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Abstract The renal collecting system serves the fine-
tuning of renal acid–base secretion. Acid-secretory type-A
intercalated cells secrete protons via a luminally expressed
V-type H+-ATPase and generate new bicarbonate released
by basolateral chloride/bicarbonate exchangers including
the AE1 anion exchanger. Efficient proton secretion
depends both on the presence of titratable acids (mainly
phosphate) and the concomitant secretion of ammonia
being titrated to ammonium. Collecting duct ammonium
excretion requires the Rhesus protein RhCG as indicated by
recent KO studies. Urinary acid secretion by type-A
intercalated cells is strongly regulated by various factors
among them acid–base status, angiotensin II and aldoste-
rone, and the Calcium-sensing receptor. Moreover, urinary
acidification by H+-ATPases is modulated indirectly by the
activity of the epithelial sodium channel ENaC. Bicarbon-
ate secretion is achieved by non-type-A intercalated cells
characterized by the luminal expression of the chloride/
bicarbonate exchanger pendrin. Pendrin activity is driven
by H+-ATPases and may serve both bicarbonate excretion
and chloride reabsorption. The activity and expression of

pendrin is regulated by different factors including acid–base
status, chloride delivery, and angiotensin II and may play a
role in NaCl retention and blood pressure regulation.
Finally, the relative abundance of type-A and non-type-A
intercalated cells may be tightly regulated. Dysregulation of
intercalated cell function or abundance causes various
syndromes of distal renal tubular acidosis underlining the
importance of these processes for acid–base homeostasis.
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Introduction

Extracellular pH and systemic acid–base status are critical
for normal organ and cellular function. Deranged acid–base
status is associated with higher morbidity and mortality in
patients with chronic kidney disease [15]. Extracellular pH
affects bone density and stability, and mild chronic
metabolic acidosis has been suspected to contribute to
osteopenia and osteoporosis [10, 77]. Rickets and osteo-
malacia are often observed in patients with inborn syn-
dromes of renal tubular acidosis (see below). Extracellular
acidosis affects skeletal muscle metabolism and induces a
catabolic state [15]. In the setting of chronic kidney disease,
metabolic acidosis contributes to peripheral insulin resis-
tance and lower leptin secretion [46, 109, 186]. Thus,
extracellular pH has to be tightly kept in the normal
physiologic range of pH 7.36–7.44 to maintain normal
organ and body function.

Acid–base status is influenced and regulated by the
activity of many organs including skeletal muscle (i.e.,
exercise), intestine (i.e., loss of acid or bicarbonate), bone
(i.e., incorporation or release of carbonate and phosphate),
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and by dietary intake or physical activity. Kidney and
respiration play a central role in both controlling and
maintaining systemic acid–base status by affecting the
levels of pCO2, bicarbonate, and nonvolatile acids.

The kidney controls and maintains systemic acid–base
status by three intricately linked mechanisms: the reabsorp-
tion of filtered bicarbonate, the excretion of acids (or, if
necessary, of alkali), and the de novo generation of
ammonium and bicarbonate. The latter process allows the
excretion of acids and the replenishing of bicarbonate used
to buffer acids. The reabsorption of filtered bicarbonate is
mostly achieved by the proximal tubule and to a lesser
extent by the thick ascending limb and the distal convoluted
tubule (for review, [68]). Urine entering the connecting
tubule contains only minute amounts of bicarbonate [68].

Ammoniagenesis occurs only in the proximal tubule; the
mechanisms of ammonium excretion will be discussed in
more detail below. The ultimate fine-tuning of renal acid or
base excretion takes place in the various segments of the
collecting system involving various cell types and distinct
transport proteins and is subject to tight regulation. The
importance of collecting duct acid–base excretion to overall
systemic acid–base balance is highlighted by several rare
inherited disorders affecting collecting duct acid–base
transport proteins or their regulation.

Classic work performed by R.F. Pitts, G. Giebisch, G.
Malnic, M.L. Halperin, R. Richterich, R.C. Morris, A.
Sebastian, N.E. Madias, H.N. Hulter, W.B. Schwartz, P.R.
Steinmetz, R.J. Alpern, Q. Al-Awqati, and many others has
elucidated and described the fundamental processes that
contribute to urinary acidification using a variety of
techniques and animal models. These data are the basis
for the more recent molecular approaches dissecting the
mechanisms of urinary acidification.

Extensive in vivo experiments in various species
including dog, guinea pig, rabbit, mouse, rat, and humans
indicate that distinct differences exist regarding the basal
rates of urinary acidification, the extent of adaptive
responses to alkali or acid loading, and the morphological
characteristics of the collecting duct (i.e., relative number of
different intercalated cell subtypes). Among other reasons,
the specific dietary requirements of these species (relative
dietary alkali or acid load, electrolyte content) have been
discussed as potential explanations. However, it is beyond
the scope of this review to discuss these differences.

The purpose of this article is to give a short overview of
the mechanisms of acid–base excretion along the collecting
system and its regulation on various levels and to discuss
briefly dysregulation and inherited disorders of these
mechanisms leading to distal renal tubular acidosis (dRTA).
This review will discuss mainly more recent data coming
from molecular and functional studies in mouse and rats or
from genetic studies in humans.

Various segments and cells along the collecting duct
contribute to renal acid–base regulation

Cells contributing to final urinary acidification are distrib-
uted over several segments along the nephron and collect-
ing system. The first intercalated cells, characterized by the
expression of luminal H+-ATPases and the anion exchang-
ers AE1 (Anion exchanger 1) or pendrin occur in the late
distal convoluted tubule (DCT2) [25, 91, 105, 184]. The
subsequent segments of the collecting system, namely the
connecting tubule (CNT), the cortical collecting duct
(CCD), the outer medullary collecting duct (OMCD), and
the initial third of the inner medullary collecting duct
(iIMCD) contain various subtypes of intercalated cells. At
least two subtypes of intercalated cells can be distinguished
based on the expression of specific proteins: type-A
intercalated cells and non-type-A intercalated cells
(Fig. 1). Type-A intercalated cells are characterized by the
presence of luminal H+-ATPases and a basolateral anion
exchanger, AE1. In contrast, non-type-A intercalated cells
express the anion exchanger pendrin on the luminal pole.
H+-ATPase expression in non-type-A intercalated cells may
be luminal, basolateral, or both membranes [91, 184, 202].
However, some authors have further subclassified non-
type-A intercalated cells based on subcellular H+-ATPase
distribution [91, 184]. Non-type-A intercalated cells also
express the NHE regulatory factor 1 (NHERF1) [32]. All
types of intercalated cells express carbonic anhydrase II and
the transcription factor Foxi1 (forkhead box I1) as
additional cell-specific markers [27]. Importantly, type-A
intercalated cells are dispersed from the late distal convo-
luted tubule to the initial inner medullary collecting duct. In
contrast, non-type-A intercalated cells are mostly expressed
in the DCT2 and connecting tubule and less in the cortical
collecting duct. Only a few non-type-A intercalated cells
are found in the outer stripe of the outer medulla in adult
kidney [92, 170, 207]. Pendrin-positive cells are found also
in the inner medulla and inner stripe of the outer medulla
during nephrogenesis but disappear during the first postna-
tal days [29, 170].

