot be directly extended
in 3D. In addition, the results obtained on heterogeneous
and homogeneous models sharing the same effective
hydraulic conductivities are compared. They show that
an upscaling of the dispersivity is required if one wants to
reproduce the mean behaviour of a heterogeneous field by
an effective medium. This contradicts previous findings
from Held et al. (2005). From a more practical point of
view, the results suggest that it is possible to approximate
SWI in a 3D heterogeneous field by using an equivalent
2D vertical heterogeneous medium. The main advantage
of the proposed approximation is that it offers a fast and
reasonably accurate approximation that one can use for
real case applications avoiding the need to conduct large
and time consuming 3D simulations.

Problem setup

The SWI conceptual model
Abarca et al. (2007a) modified the Henry problem (1964)
to set up an anisotropic dispersive version of it. The
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fundamental modification is the assumption that mixing
between freshwater and saltwater results from advection
and velocity-dependent dispersion processes rather than
advection and pure diffusion. The second modification is
the use of an anisotropic hydraulic conductivity tensor
instead of an isotropic one. These modifications lead to a
more realistic simulation of seawater intrusion phenom-
ena, especially more realistic salinity profiles. Abarca et
al. (2007a) tested the sensitivity of the mixing zone (length
and width) as well as the inflowing seawater to the new
model parameters (including dispersion and anisotropy of
hydraulic conductivity) and showed that in the dispersive
version of the Henry problem, the penetration length
depends mainly on the horizontal hydraulic conductivity
and the geometric mean of the longitudinal and transversal
dispersivities. The width of the mixing zone is controlled
by the geometric mean of the longitudinal and transversal
dispersivities. Furthermore, the flux of inflowing seawater
is controlled by the transverse dispersivity and the geo-
metric mean of the directional hydraulic conductivities.

Note that the flow boundary conditions are the same for
both versions of the Henry problem and consist of: no flow
boundary conditions at the top and bottom of the confined
aquifer; a constant flux along the inland boundary; and a
hydrostatic pressure distribution along the seaside boun-
dary. In both versions, a concentration equal to 0 is
prescribed along the inland boundary. However, in the
dispersive version, the concentration along the seaside
boundary is imposed only for the entering fluxes.

Extension to 3D
The model setup is a direct extension of the 2D
anisotropic dispersive Henry problem (Abarca et al.
2007a). The geometry of the domain is a rectangular
prism (Fig. 1). As the mathematical dimensionless
formulation was already presented in 2D in Abarca et al.
(2007a), only its 3D extension in dimensionless form will

be presented here. First, the dimensionless coordinates and
the longitudinal and lateral shape ratios ξxoz and ξxoy,
respectively are defined (Fig. 1):

xD ¼ x

d
; yD ¼ y

d
; zD ¼ z

d
; xxoz ¼

L

d
and xxoy ¼

l

d
ð1Þ

where d [L] is the thickness of the aquifer, L [L] is the
distance between the coast and the inland boundary and l
[L] is the lateral extension parallel to the shoreline. The
freshwater inland boundary is located at xD=0 and the sea
is at xD = ξxoz. Following Abarca et al. (2007a), the
dimensionless head hD, Darcy velocity qD, and salt
concentration CD are defined as:

qD ¼ q

qb
; hD ¼ hKxx

qbd
; and CD ¼ C

Cs
ð2Þ

where qb [L/T] represents the prescribed Darcy velocity of
the freshwater flux at the inland boundary, q [L/T] the
Darcy velocity in the domain, h [L] the equivalent
freshwater head, Kxx [L/T] the xx component of the
hydraulic conductivity tensor, C [M/L3] the salt concen-
tration, and Cs [M/L3] the salt concentration of the
seawater. Note that the hydraulic conductivity tensor K
is assumed to be anisotropic but its main axes are aligned
with the coordinate axis. Therefore, K is diagonal. The
anisotropy ratios are defined as ryx ¼ Kyy

Kxx
and rzx ¼ Kxx

Kzz
.

With those definitions, the steady state flow equation in a
3D homogenous medium is expressed as:

@2hD
@xD2

þ ryx
@2hD
@yD2

þ rzx
@2hD
@zD2

þ 1

a

@CD

@zD
¼ "

1þ "CD
qD � r0CD

ð3Þ

where a ¼ qb
"Kzz

, " ¼ �s � �0ð Þ=�0 with ρs being the fluid
density of the seawater and ρ0 the freshwater density, and
∇′ is the gradient written in dimensionless coordinates. As
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Fig. 1 Model geometry and boundary conditions: a real dimensions, b dimensionless. Boundary conditions for flow are: no flow
conditions on top, bottom and lateral faces of the block, a prescribed flux (qb) along the inland boundary and a constant hydrostatic head on
the seaside boundary. Boundary conditions for transport are: C = 0 prescribed along inland boundary fluxes and C = Cs for the inflowing
seawater along the seaside boundary
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for the standard Henry problem, the boundary conditions
are no-flow conditions on the top, bottom and lateral faces
of the block, and a prescribed flux (qb) along the inland
boundary:

@hD
@yD

����
yD¼0;1

¼ 0;
@hD
@zD

����
zD¼0;1

¼ 0;
@hD
@xD

����
xD¼0

¼ �1 ð4Þ

A hydrostatic pressure distribution is prescribed along
the seaside boundary:

hD xD ¼ xxoz; yD; zDð Þ ¼ 1

rzx a

1

"
þ 1� zD

� �
ð5Þ

The advective-dispersive salt transport equation is then
written as:

qD � r0CD �r0 � bLDD þ bmI½ �r0CD ¼ 0 ð6Þ

with DD the dimensionless dispersion tensor, I is the
identity matrix, bm is the inverse of the Peclet number
corresponding to the molecular diffusion (Dm) and bL is
the dimensionless longitudinal dispersivity:

bm ¼ Dmf
qbd

; bL ¼ aL

d
: ð7Þ

with f is the porosity. The ratio of transverse to
longitudinal dispersivities is defined by

ra ¼ aT

aL
; ð8Þ

and the components of the dimensionless dispersivity
tensor are:

Dij
D ¼ ra qDk kdij þ 1� rað Þ qD

iqDj

qDk k : ð9Þ

where δij denotes the Kronecker delta. The transport
boundary conditions are the classical ones (Fig. 1). A
dimensionless concentration of 0 is prescribed along the
inland side of the domain (xD=0), a zero mass flux is
prescribed on the top, bottom and lateral boundaries,
while the boundary condition along the seaside is:

qDCDjxD¼0 � bLDD þ bmI½ �r0CDjxD¼0:

f ¼ qDCDjxD¼0 if qD > 0

qD if qD < 0

(
ð10Þ

In comparison with the 2D problem (Abarca et al.
2007a), it was necessary to accommodate one additional
spatial coordinate (yD). This leads to the addition of a new
hydraulic conductivity anisotropy ratio ryx ¼ Kyy

Kxx
. All the

rest remains unchanged. Therefore, the dynamic of this
problem is controlled by six dimensionless parameters:

a; bm; bL; ra; ryx ¼ Kyy

Kxx
; and rzx ¼ Kzz

Kxx
: ð11Þ

The parameter values used in the numerical model are
shown in Table 2.