The classic view states that type-A intercalated cells
secrete acid whereas non-type-A intercalated cells are
responsible for bicarbonate excretion. This simple classifi-
cation is challenged by several recent findings. The luminal
expression of several subunits of intercalated cell specific
H+-ATPase has been detected in the principal cells of the
connecting tubule (Wagner, Loffing, unpublished observa-
tions). Moreover, intercalated cells may serve not only
acid–base transport but also the regulation of electrolyte
homeostasis. Pendrin function, as discussed below, may
contribute importantly to chloride reabsorption along the
CNT and CCD. Genetic ablation of the B1 H+-ATPase
subunit in mice causes a syndrome of massive salt loss
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(Chambrey, Loffing, Wagner, Eladari, unpublished data)
which has also been described in patients with classic forms
of dRTA [160]. Moreover, expression of flow-activated
potassium channels (maxiK) has been described in interca-
lated cells, thereby contributing to potassium homeostasis
[128, 129]. However, it is beyond the scope of this review
to discuss the potential role of intercalated cells in
electrolyte homeostasis.

The relative contribution of these subsegments to acid–
base excretion and final urinary acidification has been
difficult to establish. The importance of the segments
between the distal tubule and inner medullary collecting
duct for urinary acidification has been recognized a long
time ago by Ullrich et al. and Gottschalk et al. using
microcatheters and microperfusion [63, 191] and the
kinetics of acidification were determined under conditions
of acidosis and alkalosis by Malnic and Giebisch [61, 199].
These data demonstrated that urinary pH is approximately
0.4 units pH lower than plasma pH in the distal convoluted

tubule and acidifies by as much as 2 units pH reaching
values of approximately pH 5.5 at the medullary tip.
However, the exact quantitative contribution of single
subsegments of the collecting duct system has remained
unclear since these segments are not accessible to micro-
puncture. Studies in mice lacking either the B1 H+-ATPase
subunit (ATP6V1B1) or the alpha subunit of the epithelial Na+

channel (ENaC) have shed some light on the importance of
the connecting tubule as a major segment [97]. Application
of loop diuretics increases electrogenic urinary acidifi-
cation, an effect abolished by inhibitors of ENaC
function such as amiloride or triamterene [73]. In mice
lacking the B1 H+-ATPase subunit, specifically expressed
in intercalated cells, urinary pH is more alkaline at
baseline and does not acidify upon furosemide applica-
tion. In contrast, in mice that lack αENaC expression in
all segments of the collecting duct but with preserved
αENaC expression in the connecting tubule, urinary pH is
acidified normally after furosemide treatment. These data
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Fig. 1 Two types of intercalated cells. Intercalated cells are expressed
from the late distal convoluted tubule to the initial third of the inner
medullary collecting duct (red shaded). Left cell model of non-type-A
intercalated cell. These cells express on the luminal membrane the
chloride/bicarbonate exchanger pendrin mediating bicarbonate excre-
tion and chloride absorption. Bicarbonate is produced from CO2 and
H2O catalyzed by carbonic anhydrase II (CAII). Non-type-A
intercalated cells express also V-type H+-ATPases which can be found
on the basolateral and/or luminal membrane and which may drive
pendrin transport activity. Chloride is released across the basolateral
membrane through chloride channels that consist of ClC-kb and

Barttin subunits. Right cell model of type-A intercalated cell.
Bicarbonate and proton generation is catalyzed by CAII providing
protons for luminal V-type H+-ATPases and bicarbonate for baso-
lateral chloride/bicarbonate exchangers including AE1. Type-A inter-
calated cells also express basolateral KCC4 KCl-cotransporters that
may function in maintaining in low intracellular chloride. Type-A
intercalated cells express also on their luminal membrane H+/K+-
ATPases that are not further discussed in this review and serve mostly
preservation of potassium during potassium deficiency. Moreover,
both type-A and non-type-A intercalated cells participate in ammoni-
um excretion as further detailed in Fig. 3
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indicate that the connecting tubule is sufficient to maintain
normal electrogenic urinary acidification [97].

The major transport proteins

H-ATPases

V-type H+-ATPases are multisubunit protein complex
consisting of at least 14 subunits in humans (for a detailed
review on H+-ATPase structure, function, and regulation,
see recent reviews: [54, 55, 119, 122, 202]). Most subunits
occur in different isoforms that may be specific to organs,
cell types, or subcellular organelles. In general, H+-ATPases
are organized in two domains, a cytosolic domain (V1)
binding and hydrolyzing ATP and a membrane bound
domain (V0) mediating proton translocation (Fig. 2). Both
domains are connected through a stalk-like structure.
Activity of H+-ATPases may be regulated by trafficking,
domain assembly/disassembly, and changes in the ratio of
ATP hydrolysis/H+-pumping as well as by other means [55,
122, 202]. H+-ATPases couple the hydrolysis of ATP to the

movement of protons across membranes and are found not
only in the plasma membrane but are also mostly expressed
in many intracellular organelles. Subcellular localization,
regulation, and function of different H+-ATPase populations
may at least in part be regulated by the presence of specific
subunit isoforms. The B1, a4, and d2 isoforms have been
labeled as intercalated cell specific. However, these iso-
forms are expressed also in other organs such as epididymis
or inner ear and are found also in the thick ascending limb
of the loop of Henle (B1) or the proximal tubule (a4) [53,
173]. Localization and expression of the d2 subunit has not
been reported in full detail to date [166, 168].

Moreover, staining for several H+-ATPase subunits
including B1 and a4 has been observed also in cells in the
connecting tubule that express ENaC or AQP2 (Aquaporin
2 water channel), typical markers of principal cells. The
function of these subunits or full pumps in principal cells
has not been investigated in detail. Whether pumps in
principal cells of the CNT contribute to urinary acidification
is unknown. H+-ATPase staining of principal cells is not
detected in the CCD and later segments.