Extension to the heterogeneous case
The deterministic mathematical model described in the
previous section can be applied to solve numerically SWI
in heterogeneous media or to perform stochastic model-
ling. In this work, and for the sake of simplicity it is
assumed that the local value of hydraulic conductivity K
(x,y,z) is heterogeneous but isotropic. In this case, Darcy’s
law can be expressed in dimensionless form as follows:

qxD ¼ �KD
@hD
@xD

; qyD ¼ �KD
@hD
@yD

and qz
D ¼ �KD

@hD
@zD

� KD
CD

a

ð12Þ

with the dimensionless hydraulic conductivity KD defined as
KD ¼ K x;y;zð Þ

Kg
, where Kg is the geometric mean of the local

hydraulic conductivity values.
The spatial heterogeneity of the hydraulic conductivity

is modelled using a multi-Gaussian random function
model. A Gaussian distribution and a spherical variogram
model of the natural logarithm of the hydraulic conduc-
tivities Y = ln(K) were assumed for both 2D and 3D
configurations. Note that µY and σY are the mean and the
standard deviation of Y respectively. Very often, the ranges
of the variogram in the horizontal directions (horizontal
correlation lengths λx and λy) are one order of magnitude
larger than in the vertical direction (Gelhar 1986). For the
case of identical correlation lengths in the three directions
(λx = λy = λz), the medium is considered statistically
isotropic while it is considered statistically anisotropic if
not. The dimensionless directional correlation lengths are:
lx = λx/d, ly = λy/d and lz = λz/d. The level of the
heterogeneity of the medium depends on the variance
�2
Y

� �
of the random variable.

Stochastic model and analysis

The 2D configurations previously studied by Dagan and
Zeitoun (1998), Held et al. (2005), Abarca (2006) or Al-
Bitar and Ababou (2005) can be considered as some
particular cases of 3D fields if one considers infinite
correlation lengths in the horizontal directions as in Dagan
and Zeitoun (1998), infinite correlation length along the
coastline as in Abarca (2006) and Held et al. (2005), or
infinite correlation length in the vertical direction as in Al-
Bitar and Ababou (2005). Here, the transition from a 2D
vertical cross-section to a full 3D case is investigated.
Starting from a 3D heterogeneous medium having an
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infinite correlation length parallel to the coast and therefore
displaying only a 2D flow system (identical on all the
vertical sections), one can progressively reduce the corre-
lation length parallel to the coast to investigate the
transition from a 2D situation to a fully 3D one.

Hydraulic conductivity fields
The following is a description of the method used to
generate the various sets of hydraulic conductivity fields
that are later used to investigate systematically the
transition from 2D to 3D and from homogeneous to
highly heterogeneous media and its influence on the
behaviour of the SWI. Note that the parameters were
chosen in a way that the transition could be studied but
also in a way that the numerical resolution of the
equations is sufficiently accurate. Furthermore, to obtain
a statistical representivity of the results the correlation
length along the flow direction was kept sufficiently small.

2D and 3D heterogeneity
The shape ratios for the 2D and 3D models are ξxoz=2 and
ξxoy=1. All the hydraulic conductivity fields were gen-
erated using the Turning Band method (Matheron 1973;
Tompson et al. 1989) because it reproduces accurately the
target variogram. Two sets of hydraulic conductivity fields
were generated. The isotropic set corresponds to seven 3D
fields that are isotropic in the xoz plane and 100 2D
isotropic fields. They were generated starting from a 3D
hydraulic conductivity field having correlation lengths
lx = ly = lz = 0.04, a geometric mean Kg=0.01 [m/s] and a
standard deviation σY=1. Then, the correlation length in
the y direction (ly) was progressively increased in six
steps, until it largely exceeded the size of the domain. All
other parameters (lz, Kg and σY) were kept constant.
Figure 2 shows a sample of the isotropic 3D fields. The
100 2D fields were generated with the same statistics.
Note that these fields share the same statistical parameters
(lx = lz = 0.04, Kg=0.01 [m/s] and σY=1) as the 2D
isotropic fields used by Abarca (2006) and Held et al.
(2005). The anisotropic set corresponds to seven 3D and
100 2D anisotropic fields. A first 3D anisotropic field (lx=
0.12, ly=0.04, and lz=0.04) was generated. Its geometric
mean and standard deviation are identical to the isotropic
case (Kg=0.01 [m/s], σY=1). ly was then increased in six
steps as for the isotropic set. 100 2D anisotropic fields
(sharing the same statistics, lx=0.12, lz=0.04) were also
generated (Table 1).

To ensure an accurate resolution of the flow and
transport equations even for the heterogeneous cases, the
3D models were discretized into 256×128×128 grid cells
(more than 4.27 million nodes) while the 2D models were
discretized into 256×128 grid cells. The shortest correla-
tion length for the isotropic case corresponds to 5.12 times
the grid cell size (avoiding a too large contrast of
hydraulic conductivity between two adjacent cells) and
to 2% of the size of the domain in the x direction and 4%
of the size of the domain in the y and z directions

(allowing a statistical representativity of the internal
fluctuations within a given model).

Increasing the level of heterogeneity
To investigate the effect of increasing levels of hetero-
geneity, the ln(K) simulations described above (2D and 3D
models) were transformed as follows:

Y �Y ; �Yð Þ ¼ Y0 � �Yð Þ: �Y

�Y0
þ �Y ð13Þ

where Y0 represent the random variable corresponding to
an initial simulated field having a mean equal to µY and a
standard deviation equal to σY0. Y(µY,σY) is the trans-
formed random variable having the same mean µY as the
initial one but having a different variance σY. For the
isotropic case, four levels of �2

Y : 0:5, 1, 2 and 3 were
studied while only three level of �2

Y : 0:5, 1, and 2 were
studied for the anisotropic case. This led to four sets of
100 2D simulations which will be compared depending on
the ln(K) variance to four sets of seven 3D simulations in
the isotropic case; and three sets of 100 2D simulations
which will be compared to three sets of seven 3D
simulations in the anisotropic case. Note that in all cases,
the geometric mean of the hydraulic conductivity is equal
to Kg=0.01 [m/s].

Effective hydraulic parameters

Effective hydraulic conductivity
For each configuration, the effective directional hydraulic
conductivity tensor of the heterogeneous fields was
estimated with Ababou (1996) formula:

Kef ;ii ¼ Kg exp �2Y
1

2
� 1

N

lh
li

� �� �
ð14Þ

where Kg is the geometric mean of the hydraulic
conductivity [m/s]; �2

Y is the ln(K) variance; N is the
number of dimensions; λi is the correlation length [m] in
the direction i and λh is the harmonic mean of the

Table 1 Dimensions and statistics of the hydraulic conductivity
fields

Parameter Value

Domain size ξxoz and ξxoy [–] 2 and 1
Domain discretization ΔxD, ΔyD
and ΔzD [–]

0.0078125

ln(kD [–]) distribution Gaussian
Variogram type Spherical
Geometric mean (kD [–]) 0.01
ln(kD [–]) variances 0.5, 1, 2, 3a

Ranges along x (lx) [–] 0.04, 0.12
Ranges along y (ly) [–] 0.04, 0.06, 0.1, 0.2, 0.5, 1, +∞
Range along z (lz) [–] 0.04
Total number of 2D simulations 700
Total number of 3D simulations 49

aOnly for the isotropic set
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correlation lengths [m]. This formula is a generalization of
Matheron’s conjecture (Matheron 1967) applicable for the
3D anisotropic multi-Gaussian media. It is worth noting
that this formula does not account for density variations.
The resulting effective hydraulic conductivities are shown
in Fig. 3. The maximum anisotropy ratios are ryx=4.48
(obtained for lx = lz=0.04, ly = +∞, �2

Y ¼ 3) and rzx=0.36
(lx=3 × lz=0.12, ly = +∞, �2

Y ¼ 2). For comparison and
validation reasons, equivalent hydraulic conductivities

were also calculated numerically by solving steady state
flow with constant hydraulic gradients and provided
similar results.

It is important to note that in a 2D multi-Gaussian
isotropic medium, the effective horizontal and vertical
hydraulic conductivities are equal to the geometric mean
and independent of ln(K) variance. As shown in Fig. 3,
when the variance increases in statistically anisotropic
media the effective hydraulic conductivity in the direction

XD

Z
D

YD

(a) (b) (c)

log   (K)

0-1-2-3-4

Increasing ly

10

Fig. 2 View of the 3D hydraulic conductivity fields. For all cases lx = lz=0.04, Kg=0.01 [m/s] and σY=1 are constant: a ly=0.04
(statistically isotropic case); b ly=0.5; c ly = +∞. Note that c is equivalent to Abarca (2006) and Held et al. (2005) cases
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parallel to the stratification (longest correlation length)
tends toward the arithmetic mean, while it tends to the
harmonic mean in the perpendicular direction.

Effective dispersivities
An important question was whether effective dispersivities
should be used or not; and if they needed to be use, how
to estimate them in a simple manner? It was decided to
use the same values for the longitudinal and transversal
dispersivities for both the heterogeneous and homogenous
media (2D and 3D). This allowed for testing as to whether
the use of the local dispersivities is sufficient to provide
acceptable homogenized results. The use of scale invariant
dispersivities was motivated by the absence of an
appropriate analytical model at the scale and level of
heterogeneity that are investigated in the numerical
simulations. Indeed, the results obtained by spectral
perturbation techniques to calculate effective dispersivities
as in Welty and Gelhar (1991), Welty et al. (2003) and
Dentz et al. (2000) are valid for weakly heterogeneous
media. In addition, the dispersive Henry problem is
characterized by high local dispersivity coefficients as
compared to the correlation length of the heterogeneity
(αL=0.1 and lx=0.04 or 0.12), while the expressions of
effective dispersivity usually assume αL << lx, e.g. Welty
and Gelhar (1991) and Welty et al. (2003). Finally, Held et
al. (2005) used the homogenization theory to derive
expressions for the heterogeneous Henry problem. They
found that the effective longitudinal and transversal
dispersivities correspond closely to the local values.
However, in their numerical analysis, Held et al. (2005)
considered high molecular diffusion (even in their
dispersive case), and low ln(K) field variance (equal to 1).

Density-dependent flow and solute transport Monte
Carlo simulations
The coupled variable-density flow and advective-disper-
sive solute transport equations were solved with the finite
element code GroundWater (Cornaton 2007) for both the
2D and 3D configurations. The code has been previously
validated by comparison with a series of standard published
benchmarks including comparison with pseudo-analytical

solutions such as the Henry problem or numerical experi-
ments such as the Elder or the Hydrocoin Case 5 Level 1
problems. The Boussinesq approximation and constant
fluid viscosity were used because of the small density
contrast between fresh and saltwater. The model geometry
and boundary conditions (Fig. 1) are described in section
Extension to 3D. The 3D models are discretized into 256×
128×128 elements while the 2D models are discretized into
256×128 elements (the same as for the hydraulic con-
ductivity fields). Finer numerical resolutions were tested to
check the accuracy of the solution but these tests did not
show any significant effect of refining the numerical mesh.
Therefore the previous resolution was kept among the
simulations. For each numerical simulation a different
hydraulic conductivity field is used. The other parameters
are kept constant (Table 2). Following standard method-
ology, the transport is computed by solving a transient
transport problem until the concentration reaches an
equilibrium value. A series of preliminary simulations
showed that the steady state transport regime was reached
in less than 0.75 day which was then used as the fixed
duration for all the 2D and 3D simulations.

The results of the flow simulations are characterized by
three parameters borrowed from Abarca et al. (2007a).
Two parameters describe the geometry of the freshwater/
seawater interface (length and width), and the third
measures the amount of saltwater entering the system
(Fig. 4). In order to avoid scale-dependent analysis, all
parameters are dimensionless and defined as follows:

– Dimensionless penetration length of the saltwater
wedge LD = Ltoe/d: the distance Ltoe between the
seaside boundary and the point where the relative
isoconcentration CD=0.5 intersects the bottom of the
aquifer normalized by the aquifer thickness d.

– Dimensionless width of the mixing zone WD = wmz/d:
the average vertical width wmz of the area between the
relative isoconcentrations CD=0.25 and CD=0.75 and
between 0.2 Ltoe and 0.8 Ltoe normalized by the aquifer
thickness d.

– Dimensionless saltwater inflowing flux RD = qs/qb: the
saltwater inflowing flux qs normalized by the inflowing
freshwater flux qb.

Table 2 Used model parameters

Symbol Parameter Value Units

Kg Geometric mean conductivity 1.00 10−2 m/s
f Porosity 0.35 −
Dm Molecular diffusion coefficient 0.00 m2/s
αL Horizontal longitudinal

dispersion
0.10 m

αL
a Horizontal transversal

dispersion
0.10 m

αT Vertical transversal dispersion 0.01 m
qb Inland freshwater flux 6.60 10−5 m/s
ρ0 Freshwater density 1.00 103 kg/m3

ρS Seawater density 1.025 103 kg/m3

µ Fluid viscosity 1.00 10−3 kg/m/s

a Only in three-dimensional models

Ltoe 0.8 L toe
0.2 L toe

0.75
0.25

0.50
x

y

z

0

qsmixing zone

analysis interval

D

D

D

qb

wmz

Fig. 4 Evaluation criteria. Ltoe represents the toe penetration
length, qs the seawater inflowing flux and wmz the width of the
mixing zone
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For the heterogeneous 2D cases, ensemble averages of
the criteria over 100 simulations were calculated as
follows:

L2DHet:D ¼ 1

n

Xn
sim¼1

LsimD ;

W 2DHet:
D ¼ 1

n

Xn
sim¼1

Wsim
D and R2DHet:

D ¼ 1

n

Xn
sim¼1

Rsim
D

ð15Þ

where n is the number of 2D simulations, and “sim” refers
to one 2D simulation.

In 3D, the CPU time required to run the complete set
of 3D simulations needed for all the configurations
investigated in this study would have required about
500 days (on a Linux AMD Opteron 64 bits machine) to
run 100 simulations per configuration. To reduce the
computing time, spatial averages on single 3D simula-
tions were used instead of ensemble averages on many
simulations. In other words, it is assumed that for one 3D
realization, the spatial averaging of flow and transport
solutions along the y direction (parallel to the shoreline)
will give the same ensemble statistics (average and
variance) than multiple 3D realizations (ergodicity
assumption):

L3DHet:D ¼ 1

ns

Xns
slice¼1

LsliceD ;

W 3DHet:
D ¼ 1

ns

Xns
slice¼1

Wslice
D and R3DHet:

D ¼ Rsim
D

ð16Þ

where ns is the number of 2D vertical slices in a 3D
model, and slice refers to one “slice” of a 3D model (128

slices). A similar assumption was used by Al-Bitar and
Ababou (2005). In the following, the ergodicity assump-
tion is tested numerically for three configurations.