Expression of H+-ATPases along the nephron during
embryonic development in mouse kidney occurs apparently
differentially in the different segments of the nephron in a
cell-type-specific coordinated manner [79]. Also after birth,
H+-ATPase expression and abundance increases and rea-
ches adult levels only after about 18–20 days postnatally
coinciding with weaning and full urinary acidification [29].

Anion exchangers: AE1 and pendrin

The collecting duct expresses a variety of anion exchangers
including members of the SLC4 transporter family ((Anion
exchanger isoforms 1–4) AE1, AE2, AE3, AE4, NBCn1
(electroneutral sodium-bicarbonate cotransporter 1)) and the
SLC26 transporter family (pendrin, SLC26A7). The role
and regulation of AE2, AE3, AE4, NBCn1, and SLC26A7
in the collecting duct are mostly unknown; phenotypes of
the respective KO mouse models have not been reported.
Thus, this section of the review will focus only on the
function and regulation of AE1 and pendrin in the
collecting duct.

AE1

AE1 belongs to a subfamily of electroneutral anion
exchangers of the SLC4 family of bicarbonate transporters
(for review, [7, 38, 138, 144]). The AE1 isoform of the
kidney is an N-terminally truncated version of the red blood
cell band3/AE1 protein due to alternative splicing of the
first exon. Kidney AE1 (kAE1) lacks the first 65 amino
acids in humans [8, 96]. AE1 expression is basolateral and
its presence characterizes type-A intercalated cells in the
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Fig. 2 Model of the structure of vacuolar H+-ATPases. H+-ATPases
are multisubunit membrane-bound enzymes consisting of two major
subunits, a cytosolic V1 domain (shaded in orange-red) and the
membrane associated V0 domain (blue colored). Both domains are
connected by a stalk that mediates the energy from ATP hydrolysis to
H+-transfer. Mutations in the B1 isoform of the B subunit (shaded in
red) cause distal renal tubular acidosis with sensorineural deafness.
Moreover, mutations have been found in the a2, a3, and a4 isoforms
of the a subunit (shaded in dark blue) in patients with cutis laxa (a2),
osteopetrosis (a3), or distal renal tubular acidosis (a4). Figure adapted
from references [55, 202]
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collecting system [9]. AE1 mediates basolateral release of
intracellular bicarbonate against extracellular chloride,
thereby secreting newly generated bicarbonate into the
interstitial space/blood. AE1 may form a transport metab-
olon together with carbonic anhydrase II which is bound to
a C-terminal stretch of amino acids and enhances AE1
transport activity [176]. Similarly, AE1 may also interact
with the extracellular carbonic anhydrase isoform IV (CA
IV) [175].

The importance of AE1 for normal acid–base status is
underlined by the fact that mutations in AE1 cause distal renal
tubular acidosis as discussed below. A mouse model lacking
AE1 in red blood cells and kidney demonstrated massive
hyperchloremic metabolic acidosis [174]. In freshly isolated
OMCD type-A intercalated cells, the specific AE1 inhibitor
diBA(5)C4 reduced total chloride/bicarbonate exchange ac-
tivity only by about 50% and had no effect in OMCDs from
AE1 deficient mice. More surprisingly, total chloride/bicar-
bonate exchange activity was only reduced by 30% in type-A
intercalated cells from AE1 KO mice [174]. Thus, type-A
intercalated cells express several basolateral chloride/bicar-
bonate exchangers, but the contribution of AE1 is critical to
normal function, which other anion exchanger(s) mediate
basolateral chloride/bicarbonate exchange has not been eluci-
dated to date. Due to the lack of specific inhibitors, it has
remained difficult to distinguish different anion exchangers.

Little is known about the regulation of AE1 abundance,
polarized expression, and activity. Williamson et al. have
shown that trafficking of kAE1may be regulated by the
phosphorylation status of two tyrosine residues (Y359 and
Y904) which may affect polarization as well as recycling of
AE1 [215]. Whether phosphorylation of these residues occurs
in vivo and by which stimuli is unknown. Trafficking of AE1
from the Golgi to the plasma membrane may also be regulated
through interactions with an integrin-linked kinase [84].

AE1 mRNA and protein expression is increased in rat
kidney during metabolic and respiratory acidosis [43, 74,
151]. Interestingly, in mouse kidney, only AE1 protein but
not mRNA are enhanced (Mohebbi, Van der Wijst, Perna,
Capasso, Wagner, unpublished results). Aldosterone has
also been reported to stimulate basolateral anion exchange
activity in isolated perfused OMCDs from normal or
adrenalectomized rabbit [70]. Presently, it is unknown if
this anion exchanger activity reflects AE1 transport activity
or alternative transporters. Of note, in mouse kidney, the
aldosterone analog deoxycorticosterone acetate (DOCA)
increases AE1 mRNA but not protein expression (Mohebbi,
Van derWijst, Perna, Capasso,Wagner, unpublished results).

Pendrin

The anion exchanger pendrin (PDS, SLC26A4) was
initially identified as being mutated in patients suffering

from Pendred syndrome (OMIM #274600) characterized by
hypothyroidism, goiter, and sensorineural deafness [50,
159]. In the kidney, pendrin is specifically expressed on the
luminal membrane of non-type-A intercalated cells [92,
149]. There pendrin may mediate chloride/bicarbonate
exchange releasing bicarbonate into urine and reabsorbing
chloride. Indeed, both in vivo and in vitro experiments
using Pds knockout mice indicate that pendrin is critical for
bicarbonate secretion during metabolic alkalosis [149].
Accordingly, downregulation of protein expression during
NH4Cl, (NH4)2SO4 or acetazolamide induced metabolic
acidosis has been described [57, 67, 203]. During
bicarbonate-loading, increased pendrin abundance was
observed, whereas potassium depletion caused reduced
protein levels, an effect that may further enhance metabolic
alkalosis during K+ restriction [57, 203].