Numerical results

Ergodicity hypothesis
The ensemble statistics of the 3D salt concentration
distribution along the central slice of the model (yD=0.5)
calculated over 100 3D realizations are compared with the
spatial statistics calculated on a single realization with
Eq. (16). The 3D hydraulic conductivity fields have the
following correlation lengths lx=0.12, ly=0.12, lz=0.04.
The numerical test has been conducted for three levels of
ln(K) variance: 1, 2 and 3. It was found that the ensemble
average concentrations (grey lines on Figs. 5a,c,e) are well
approximated by the spatial mean (grey lines on Figs. 5b,
d,f). Similarly, the ensemble concentration variance (back-
ground greymaps in Figs. 5a,c,e) are well approximated
by the spatial concentration variance (Figs. 5b,d,f) even
for a large ln(K) variance �2

Y ¼ 3
� �

. Figure 5 shows also
that the ensemble estimates are smoother and more regular
than the spatial estimates. In terms of estimation of the
mean position of the toe, the test shows that the spatial
average performs very well (Table 3); the width of the
mixing zone is estimated reasonably well, but the
variances are much less accurate both for the position of
the toe and the width of the mixing zone (Table 3).
Therefore, the ergodicity assumption can be accepted, but
results concerning the estimated variances must be
interpreted with care. In addition, for large correlation
lengths in the y direction, the ergodicity assumption is
certainly not reasonable any more.
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X

1

0

0 0.5 1 1.5 2

0.5
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D
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(b) (d) (f)

35 25 15 5

In(σ C [-])

Fig. 5 Ergodicity test: upper row (a, c, e): 2D vertical cross-section (yD=0.5) of the ensemble average relative salt concentration [–]
isolines (0.1–0.9) and the ensemble variance (background greyscale map) calculated on 100 3D simulations. Lower row (b, d, f): 2D view
of the spatial average relative salt concentration [–] isolines (0.1–0.9) and the spatial variance calculated on a single 3D simulation.
Greyscale maps represent the natural logarithm of the variance. The results are presented for lx = ly=0.12 lz=0.04 and the three cases of ln
(K) variance a� b �2

Y ¼ 1; c� d �2
Y ¼ 2; e� f �2Y ¼ 3

� �
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Preliminary results
To start the analysis, a single realization in 2D and another
one in 3D sharing the same parameters and the same
distribution (histogram) of hydraulic conductivity are
considered. Figure 6 shows the 2D vertical cross-sections
of the relative salt concentration isolines calculated
considering the heterogeneous medium (solid line) or
considering a homogenous medium (dashed line) whose
equivalent hydraulic conductivity was calculated with
Eq. (14). Note that for the 2D case, only one realization

is shown whereas for the 3D case the lateral average (in
the y direction) of salt concentrations is shown. By visual
comparison, it is clear that the solid lines and dashed lines
do not match indicating that in all the cases there is a
difference in the concentration fields between the homo-
genous and heterogeneous cases. The difference increases
as �2

Y increases (compare Fig. 6b and d and compare
Fig. 6c and e). Furthermore the magnitude of the differ-
ence is larger in 2D than in 3D (compare Fig. 6b and c and
compare Fig. 6d and e).

More generally, the comparison of the isoconcentration
contours, head and permeability fields allows characteriz-
ing the behaviour of the saltwater wedge as follows:

– In 2D and in 3D, the concentration gradients are higher
in the low permeable zones than in the high permeable
zones.

– The organization of heterogeneity, especially isolated
high permeability zones along the sea boundary, might

Table 3 Comparison between ensemble and spatial statistics (EA
refers to ensemble average, SA refers to spatial average)

�2
Y

LEA
D

LSA
D

�EA
LD

�SA
LD

WEA
D

WSA
D

�EA
WD

�SA
WD

1 1.01 1.34 0.96 0.56
2 1.00 1.55 1.02 0.63
3 1.00 0.71 1.02 0.83

-4.5 -0.5-2.5

log   (k)
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Z
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Fig. 6 a Streamlines and dimensionless concentration contours for a single 2D isotropic realization of variance of 3 (the size of this figure
is exaggerated); 2D vertical cross-section views of concentration [–] isolines (0.1–0.9): b for the 2D heterogeneous isotropic case (solid
line) and homogenous case (dashed line); c for the 3D heterogeneous isotropic case (solid line) and homogenous (dashed line). For both
cases �2

Y ¼ 1. Parts d and e are the same as parts b and c except for for �2
Y ¼ 3
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lead to the apparition of small scale convection cells
depending on the ln(K) variance.

– One can observe a rotation (seaward and upward shift
of the saltwater wedge) of the freshwater/saltwater
interface in 2D heterogeneous models as compared to
the 2D homogenous models. The same behaviour is
less visible in the 3D configuration.

Those effects of 2D heterogeneity are in agreement
with previous findings (Held et al. 2005; Abarca 2006).
Yet, these studies investigated the effects of 2D hetero-
geneity with hydraulic conductivity variance up to 2.

Impact of the heterogeneity
This section focuses on the description of the effect of
heterogeneity on SWI. The effects of the heterogeneity are
investigated by comparing the dimensionless characteristics
LD, WD and RD obtained for heterogeneous media with the
corresponding dimensionless parameters obtained for the
effective homogenous media. The comparison is carried out
separately for 2D and 3D isotropic and anisotropic config-
urations and for increased levels of ln(K) variance.

The results are presented in Table 4. The first
observation is that all the ratios deviate more significantly
from 1.00 in the 2D cases than in the 3D cases. This
shows that the difference between heterogeneous and their
equivalent homogeneous media is higher in 2D than in
3D. One can also note that the difference increases when
increasing �2

Y . Another observation is that the steady
inflowing saltwater flux RD is the parameter which is the
most affected by the hydraulic conductivity heterogeneity
since it can be more than 20 times larger in heterogeneous
models than in the homogenous models with identical
effective directional hydraulic conductivity ð�2

Y ¼ 3Þ. The
magnitude of RD is always much larger in the heteroge-
neous cases than in the homogenous ones, and it increases
almost exponentially when increasing �2

Y . According to
Abarca et al (2007a) and in 2D, RD is controlled by the
geometric mean of the hydraulic conductivity and the
transversal dispersion.

The differences between the values of RD computed for
the heterogeneous cases and their respective homogenized
versions is interpreted as a result of using the local
dispersivity instead of an effective dispersivity in the
homogenized model. Indeed, the transversal dispersion in

the heterogeneous medium is higher than in the homoge-
neous one due to vertical velocity variations at a small
scale. Increasing the transverse dispersivity implies a
decrease of the magnitude of the density contrast because
of an enhanced mixing between saltwater and freshwater.
The increase of transversal dispersivity leads to an
increase of RD to compensate for the loss of brackish
water that is captured by the freshwater outflux.

This difference between the heterogeneous and homo-
genous models might also be explained by the absence of
local convection cells in the homogeneous case. These
local convection cells appear when high permeability and
isolated zones are located along the sea boundary; these
situations are more frequent when increasing �2

Y . The role
of the convection cells is stronger in 2D because the high
permeable zones are more isolated in 2D than in 3D.

With regard to LD and WD, in all the cases, the
saltwater wedge moves seaward when considering hetero-
geneous models instead of homogenous ones while the
width of the mixing zone tends to increase. These two
effects can be interpreted in the following manner. One
impact of the heterogeneity is to enhance both the
longitudinal and transverse (macro) dispersion. When the
transverse macro dispersivity normal to the concentration
gradients increases, it implies some additional spreading
and therefore a larger mixing zone. A consequence of the
spreading is a reduction of the density contrast within the
mixing zone leading to a rotation of the saltwater wedge:
its base moves seaward and its vertical extension increases
as shown in Fig. 6. The magnitude of that effect increases
with �2

Y . Furthermore, the effect is more pronounced in
2D than in 3D because there are more possibilities for
flow to go through the low permeability heterogeneities in
3D than in 2D; the flow lines are less distorted and the
heterogeneities have less impact on saltwater spreading in
3D than in 2D.

When comparing the effects of isotropic and aniso-
tropic heterogeneity in 2D and 3D configurations, one can
see that the trends are similar but slightly more
pronounced for the anisotropic media (compare isotropic
versus anisotropic values in Table 4). It is interpreted as a
consequence of increased velocity in the horizontal
direction in the anisotropic case resulting in increased
longitudinal and transversal dispersion.

The calculation of the relative salt concentration
variance over 100 2D and 100 3D Monte Carlo

Table 4 Comparison between heterogeneous (characteristic norms with Het. subscript) versus homogenous (norms with Hom. subscript)
media

�2
Y 0.5 1 2 3 0.5 1 2

2D isotropic 2D anisotropic
LHet:

D =LHom:
D �½ � 0.97 0.95 0.92 0.89 0.94 0.89 0.82

WHet:
D =WHom:

D �½ � 1.12 1.24 1.42 1.53 1.15 1.25 1.31

RHet:
D =RHom:

D �½ � 3.35 5.98 14.03 28.08 3.46 6.15 14.14
3D isotropic 3D anisotropic

LHet:
D =LHom:

D �½ � 1.02 1.01 0.99 0.97 0.99 0.97 0.95

WHet:
D =WHom:

D �½ � 1.04 1.07 1.18 1.21 1.05 1.11 1.17

RHet:
D =RHom:

D �½ � 2.38 3.84 7.72 13.35 2.65 4.43 9.22
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simulations shows (Fig. 7) that the two extremities of the
saltwater wedge (near the bottom and freshwater outlet
zones) are the most affected by the heterogeneity. The
uncertainty increases with increasing �2

Y . The uncertainty
on the toe and on the freshwater output zone is high
because these two structures (stagnation point at the toe,
and flow concentration in a narrow area at the outflow
face) have a small dimension as compared to the size of
the heterogeneities and therefore are very sensitive to
variations of the local hydraulic conductivities from one
simulation to the other.

Dimensionality effects
As a first illustration of the dimensionality effects, Fig. 8
shows how the seawater intrusion moves farther inland
when a full 3D heterogeneity (Fig. 8a) is considered as
compared to a 2D heterogeneous model (equivalent to
Fig. 8c). Figure 8 shows also that the mixing zone is
rougher in 2D than in 3D models.

A more detailed analysis of these effects is displayed in
Fig. 9, which shows the mean of the dimensionless norms
LD, WD, and RD obtained for 3D models normalized by
the results obtained in 2D and plotted as a function of
increasing ly. In other words, Figure 9 illustrates the
behaviour of the SWI through the transition from a fully

3D model to a 2D model for different levels of
heterogeneity (the different lines). One can see on that
figure that the position of the toe LD is the parameter that
is the most affected by model dimensionality. The
saltwater wedge penetrates farther landward in 3D than
in 2D for both the isotropic and anisotropic cases. Even
for small values of �2

Y , the landward shift is around 10%.
This effect increases when increasing �2

Y , and the relative
difference between 2D and 3D reaches 38% for �2

Y ¼ 3.
This is not surprising, because the saltwater wedge

penetration is highly dependent on the horizontal
hydraulic conductivity (Abarca et al. 2007a), and increas-
ing the dimension of the problem increases the effective
hydraulic conductivity in the main flow direction (x
direction). The differences between the 2D and 3D
situations can be explained on the base of Eq. (14). In
2D, the effective hydraulic conductivity of a statistically
isotropic log multi-Gaussian heterogeneous media is the
geometric mean; it does not depend on the level of
heterogeneity quantified by the variance �2

Y . However, for
a 3D field, sharing the same statistics as the previous 2D
media, the effective hydraulic conductivity is exp �2

Y=6
� �

times larger than in 2D. The consequence is that the global
pressure gradient between the freshwater flux landside and
the seawater hydrostatic pressure is smaller in 3D than in
2D, inducing thus, a landward movement of the saltwater

1

0.5

0

Z
D

(a) (b)

Y

2

Y

2

0 0.1 0.2

0 0.5 1 1.5 2

X
D

0 0.5 1 1.5 2

X
D

Fig. 7 Ensemble standard deviation of the relative concentrations calculated over: a 100 2D simulations with lx=0.12 and lz=0.04; b 100
3D simulations with lx = ly=0.12 and lz=0.04. For both cases �2

Y ¼ 1
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Fig. 8 3D view of the relative salt concentration [–] isolines (0.1–0.9); a for the isotropic case with lx = ly = lz=0.04, b for the case where
lx = lz=0.04 and ly=0.1, c for the case with lx = lz=0.04 and ly = +∞. Note that c is equivalent to a 2D model. For the 3 cases, the ln(K)
variance is equal to 1
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interface. This is why the saltwater wedge penetrates
further landward in 3D than in 2D configurations.

Furthermore, it has already been shown analytically
that the ratio of directional velocity variations (�2

qV=�
2
qH ,

where �2
qV is the variation of vertical velocity and �2

qH is
the variation of horizontal velocity) is larger in 2D than in
3D. Indeed, according to Gelhar (1993), for a 2D statisti-
cally isotropic medium, the ratio of transverse to longi-
tudinal velocity variation is one third, whereas, it is eight
thirds times smaller in 3D. It implies that there is more
vertical mixing in 2D, and thus less density effects, which
causes the rotation of the saltwater wedge as explained in
the previous section. At the same time, even if the
geometric mean of longitudinal and transversal dispersiv-
ities increases when hydraulic conductivity increases (from
2D to 3D), the dispersion-advection ratio decreases and
becomes dominated by the advection transport process
leading to a convergence toward a sharp interface (longer
penetration and thin mixing zone). Finally, the effective
hydraulic conductivity being higher in 3D than in 2D, it
implies a reduction of the dimensionless parameter a ¼ qb

"Kzz

(with respect to Peclet condition) which compares viscosity
and buoyancy forces, hence more density effects as
discussed by Simpson and Clement (2004).

The width of the mixing zone WD is also affected by
model dimensionality (Fig. 9). The results are not as clear
as for the position of the toe probably because of the limits
of the ergodicity assumption. Yet, some tendencies can be
observed. In all cases, the difference between 2D and 3D
does not exceed 10%. In the isotropic case, for small
correlation length ly, WD in 3D models is smaller than
those in 2D, while the reverse for higher correlation

lengths. For the statistically anisotropic cases, the width of
the mixing zone in 3D models is always smaller than
those in 2D even for a higher �2

Y. The width of the mixing
zone (in homogenous media) depends mostly on the
geometric mean of the longitudinal and transversal
dispersivities (Abarca et al. 2007a). This suggests that
(mechanical) dispersion due to heterogeneity, especially
the transversal dispersivity, increases as a function of
velocity variance more significantly in 2D than in 3D
models. With regard to the inflowing saltwater, the flux in
2D models is larger than in 3D models. This confirms that
the dispersion due to the heterogeneity is larger in 2D than
in 3D models because RD is highly controlled by
dispersion (Abarca et al. 2007a).