Moreover, pendrin may also be important for transcellular
chloride reabsorption in the connecting tubule and cortical
collecting duct. Increased chloride delivery to the distal
nephron and collecting duct is associated with reduced
pendrin expression levels [139, 192]. Apparently, pendrin
expression is sensitive to luminal chloride concentration but
less to systemic chloride status. A role of pendrin in
collecting duct chloride reabsorption is further supported by
the findings that pendrin expression is regulated during
chloride depletion [197, 208], Pds KO mice are resistant to
DOCA and NaCl induced hypertension [196], and angio-
tensin II stimulates chloride reabsorption in isolated CCDs
from wild-type but not from pendrin-deficient mice [132].
However, it is not entirely clear if chloride depletion alone
or the accompanying metabolic alkalosis increased pendrin
expression. Moreover, the influence of aldosterone or the
aldosterone analog DOCA on pendrin expression is
controversial. Verlander et al. reported increased pendrin
expression in DOCA-treated mice [196], whereas we failed
to detect changes in pendrin expression in DOCA-treated
mice (Mohebbi, Wagner, unpublished data). Moreover,
functional analysis of the pendrin promoter in various cell
lines showed in the presence of aldosterone reduced
promoter activity when transfected in HEK cells but no
effects in other cell lines [1].

Pendrin activity may be controlled on at least four
different levels, namely mRNA and protein expression as
well as subcellular localization. Enhanced luminal pendrin
localization was observed in animals loaded with bicarbon-
ate [203], given DOCA [196], or during chloride depletion
[197], whereas several treatments altered total pendrin
abundance in the kidney [57, 67, 139, 192, 203]. Studies
in various cell lines provided evidence for direct regulatory
domains in the promoter region sensitive to intracellular pH
and possibly to aldosterone [1]. A fourth and indirect means
of regulation may be changes in the number of pendrin
expressing non-type-A intercalated cells as observed in
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states of chronic metabolic acidosis or altered distal
chloride delivery associated with a changed relative
abundance of pendrin positive cells [67, 192, 203].

The exact role of pendrin in humans has not been
established to date. A recent case report described devel-
opment of massive hypochloremic metabolic alkalosis in a
patient with Pendred syndrome upon treatment with
thiazide diuretics [134] which might indicate that pendrin
may indeed be necessary to defend against or compensate
for metabolic alkalosis as in the pendrin deficient mouse
model.

The KCl-cotransporter KCC4

Genetic ablation of the KCl-cotransporter KCC4 was
reported by Boettger et al. to cause distal renal tubular
acidosis [28]. KCC4 was found to be expressed basolat-
erally in type-A intercalated cells, Kcc4 deficient mice
excreted more alkaline urine and had lower arterial base
excess values indicative for renal tubular acidosis. Howev-
er, it is not clear if this acidosis is of the distal type since
KCC4 is also abundantly expressed in the proximal tubule
and urinary bicarbonate levels were not reported. Intracel-
lular chloride concentrations were measured in single
intercalated cells using energy dispersive X-ray microanal-
ysis and found to be elevated. The authors proposed that
KCC4 serves in type-A intercalated cells to release chloride
back into interstitium and thereby maintain AE1 activity
[28]. However, type-A intercalated cells appear to express
also the ClC-Kb/Barttin chloride channel on the same
membrane which may serve a similar function. Thus, the
role of chloride transporting proteins in the basolateral
membrane of (type A) intercalated cells remains to be fully
elucidated.

Ammonium excretion: Crucial role of RhCG

The process of renal ammonia/ammonium excretion is
complex, involves several nephron segments with distinct
mechanisms and is only partly understood (for review, [62,
95, 213, 214]). In the proximal tubule, ammonium is
formed from the metabolism of glutamine, a process
stimulated by a variety of factors including metabolic
acidosis, glucocorticoids, or potassium depletion. Import
of glutamine in the proximal tubule cells occurs most likely
through the basolateral SNAT3 glutamine transporter
regulated by acid–base status and glucocorticoids [65, 83,
115, 123]. The ammoniagenic pathway produces NH3 and
bicarbonate and is also highly regulated during metabolic
acidosis [41, 42, 75, 123]. Ammonium is excreted in the
proximal tubule either into venous blood or into urine via an
apical sodium/proton exchanger (NHE), most likely involv-
ing the NHE3 isoform which accepts NH4

+ instead of H+

[68]. However, other isoforms, such as NHE8 [64], may also
participate as the Nhe3 deficient mouse model with
transgenic overexpression of NHE3 in the intestine shows
no major derangement of systemic acid–base status as
indicated by normal blood bicarbonate levels [217]. In the
thick ascending limb of the loop of Henle, ammonium is
actively reabsorbed via luminal Na+/K+/2Cl− (NKCC2)
cotransporters where ammonium is accepted instead of
potassium. Additional NH4

+ may enter cells through luminal
potassium channels, possibly renal outer medullary K+

channels. There is also a component of “passive” transport
via the paracellular route driven by the lumen-positive
potential [62]. Ammonium is released via the basolateral
membrane into interstitium by not completely characterized
and understood mechanisms. A role for the electroneutral
sodium-bicarbonate cotransporter NBCn1 (Slc4a7) has been
proposed [76, 126]. Release via isoforms of the KCl
cotransporter subfamily might be another possibility; how-
ever, the exact localization of the KCC1-4 isoforms along the
nephron has not been reported in detail. This step of massive
reabsorption by the thick ascending limb epithelium accu-
mulates high concentrations of ammonia/ammonium in the
interstitium, thereby providing the driving force for the
uptake of interstitial ammonia/ammonium by the adjacent
collecting duct cells.

The final step of ammonia/ammonium excretion is
mediated by the collecting duct. The major site of
ammonia/ammonium excretion is the outer medullary
collecting duct. However, during metabolic acidosis, a
strong increase in ammonia/ammonium excretion is also
found in the connecting tubule, cortical collecting duct, and
inner medullary collecting duct [95]. Ammonium accumu-
lates in the medullary interstitium to high concentrations
due to the reabsorption in the thick ascending limb. It is
thought that this high ammonium concentration provides at
least part of the driving force for ammonium excretion into
urine. Ammonium secretion results most likely from the
trapping of ammonia in the tubular lumen as ammonium
after being titrated by protons stemming from active H+

secretion (possibly driven by V-type H+-ATPases). Thus,
luminal acidification by the H+-ATPases contributes to the
driving force for ammonium secretion. In the inner
medullary collecting duct, H+ secretion maintains acidic
urinary pH and, thereby, stabilizes NH3 secretion (as a
result of a larger NH3 gradient between interstitium and
acidic urine (low NH3 but high NH4

+ concentrations)).
Thus, evidence from functional experiments indicates that
ammonium secretion along the collecting duct requires a
large NH3 permeability and active H+ secretion. During
metabolic acidosis, ammoniagenesis increases; ammonium
reabsorption in the thick ascending limb is stimulated (partly
by increasing NKCC2 expression [12]), ammonium accumu-
lation in the medullary interstitium is enhanced, and H+
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secretion along the collecting duct is increased (to a large
extent due to increased insertion of functional H+-ATPases
into the luminal membrane of type-A intercalated cells).
Exocytosis of H+-ATPase containing vesicles may be
directly stimulated by ammonium via a v-SNARE dependent
mechanism [56]. Taken together, these factors favor largely
increased ammonium excretion along the collecting duct.