Another difference between the 2D and 3D models is the
estimation of the uncertainty of the outputs (variances of LD,
WD and RD). Table 5 shows that the 2D models predict a
higher uncertainty (up to 5 times) than 3Dmodels. However,
the relative variability of LD �L3D

D =L3D
D or �L2D

D =L2D
D

� �
is

slightly larger in 2D but does not exceed 0.03. The same is
true for WD with a maximal value of 0.05. This is attributed
to less saltwater spreading in 3D models due to less velocity
variability.
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Table 5 Comparison between 2D and 3D uncertainty, σ represents
the standard deviation

�2
Y Isotropic Anisotropic

�L3D
D =�L2D

D �W3D
D =�W2D

D �L3D
D =�L2D

D �W3D
D =�W2D

D

0.5 0.17 0.29 0.20 0.25
1 0.15 0.19 0.29 0.46
2 0.14 0.16 0.22 0.45
3 0.19 0.35 − −
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Effects of increasing variability
Another way to analyse the results, is to study how the
saltwater wedge evolves when the degree of heterogeneity
�2
Y

� �
increases (Fig. 10). The toe penetration in the 2D

models is smaller than in the 3D models, especially when
the variance increases.

An interesting behaviour can be observed in the
isotropic case: in 2D models, the toe penetration
decreases when the variance increases, whereas, in 3D
the toe penetration increases significantly when the
variance increases for the isotropic media (Fig. 10a).
Intermediate behaviour occurs depending on the magni-
tude of the correlation length in the direction parallel
to the coast. In addition, for statistically anisotropic
hydraulic conductivity fields, the toe penetration
increases when the variance increases in both 2D and
3D settings (Fig. 10c). This complex behaviour is the
result, as discussed before, of the combined effect of
the effective hydraulic conductivity and macrodisper-
sion. For the isotropic heterogeneous 2D domain, the
effective hydraulic conductivity is equal to the geo-
metric mean of ln(K) independently of the value of �2

Y .
Yet, regardless of dimensionality and isotropic or
anisotropic media, increasing the level of heterogeneity
increases macrodispersion. In this case, the position of
the toe is controlled by the macrodispersion processes

which increase with increasing �2
Y . It is not the case for

the 2D or 3D statistically anisotropic media where the
effective hydraulic conductivity increases in the flow
direction when �2

Y increases. Figure 10a shows that
there is a threshold in the relation between advective
and dispersive solute transport for which the toe
penetration can increase or decrease, or even remain
constant when �2

Y increases.

From 2D to 3D

The previous sections have shown that the behaviour
of 3D SWI models is generally different from those of
2D models sharing the same statistical parameters of
the hydraulic conductivity fields (except of course the
correlation length in the direction perpendicular to the
section). This shows that forecasts based only on 2D
sections may be inaccurate. In the following, a technique
to modify the statistical parameters of the 2D heteroge-
neous simulations is proposed to approximate the results
of a 3D analysis which would be much more CPU
demanding. In addition, the modification of the 2D
hydraulic conductivity fields will allow the comparison
between 2D and 3D field sharing the same effective
directional hydraulic conductivities.
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2D hydraulic conductivity fields transformation
The basic idea of the proposed methodology is to generate
a 2D field having the same correlation lengths and
effective hydraulic conductivities in the x and z directions
as a 3D field. Assuming a log multi-Gaussian random
function and assuming that its parameters in 3D are
known, it is possible to express the geometric mean K2D

g

and the variance �2
Y2D of the 2D field from the statistical

parameters of the 3D field.
To derive that relation, the first step is to define the

correlation lengths of the two fields:

l2Dx ¼ l3Dx ¼ lx; l
2D
z ¼ l3Dz ¼ lz and l3Dy ¼ ly ð17Þ

Using Ababou (1996) expression Eq. (14) in 2D and 3D,
and stating that the 2D and 3D components of the
effective conductivity should be identical, one gets a

system of two equations with two unknowns (K2D
g and

�2
Y2D):

K
2D

g exp �2
Y2D

1

2
� 1

2

l2Dh
lx

� �� �

¼ K
3D

g exp �2
Y3D

1

2
� 1

3

l3Dh
lx

� �� �
ð18Þ

and

K
2D

g exp �2
Y2D

1

2
� 1

2

l2Dh
lz

� �� �

¼ K
3D

g exp �2
Y3D
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Fig. 11 Comparison between 2D, 2D* and 3D isotropic cases (lx = ly = lz=0.04) for different level of ln(K) variances. a 3D spatial
average concentration C0:5

D (solid black line), 2D ensemble average concentration C0:5
D before correction (grey lines) and the absolute error
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68

Hydrogeology Journal (2010) 18: 55–72 DOI 10.1007/s10040-009-0533-0



K3D
g and �2

Y3D are the known mean and variance of the 3D
field. l2Dh and l3Dh are the harmonic means of the
correlation lengths in 2D and 3D:

l2Dh ¼ 2lxlz
lx þ lz

; l3Dh ¼ 3lxlylz
lxly þ lxlz þ lylz

ð20Þ

From Eq. (18), an expression of K2D
g can be obtained

and inserted in Eq. (19) to get first the relation between the
variance of the 2D field and the one of the 3D field and
then an expression of the geometric mean of the 2D field:

�2
Y2D ¼ 2

3

l3Dh
l2Dh

�2
Y3D ð21Þ

K
2D

g ¼ K
3D

g exp �2
Y3D

1

2
� 1

3

l3Dh
l2Dh

� �� �
ð22Þ

In the case of statistically isotropic media l2Dh ¼ l3Dh and
therefore Eqs. (21) and (22) become:

�2
Y2D ¼ 2

3
�2
Y3D ð23Þ

K
2D

g ¼ K
3D

g exp
�2
Y3D

6

� �
ð24Þ

In summary, if one has an estimation of the correlation
lengths in 3D and an estimation of the first two moments
of the permeability distribution, assuming a multi-Gaus-
sian distribution one can use Eqs. (21) and (22) to
compute the values K2D

g and �2
Y2D that should be used to

model an heterogeneous 2D hydraulic conductivity field
having the same effective conductivity than the 3D field.
This medium could then be used to investigate in 2D the
effect of the 3D heterogeneity. For example one can
estimate the uncertainty on the position of the interface for
a 3D problem by running many Monte Carlo simulations
in 2D, which would be impossible in 3D because of CPU
time consideration (Table 6).
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Fig. 12 Comparison between 2D, 2D* and 3D anisotropic cases (lx=0.12, ly = lz=0.04) for different levels of ln(K) variances. a 3D
ensemble spatial average concentration C0:5

D (solid black line), 2D ensemble average concentration C0:5
D before correction (grey lines) and

the absolute error (ae) in background. Panel b is the same as a but after transformation of the 2D hydraulic conductivity filed (2D*). c 95%
confidence interval (mean ±2 SD) of the relative salt concentration C0:5

D of 3D (black lines) and 2D* (grey lines)

Table 6 Comparison between 2D and 3D CPU (central processing
unit) time requirements

Model
configuration

Number
of nodes

Seconds of
CPU time

Relative
CPU time

Two-dimensional 33,153
(257×129)

180 1.00

Three-dimensional 4,276,737
(257×129×129)

135,000 750.00
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Numerical test
A numerical evaluation of the proposed approximation
was carried out. For each of the cases described earlier in
the paper (section Hydraulic conductivity fields), 100 2D
simulations were generated with the parameters of the 3D
models (K3D

g and �2
Y3D), and 100 2D* (*: transformed)

simulations were generated with the transformed param-
eters (K2D

g and �2
Y2D) according to Eqs. (21) and (22). In

total, 49 3D hydraulic conductivity fields are compared
separately with 49×100 2D simulations.