Ammonium excretion in the collecting duct requires at
least two transport steps, basolateral uptake, and luminal
excretion. These mechanisms may be functionally and
molecularly distinct. Detailed studies by Susan Wall and
colleagues demonstrated several uptake mechanisms for
ammonium on the basolateral side, namely Na+/K+/2Cl−

cotransport, possibly NKKC1, and Na+/K+-ATPase [204,
206]. In both cases, NH4

+ can be transported instead of
potassium. Little evidence has been obtained for a specific
ammonia transport pathway. The role of NKCC1 in baso-
lateral NH4

+ uptake may be rather small since pharmaco-
logical blockade or genetic deletion of NKCC1 has little
effect on ammonium excretion [205, 209].

In contrast, the luminal membrane has a high perme-
ability for NH3 [222]. H

+/K+-ATPases are expressed on the
luminal membrane and in the case of the so-called colonic
isoform, the possibility of active transport of ammonium
has been demonstrated [36, 40, 180]. Whether this is
relevant in vivo is unknown at present.

The prevailing hypothesis was that ammonium excretion in
the collecting duct occurs through nonionic diffusion in the
form of NH3, subsequent protonation, and trapping of NH4

+

in the lumen. This process would not require any specific
transport proteins and be regulated only by intracellular NH3

concentrations and luminal acidification.
In 2000, Marini and colleagues provided evidence for a

role of Rhesus-like proteins in ammonium/ammonia transport
using yeast complementation studies. Three mammalian
proteins, RhAG, RhBG, and RhCG were identified [111].
RhBG and RhCG were found to the expressed in mamma-
lian kidney where RhBG is expressed in the basolateral
membrane and RhCG on the luminal membrane of all cells
along the connecting tubule and intercalated cells only in the
cortical and medullary collecting duct [49, 140, 198]. The
subcellular localization of RhCG has remained, however,
controversial. Eladari et al. described only luminal staining
for RhCG in rat kidney [49, 140], whereas the laboratory of
D. Weiner has reported both luminal and basolateral staining
for RhCG in human [69] and rat kidney [88, 162] and also in
mouse kidney [89, 198].

Several studies addressed the possibility that RhBG and
RhCG may underlie NH4

+/NH3 transport in the collecting
duct by studying their transport properties in various cell
models [16, 117, 224], their regulation during metabolic
acidosis [162, 163], or by generating Rhbg deficient mice
[34]. Taken together, these studies indicate that RhBG and

RhCG can mediate transport of NH4
+ and/or NH3 but the

stoichiometry, the species of transported ions, and transport
mode have remained controversial. Additional insights into
the transport mechanism and species of transported ions/
molecules mediated by Rh proteins came from genetic
ablation of Rh proteins in green alga and from crystalliza-
tion of the bacterial homologue AmtB. Evidence from
green alga suggests that the Rh1 protein may be linked to a
bidirectional CO2 gas channel [171]. The crystal structure
of the AmtB demonstrates a binding site for NH4

+ which
led to the hypothesis that NH4

+ is deprotonated to NH3

which then may permeate the transporter/channel as
uncharged gas [85, 94, 223]. At the intracellular face of
the protein, NH3 may be protonated again. Thus, Rh
proteins may form part of an ammonia permeable gas
channel and may be involved in the transport of NH4

+ or
NH3 in the kidney collecting duct (Fig. 3).

Two recent studies directly addressed the role of Rhbg
and Rhcg in the mammalian kidney performing genetic
deletion of these genes. Surprisingly, Rhbg-deficient mice
showed no defect in renal ammonium excretion in vivo and
ammonium or ammonia permeabilities in the isolated
perfused collecting duct showed no difference [34]. In
contrast, deletion of Rhcg causes incomplete distal renal
tubular acidosis with more alkaline urine, metabolic
acidosis, and impaired renal ammonium excretion [26].
Under basal conditions, only a mild reduction in urinary
ammonium excretion was found in Rhcg KO mice and no
evidence detected for metabolic acidosis. Oral acid chal-
lenges caused a much more pronounced metabolic acidosis
due to a massive reduction in urinary ammonium excretion
whereas titratable acids were normally excreted. The renal
defect was further analyzed on the cellular level using in
vitro intracellular pH measurements of microperfused CCD
and OMCD demonstrating a decrease in the alkalinization
rate during luminal application of NH4Cl suggesting
reduced net NH3 permeability by almost 70%. Similarly,
assessment of transepithelial NH3 permeability in micro-
perfused CCDs showed massively impaired NH3 fluxes.
Thus, Rhcg is required for renal ammonium excretion and
may be involved in mediating luminal net NH3 efflux [26].
This study, hence, established a new paradigm of ammo-
nium transport in the collecting duct requiring the presence
of RhCG and indicating that ammonia excretion does not
occur by simple nonionic diffusion.

A few studies have also addressed the regulation of
RhBG and RhCG during states of increased or altered
urinary ammonium excretion. In rodent models of meta-
bolic acidosis, reduced renal mass, or cyclosporine-induced
acidosis, no evidence for altered Rhbg abundance or
localization was obtained. In contrast, the group of D.
Weiner has reported that Rhcg protein abundance is
strongly enhanced and that Rhcg staining becomes more
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luminal under these circumstances [162, 163]. In contrast,
we found in several mouse models of increased ammonium
excretion reduced Rhcg mRNA levels (Devuyst, Wagner,
unpublished results). Clearly, further work is required to
address this discrepancy and to understand acute and
chronic regulation of these interesting transport proteins.

Regulation

Acute regulation by hormones and other factors:
angiotensin II and aldosterone, CaSR

Acid excretion along the collecting duct is tightly regulated
by both systemic as well as local factors. The renin–
angiotensin II–aldosterone system (RAAS) appears to be a
major stimulator. RAAS activation occurs during metabolic
acidosis [13, 66, 80, 153] and blockade of the RAAS
impairs renal acid excretion during acidosis [72, 161].
Moreover, deficiency of aldosterone secretion or signaling
causes hyperkalemic distal renal tubular acidosis [60, 104,
161]. Similarly, animal studies indicate that angiotensin II
and aldosterone are important stimulators of collecting duct
acid excretion [19, 100, 101, 110]. On a cellular level, both
angiotensin II and aldosterone appear to be strong stimuli
for H+-ATPase activity in type-A intercalated cells. Type-A

intercalated cells express angiotensin receptors type 1
(AT1R) , where angiotensin II increases intracellular Ca2+

and stimulates H+-ATPase activity in a protein kinase C
dependent manner [133, 148]. Also, aldosterone has direct
stimulatory effects on type-A intercalated cell function.
Hayes demonstrated that adrenalectomy decreased and
aldosterone supplementation restored or even increased
luminal H+-ATPase activity and basolateral chloride/bicar-
bonate exchanger activity in the rabbit outer medullary
collecting duct [70]. Interestingly, also acute stimulatory
aldosterone effects could be observed within a few minutes
after application to isolated mouse outer medullary collect-
ing ducts. Aldosterone stimulated H+-ATPase activity
within minutes, an effect not affected by inhibition of the
mineralocorticoid receptor or inhibitors of transcription and
translation [216]. The nongenomic effect of aldosterone
appears also to be mediated by increased intracellular
calcium and protein kinase C (Winter, Velic, Kampik,
Wagner, unpublished results).

Local factors that seem to regulate intercalated cell
function include extracellular Calcium, CO2, and pH.
Increased pCO2 stimulates exocytosis of H+-ATPase con-
taining vesicles in the outer medullary collecting duct
[156]. Moreover, incubation of collecting ducts in vitro at
acidic pH enhances type-A intercalated cell function [190].
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Fig. 3 Ammonium exretion in the collecting duct. Ammonium is
excreted into urine by an active, regulated, and at least two-step
process. First, ammonium is taken up into collecting duct cells (mostly
intercalated cells) from interstitium. This step may be mediated by
several transport proteins localized in the basolateral membrane that
are able to accept NH4

+ instead of K+ ions: the Na+/K+-ATPase and
the NKKC1 Na+/K+/2Cl− cotransporter. The existence of basolateral

RhCG proteins is controversial. On the luminal membrane, RhCG is
expressed and is involved in the net flux of NH3. The exact transport
mechanism, however, remains to be established. Parallel secretion of
protons, mostly by H+-ATPases, and to a lesser extent by H+/K+-
ATPases acidifies urine and traps NH4

+ in the lumen, thereby leading
to its final excretion
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How type-A intercalated cells sense extracellular pH or
changes in pCO2 is unknown to date.

Hypercalcemia and subsequent hypercalciuria often
causes increased diuresis and stronger urinary acidification.
In patients with recurrent calcium containing kidney stones,
defective urinary acidification has been detected and is
thought to promote crystal formation and stone develop-
ment [185]. Principal and intercalated cells along the
medullary collecting duct express on the luminal membrane
the calcium-sensing receptor (CaSR) [152]. Acute activa-
tion of the CaSR has been shown to blunt vasopressin
stimulated water reabsorption [152]. Renkema et al. could
recently demonstrate that the CaSR plays also a major role
in urinary acidification and prevention of kidney stones
[142]. They used the Trpv5−/− hypercalciuric mouse model
that presents with massive increased urine flow and acidic
urine and showed that generation of double KO mice
lacking also the B1 H+-ATPase subunit prevented urinary
acidification. Hypercalciuric mice with defective urinary
acidification developed massive nephrocalcinosis and
hydronephrosis and died of renal failure at the age of 8–
12 weeks. Moreover, it could be shown that Calcium or the
CaSR agonist neomycin stimulated H+-ATPase activity in
the in vitro microdissected medullary collecting duct from
wildtype or Trpv5−/− mice but not from B1 KO mice. Thus,
activation of the CaSR by high luminal calcium concen-
trations may trigger a compensatory or preventive process
leading to reduced water reabsorption and increased proton
secretion thereby reducing the risk of calcium precipitations
and kidney-stone formation.

Interestingly, most factors known to stimulate H+-
ATPase activity in type-A intercalated cells appear to
stimulate H+-ATPase activity by trafficking of H+-
ATPases or accessory/stimulatory proteins into the luminal
membrane [133, 148, 156, 216]. In the mIMCD3 type-A
intercalated cell model, the trafficking of H+-ATPase
containing vesicles to the luminal membrane involves a
protein complex containing Munc-18-2, syntaxin 1-A,
SNAP23, and VAMP forming a SNARE complex [5, 17,
18, 102, 121]. Similarly, cleavage of cellubrevin with
tetanus toxin prevents stimulation of H+-ATPase activity
in the outer medullary collecting duct and epididymis [31,
148]. The B1 isoform of the H+-ATPase complex appears
to play a critical role in the stimulation of H+-ATPase
activity by trafficking. In the absence of the B1 isoform,
type-A intercalated cells express more luminal B2 isoform
which may help to sustain basal H+-ATPase activity [131].
However, in the absence of a functional B1 isoform, H+-
ATPases fail to respond to stimulatory factors such as
metabolic acidosis, angiotensin II, or CaSR activation
[131, 148, 221], thereby explaining at least in part the
phenotype of incomplete dRTA in mice lacking the B1
subunit [52].

Regulation through altered protein expression

Acid–base status, electrolytes, as well as some hormones
affect abundance of some proteins involved in acid–base
transport along the collecting duct. However, it is not clear
in all cases if changes in total mRNA or protein abundance
are due to true alterations in protein abundance. In some
instances, these changes may rather reflect differences in
cell number or cannot be clearly distinguished from
changes in mRNA or protein expression in total kidney
for proteins expressed not exclusively along the collecting
duct. Only few reports have been able to overcome the
technical difficulties of collecting enough material from
dissected and isolated subsegments to examine mRNA or
protein levels [35, 123].