The comparison is made in terms of absolute error (ae)
of the relative concentrations over the whole domain:

ae i; jð Þ ¼ C3D
D i; jð Þ � C2D

D i; jð Þ
������ ð25Þ

where i and j are the indices of model cells on the grid,
C3D

D is the spatial ensemble average in the direction
perpendicular to the section on one 3D realization and

C2D
D is the ensemble average over 100 2D simulations at

node (i,j).
The results are in agreement with those obtained in the

previous sections. The 2D transformed fields (Figs. 11b
and 12b) reproduce much better the mean concentrations
computed in 3D than the 2D untransformed fields
(Figs. 11a and 12a) for all the values of variances that
have been tested. However, the uncertainty on the position
of the isoline C0:5

D seems to be systematically slightly
larger for the transformed 2D fields than for the 3D

models (Figs. 11c and 12c); in any case the 2D
estimations of uncertainty on C0:5

D are systematically
bounding the 3D ones. Similarly the relative errors on
LD are reduced very significantly when comparing the 2D
transformed fields with the 2D original fields (compare
Figs. 9 and 13). Before the 2D transformation, the relative
error on the saltwater penetration could reach 38% for a
variance of 3. By transforming the 2D fields, the error is
reduced in general to less than 5%. The width of the
mixing is however not better reproduced when consider-
ing the transformed fields. It is worth noting that errors
due to the ergodicity limitation may partly explain the
misfit between 2D* and 3D predictions for larger ly
correlation length (ly>0.12).

It has been shown in the previous sections (Impact of
the heterogeneity and Dimensionality effects) that the
differences between 2D and 3D simulations were mainly
due to a larger effective hydraulic conductivity in the main
flow direction in the 3D models as compared to the 2D
ones (both sharing identical statistics of the hydraulic
conductivity fields). In addition, more variability of the
velocity field in 2D models yielded more dispersion and
thus reduced the magnitude of the density driven forces.
This results in a shorter toe penetration and larger width of
the mixing zone (rotation of the saltwater wedge) in 2D.
The proposed transformation reduces the differences
between the 2D and the 3D forecasts because not only
does it increase the effective hydraulic conductivity in the
main flow direction, but it also reduces the variability of a
2D field by reducing its variance.
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Summary and conclusions

This paper proposes a systematic numerical study of the
effects of heterogeneity and dimensionality on seawater
intrusion. It shows that the impact of the heterogeneity on
seawater intrusion is different in 3D and 2D, both in
magnitude and in terms of general trends. For example,
when the variance of the log hydraulic conductivity
increases, the toe penetration length reduces in 2D, while
it may increase or decrease in 3D depending on the degree
of heterogeneity and on anisotropy. This is very important
because it shows that one cannot extrapolate directly the
results of a 2D study to estimate the effect of hetero-
geneity on a real 3D system. Of course, the numerical
experiments were conducted in the framework of a highly
idealized system based on an extension of the Henry
problem in 3D, but nevertheless this is sufficient to
indicate that under a more complex situation involving a
nonrectangular geometry and geological heterogeneity,
one should also not extrapolate 2D results and be
very careful when investigating the possible effects of
heterogeneity.

Moreover, the position of the saltwater wedge and the
width of the mixing zone can be approximated relatively
accurately when the variance is small (σY<1) with a
homogeneous model whose hydraulic conductivity is the
equivalent conductivity of the heterogeneous medium
computed for a uniform flow through the medium. This
is not true for the estimation of the saltwater flux
circulating in the seawater wedge, which is always very
much higher (between 2 and 20 times higher) in the
heterogeneous medium than in the homogeneous medium.
When the variance increases, it is not sufficient anymore
to use only an equivalent hydraulic conductivity to
represent accurately the position of the wedge, the width
of the mixing zone or the saltwater flux. This is interpreted
as an increased effect of macrodispersion that needs to be
accounted for when upscaling the heterogeneous media.
This result is in contradiction with the results of Held et al.
(2005) who argue that in steady state the macrodispersion
has a negligible effect on the saltwater wedge. This
difference is certainly due to the fact that the problem that
they studied has a very small local dispersivity and is
therefore dominated by diffusion, while the work reported
here considered higher local dispersivities following the
work of Abarca et al. (2007a) because this models a
situation that is closer to reality than the initial Henry
problem. For the moment, no simple analytical expres-
sions are available to the authors’ knowledge to estimate
the macrodispersivity under the conditions studied here. It
means that one has still to rely on the use of numerical
modelling in a heterogeneous domain to analyse the effect
of heterogeneity in 2D and in 3D.

When comparing 2D and 3D heterogeneous models,
the toe penetration is the parameter most affected by the
heterogeneity. The toe position is controlled both in 2D
and 3D by the horizontal effective hydraulic conductivity
and both by the longitudinal and transversal macro
dispersivities, as already shown in 2D by Abarca (2006)

and Abarca et al. (2007a). When the effective horizontal
hydraulic conductivity increases, the toe penetration
length increases. When the macro dispersivity increases,
the toe penetration length reduces. These two processes
are in competition when the level of heterogeneity
increases. Then the dimension of the flow configuration
becomes extremely important because the effective
hydraulic conductivity or the macro dispersivity evolve
differently when increasing the level of heterogeneity in
2D and in 3D. This leads to opposite behaviours in 2D
and 3D isotropic media when the level of heterogeneity
increases: in 2D the toe penetration length reduces while it
increases in 3D. The width of the mixing zone is mainly
controlled by dispersion.

In order to facilitate the analysis of 3D cases (which are
extremely demanding in terms of computer resources), a
technique is proposed to use 2D heterogeneous hydraulic
conductivity fields that approximate the 3D saltwater
intrusion. The technique consists of generating 2D fields
having statistical properties that are different from the real
3D field in such a way that the 2D fields have the right
equivalent conductivity tensor. This is achieved by
increasing the mean and reducing the variance. This
correction is shown to provide a good approximation for
the cases that were tested. However, it could certainly be
improved further by correcting the longitudinal and
transverse dispersivities.

Acknowledgements This work has been funded by the Swiss
National Science Foundation under Grants: 207020-110017 and
PP002-106557. The authors thank G. de Marsily, R. Ababou, J.
Carrera and P. Perrochet for providing valuable suggestions on
earlier version of the manuscript as well as Christian Langevin and
the anonymous reviewers for their critical but constructive review
comments. The authors are also grateful to R. Bouhlila and F.
Cornaton for useful discussions about the study.