Acidosis is associated with increased expression of
components of the acid-extruding machinery such as AE1
mRNA and protein as discussed above. In contrast, proteins
expressed specifically in non-type-A intercalated cells such
as pendrin appear to be downregulated during acidosis, an
effect probably due to both reduced number of non-type-A
intercalated cells and less transporter/cell as reflected also
in greatly diminished immunostaining intensities. Regula-
tion of transcripts has been investigated systematically by
serial analysis of gene expression (SAGE) technology using
isolated outer medullary collecting ducts from mice
subjected to ammonium chloride or potassium depletion-
induced urinary acidification. A large number of transcripts
encoding for acid–base transporters, regulatory enzymes
and kinases, as well as for ion channels was detected [35].
However, it is not clear if these altered transcript levels
reflect only changes in transcription or mRNA stability or
not also tubular hypertrophy after prolonged treatments.
Nevertheless, these data may provide evidence for coordi-
nated regulation of a set of genes in the collecting duct.
New technologies such as fluorescence based sorting of
specific tubule segments combined with lower requirements
for total mRNA for microarray hybridization or more
sensitive second-generation sequencing and proteome tech-
nologies may offer great avenues for identifying regulated
proteins as well as for novel regulators.

Chronic regulation by remodeling

The relative abundance of the different cell types varies
along the collecting duct and changes also with electrolyte
and acid–base status, a process termed remodeling [3, 14,
158, 203]. During chronic metabolic acidosis, the increase
in the relative abundance of type-A intercalated cells has
been reported most likely at the expense of non-type-A
intercalated cells. Likewise, chronic inhibition of carbonic
anhydrase activity or genetic ablation of carbonic anhydrase
II causes remodeling of the collecting duct [14, 30].
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Apoptotic removal of non-type-A intercalated cells from
the medulla during development has been well documented
[90, 108, 170]. If this occurs also during adaptation to
metabolic acidosis or other electrolyte disturbances has not
been reported.

The molecular mechanisms initiating and controlling
collecting duct remodeling are not elucidated to date.
Reversal of polarity has been discussed based on the
observation that H+-ATPases change subcellular localiza-
tion from basolateral to apical membranes during acidosis
and that cells with apical bicarbonate secretion acquire
basolateral bicarbonate excretion [21, 157, 158, 173]. Cell
culture experiments with primary cells from rabbit collect-
ing duct cells suggested that non-type-A intercalated cells
may differentiate into type-A intercalated and principal
cells [51]. However, uncertainty about the purity of
preparations and the lack of good markers for different cell
types leave open questions. Interestingly, a protein, hensin
(also known as DMBT1 or Muclin), was identified that
induced differentiation of cells with characteristics of non-
type-A intercalated cells into type-A intercalated like cells
in cell culture. The production and secretion of hensin is
stimulated during metabolic acidosis and in isolated
perfused cortical collecting ducts application of anti-
hensin antibodies prevented the reversal of functional
polarity suggesting that hensin may play an important role
in the acute adaptive remodeling of the collecting duct [2–
4, 182, 201]. More recently, three different mouse models
deficient for hensin/DMBT1 were reported. Two of these
mouse models were apparently viable [44, 143] whereas the
third model was lethal at a very early stage [200]. The
reason for this discrepancy is unknown at this moment.
Polymerization of hensin is required for its effects on
epithelia. This complex process may involve interactions
with different members of the integrin family and be
coordinated by cyclophilin [135, 200].

More recently, the forkhead transcription factor Foxi1
was identified to be highly expressed in intercalated cells.
Its genetic ablation causes distal renal tubular acidosis in
Foxi1 KO mice due to loss of differentiation of collecting
duct cells [27]. It was also shown that the intercalated cell
specific AE1, Pendrin, and AE4 transporters may be
transcriptionally regulated by Foxi1 [27, 98]. If Foxi1 is
regulated during development or by factors that induce
collecting duct remodeling is presently unknown. Induction
of Foxi1 during nephrogenesis occurs at a time point when
first intercalated cells and intercalated cell-specific transport
proteins appear further highlighting that Foxi1 plays an
important role in intercalated cell differentiation [79].

Proliferation of intercalated cells may significantly
contribute to collecting duct remodeling during metabolic
acidosis. In mouse kidney, intercalated cells appear to
proliferate at a low rate under basal conditions [212]. In

contrast, in rat kidney, we failed to detect evidence for
significant basal proliferation of intercalated cells (Bacic,
Nowik, Kaissling, Wagner, unpublished data). However,
appearance of cells positive for the proliferation markers
BrdU, PCNA, or Ki67 occurs as early as 12 h after
induction of metabolic acidosis in rats. Interestingly, these
proliferating cells appear to be terminally differentiated
since cells form part of the tubular lumen and stain
positively for the type-A intercalated cell-specific AE1
anion exchanger (Bacic, Nowik, Kaissling, Wagner, unpub-
lished results). Doucet and colleagues had performed
SAGE analysis on OMCDs from acidotic mice and detected
among other regulated transcripts also GDF15 (growth
differentiation factor 15) to be highly upregulated [35].
Using markers of proliferation, these authors report two
distinct phases of proliferation in mouse kidney: an early
phase around 3 days after induction of metabolic acidosis
which may be characterized by axial growth and was
abolished in GDF15 deficient mice or when PI3-kinase or
mTOR activity were blocked with rapamycin [193].
Consequently, GDF15-deficient mice developed more
pronounced metabolic acidosis. The later phase of prolifer-
ation occurring 1 week after acidosis induction was not
dependent on GFD15 and may be primarily associated with
transversal proliferation [193]. Thus, type-A intercalated
cell proliferation plays clearly a role in the kidneys
adaptation to an acid-load and may consist of distinct
phases that are differentially regulated. The fact that the
number and relative abundance of different subtypes of
intercalated cells may change during metabolic acidosis
should be kept in mind in interpreting measurements of
total protein abundance of intercalated cell-specific proteins
since changes may reflect either altered cell numbers and/or
altered protein expression per cell.

Inborn errors of transport: mutations in AE1, B1, a4,
and CAII

Rare-inherited familiar forms of dRTA have greatly
enhanced our understanding how the collecting duct
secretes acid. Syndromes of dRTA are characterized by
the inability of the kidney to produce acidic urine (pH<5.5)
in the face of metabolic acidosis. dRTA is often associated
with disorders of potassium homeostasis (hypokalemic in
type I and hyperkalemic in type IV dRTA). Moreover,
metabolic acidosis and alkaline urine alone or in combina-
tion may promote hypercalciuria and subsequent formation
of kidney stones and/or nephrocalcinosis. To date, three
different genes have been identified that cause classic type I
dRTA when mutated: the SLC4A1 (AE1) anion exchanger
[33, 82], ATP6V1B1, and ATP6V0A4 encoding the B1 and
a4 subunits of the V-type H+-ATPase [81, 169]. Mutations
in various components of the aldosterone synthesis or
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signaling network cause forms of apparent or pseudohy-
poaldosteronism associated with renal tubular acidosis (so-
called type IV dRTA) [104]. Moreover, mutations in
carbonic anhydrase II (CAII), expressed in the proximal
tubule cells and intercalated cells along the collecting duct,
cause a mixed type of dRTA with a combination of
proximal and distal features, i.e., bicarbonate wasting and
acidification defect [147, 165].