References

Ababou R (1996) Random porous media flow on large 3D grids:
numerics, performance, and application to homogenization,
Chap 1, vol 79. In: Wheeler MF (ed) Environmental studies,
mathematical, computational & statistical analysis. Springer,
New York, pp 1–25

Abarca E (2006) Seawater intrusion in complex geological environ-
ments. PhD Thesis, Technical University of Catalonia, Spain

Abarca E, Carrera J, Sánchez-Vila X, Dentz M (2007a) Anisotropic
dispersive Henry problem. Adv Water Resour 30:913–926.
doi:10.1016/j.advwatres.2006.08.005

Abarca E, Carrera J, Sanchez-Vila X, Voss CI (2007b) Quasi-
horizontal circulation cells in 3D seawater intrusion. J Hydrol
339:118–129

Al-Bitar A, Ababou R (2005) Random field approach to seawater
intrusion in heterogeneous coastal aquifers: unconditional
simulations and statistical analysis. In: Renard P, Demougeot-
Renard H, Froidevaux R (eds) Geostatistics for environmental
applications. Springer, Heidelberg

Badon-Ghyben W (1888) Nota in verband met de voorgenomen
putboring nabij Amsterdam [Notes on the probable results of
well drilling near Amsterdam] Tijd Konink Instit Ing 9:8–22

Bear J (1999) Conceptual and mathematical modeling. In: Bear J,
Cheng AH-D, Sorek S, Ouazar D, Herrera I (eds) Seawater

71

Hydrogeology Journal (2010) 18: 55–72 DOI 10.1007/s10040-009-0533-0

http://dx.doi.org/10.1016/j.advwatres.2006.08.005


intrusion in coastal aquifers: concepts, methods and practices.
Kluwer, Dordrecht, The Netherlands, pp 127–161

Bear J (2005) Sea water intrusion into coastal aquifers. In:
Anderson M G (ed) Encyclopedia of hydrological sciences.
Wiley, Devon, UK

Brovelli A, Mao X, Barry DA (2007) Numerical modeling of tidal
influence on density-dependent contaminant transport. Water
Resour Res 43, W10426. doi:10.1029/2006WR005173

Burnett RD, Frind EO (1987) Simulation of contaminant transport
in 3 dimensions. 2. Dimensionality effects. Water Resour Res
23:695–705

Cornaton F (2007) Ground Water: a 3-D ground water flow and
transport finite element simulator. Reference manual, 190 pp.
http://www1.unine.ch/chyn/php/softwares.php, October 2009

Croucher AE, O’Sullivan MJ (1995) The Henry problem for
seawater intrusion. Water Resour Res 31:1809–1814

Dagan G, Bear J (1968) Solving the problem of local interface
upconing in a coastal aquifer by the method of small
perturbations. J Hydraul Res 6:15–44

Dagan G, Zeitoun DG (1998) Seawater-freshwater interface in a
stratified aquifer of random permeability distribution. J Cont
Hydrol 29:185–203

Darvini G, Spendolini L, Salandin P (2002) Saltwater intrusion for
finite Peclet numbers in random permeability aquifers. Develop-
ments in Water Science. Elsevier, Amsterdam, pp 523–530

Dentz M, Kinzelbach H, Attinger S, Kinzelbach W (2000) Temporal
behavior of a solute cloud in a heterogeneous porous medium 1:
point-like injection. Water Resour Res 36:3591–3604

Diersch H-JG, Kolditz O (2002) Variable-density flow and transport
in porous media: approaches and challenges. Adv Water Resour
25:899–944

Fetter CW (1972) Position of saline water interface beneath oceanic
islands. Water Resour Res (5):1307–1315

Gelhar LW (1986) Stochastic subsurface hydrology from theory to
applications. Water Resour Res 22:S135–S145

Gelhar LW (1993) Stochastic subsurface hydrology. Prentice-Hall,
Upper Saddle River, NJ

Gelhar LW, Axness CL (1983) 3-Dimensional stochastic-analysis of
macrodispersion in aquifers. Water Resour Res 19:161–180

Glover RE (1959) The pattern of fresh-water flow in a coastal
aquifer. J Geophy Res 64:457–459

Held R, Attinger S, Kinzelbach W (2005) Homogenization
and effective parameters for the Henry problem in heteroge-
neous formations. Water Resour Res 41:1–14. doi:10.1029/
2004WR003674

Henry HR (1964) Effects of dispersion on salt encroachment in
coastal aquifers. US Geol Surv Water Suppl Pap 1613–C

Herzberg A (1901) Die Wasserversorgung einiger Nordseebader
[The water supply of parts of the North Sea coast in Germany].
J Gasbeleucht Verw Beleuchtungsarten Wasserversorg 44:815–
819, and 845:824–844

Huyakorn P, Wu YS, Park NS (1996) Multiphase approach to the
numerical solution of a sharp interface saltwater intrusion
problem. Water Resour Res 32:93–102

Matheron G (1967) Éléments pour une théorie des milieux poreux
[Elements for a porous-media theory]. Masson and Cie, Paris

Matheron G (1973) The intrinsic random functions and their
applications. Adv Appl Prob 5:439–468

Pohll GM, Warwick JJ, Benson D (2000) On the errors associated
with two-dimensional stochastic solute transport models. Trans
Porous Med 40:281–293

Reilly TE, Goodman AS (1985) Quantitative-analysis of saltwater
fresh-water relationships in groundwater systems: a historical-
perspective. J Hydrol 80:125–160

Schwarz C (1999) Dichteabhängige strömungen in homogenen und
heterogenen porösen medie [Density-dependent flow in homo-
genous and heterogeneous porous media]. PhD Thesis, Swiss
Federal Institute of Technology, Switzerland

Shapiro AM, Cvetkovic VD (1990) A comparison of 2-dimensional
and 3-dimensional stochastic-models of regional solute move-
ment. Trans Porous Med 5:1–25

Simmons CT, Fenstemaker TR, Sharp JM (2001) Variable-density
groundwater flow and solute transport in heterogeneous porous
media: approaches, resolutions and future challenges. J Cont
Hydrol 52:245–275

Simpson MJ, Clement TP (2004) Improving the worthiness of the
Henry problem as a benchmark for density-dependent groundwater
flow models. Water Resour Res 40, W01504. doi:10.1029/
2003WR002199

Strack ODL (1976) Single-potential solution for regional interface
problems in coastal aquifers. Water Resour Res 12:1165–1174

Tompson AFB, Ababou R, Gelhar LW (1989) Implementation of
the 3-dimensional turning bands random field generator. Water
Resour Res 25:2227–2243

Voss CI, Souza WR (1987) Variable density flow and transport
simulation of regional aquifers containing a narrow freshwater-
saltwater transition zone. Water Resour Res 23:1851–1866

Welty C, Gelhar LW (1991) Stochastic-analysis of the effects of
fluid density and viscosity variability on macrodispersion in
heterogeneous porous-media. Water Resour Res 27:2061–
2075

Welty C, Kane AC, Kauffman LJ (2003) Stochastic analysis of
transverse dispersion in density-coupled transport in aquifers.
Water Resour Res 39(6):1150. doi:10.1029/2002WR001631

72

Hydrogeology Journal (2010) 18: 55–72 DOI 10.1007/s10040-009-0533-0

http://dx.doi.org/10.1029/2006WR005173
http://www1.unine.ch/chyn/php/softwares.php
http://dx.doi.org/10.1029/2004WR003674
http://dx.doi.org/10.1029/2004WR003674
http://dx.doi.org/10.1029/2003WR002199
http://dx.doi.org/10.1029/2003WR002199
http://dx.doi.org/10.1029/2002WR001631

	A numerical analysis of dimensionality and heterogeneity effects on advective dispersive seawater intrusion processes
	Abstract
	Introduction
	Problem setup
	The SWI conceptual model
	Extension to 3D
	Extension to the heterogeneous case

	Stochastic model and analysis
	Hydraulic conductivity fields
	2D and 3D heterogeneity
	Increasing the level of heterogeneity

	Effective hydraulic parameters
	Effective hydraulic conductivity
	Effective dispersivities

	Density-dependent flow and solute transport Monte Carlo simulations

	Numerical results
	Ergodicity hypothesis
	Preliminary results
	Impact of the heterogeneity
	Dimensionality effects
	Effects of increasing variability

	From 2D to 3D
	2D hydraulic conductivity fields transformation
	Numerical test

	Summary and conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