Mutations in either the ATP6V1B1 (B1 subunit) or
ATP6V0A4 (a4 subunit) genes cause autosomal recessive
forms of distal renal tubular acidosis. B1 and a4 form part
of renal H+-ATPase pumps [53, 120, 167, 173]. Expression
of the B1 isoform is not restricted to intercalated cells but
occurs also at lower levels in the thick ascending limb of
the loop of Henle. In contrast, the a4 subunit isoform is
found in the cells lining the proximal tubule, the thick
ascending limb of the loop of Henle, and all subtypes of
intercalated cells. Both subunits are also expressed in
extrarenal tissues, mainly the epididymis and in cells of
the stria vascularis of the inner ear. Differences in male
fertility have not been reported to date, whereas patients
with ATP6V1B1 mutations suffer from sensorineural
deafness early in childhood which is resistant to alkali
therapy [81]. Similarly, patients with ATP6V0A4 mutations
develop sensorineural deafness which, however, may occur
later in life than in ATP6V1B1 patients [177, 194].

Most mutations in the B1 subunit studied to date appear
to affect either assembly and/or function of the H+-ATPase
complex. Experiments in IMCD3 or HEK cells transfected
with various B1 mutants as well as yeast complementation
assays with wild-type and B1 mutants found similar defects
affecting pump assembly [59, 221]. Interestingly, a B1
variant, considered as rather common polymorphism
showed a major defect in the yeast complementation assay
suggesting that it may affect pump activity in vivo [59].
Moreover, experiments using mice lacking the B1 subunit
demonstrated that the B1 subunit is required for maximal
urinary acidification [52]. Under basal conditions, B1 KO
mice produced more alkaline urine but had otherwise
normal systemic acid–base parameters. However, an oral
acid challenge with NH4Cl caused severe metabolic hyper-
chloremic acidosis and decompensation [52]. Along the
same line, H+-ATPase activity in isolated OMCDs was
normal under basal conditions but did not increase in
OMCDs from acid-loaded B1 KO mice [131] or upon
stimulation with angiotensin II [148]. This may be
explained by the inability of proton pumps lacking the B1
subunit to traffic to the luminal membrane in response to
various stimuli. Indeed, immunohistochemistry showed
membrane-associated staining for proton pumps in the
OMCD and IMCD of KO mice under basal conditions
with enhanced B2 staining [130, 131]. In acid-loaded wild-
type mice, proton pump staining in the luminal membrane

of type-A intercalated cells increased whereas no increase
was detected in KO mice. Collectively, these data suggest
that the B1 subunit appears to confer the ability to H+-
ATPases to increase their membrane associated activity in
intercalated cells in response to external stimuli.

Much less is known about the role of the a4 isoform and
the pathomechanisms leading to dRTA in patients. Despite
the fact that the a4 subunit is detected along the entire
human, rat, and mouse nephron with intense staining in the
brush border of the proximal tubule as well as luminal and
basolateral localization in all subtypes of intercalated cells
[155, 173], no clinical symptoms have been reported from
patients indicating reduced function of the proximal tubule.
This may be due to the fact that the kidney expresses also
the a1, a2, and a3 isoforms of this pump subunit and that
expression patterns with a4 widely overlap [155]. The
phenotype of an a4 deficient mouse model has not been
reported to date. Some mutations in the a4 isoform have
been investigated in more detail in vitro. Complementation
assays in yeast lacking the homologous Vph1p gene
demonstrated defective acidification and growth. One a4
mutant (W520L) demonstrated an interesting phenotype
reducing expression of other subunits of the pump suggest-
ing a dominant negative effect [125]. Similarly, the R807Q
mutant expresses only low amount of proteins consistent
with less stable mutant protein. The a4 isoform apparently
interacts with the glycolytic enzyme phosphofructokinase 1
which may link pump function to energy supply [179]. This
interaction is disrupted in the G820R a4 mutant leading to
decreased pump activity despite an only mildly impaired
ability to hydrolyze ATP [178].

Mutations in the AE1 anion exchanger underlie
recessive and dominant cases of dRTA and can lead to
two distinct phenotypes: red blood cell deformities or
distal renal tubular acidosis. Interestingly, in some but
not all patients, these two phenotypes do occur
simultaneously, but certain mutations are always associ-
ated with only one or another phenotype [6, 7]. The
literature on AE1 mutations and underlying molecular
mechanisms of disease has been summarized in some
recent excellent reviews [6, 7, 58, 99, 187, 218]. The most
common recessive dRTA-causing mutation, G701D, inter-
acts with the chaperonine glycophorin which appears to
rescue the mutant protein in red blood cells. Glycophorin
is absent from intercalated cells possibly explaining the
cell-specific phenotype of this particular mutation [183].
A number of other recessive mutations have been
described and partially characterized. These mutations
are relatively common in Southeast Asia and are often
associated with red blood phenotypes [86, 87].

The autosomal recessive pattern of mutations such as
G701D, S773P, or the deletion mutant ∆400–408, may be
explained by the retention of mutant protein intracellularly
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whereas enough normal proteins reach the membrane in
heterozygous patients [39, 93, 183, 195].

In contrast, dominant dRTA-causing AE1 mutations are
rarely associated with red blood cell phenotypes and occur
more often in Caucasian patients. Mechanistically, these
mutations may affect the polarized localization of AE1 at
the basolateral membrane of type-A intercalated cells,
remain intracellular, or lose activity [6, 7, 39, 47, 93, 141,
150, 188, 189]. The autosomal dominant pattern of
inheritance in certain mutants is possibly due to the fact
that the transporter dimerizes or that partial rerouting of
mutant AE1 to the luminal membrane of type-A intercalat-
ed cells may shunt normal acid secretion.

It should be noted that the impact of AE1 mutations
were all studied in various in vitro cell line models relying
on stable or transient transfections of mutant AE1. Renal
biopsy material from patients with AE1 mutations is rare,
and only two cases have been reported in the literature. The
S613F mutant is predicted from cell culture models to lead
to partially misrouted apical AE1 expression [188]. In
contrast, no luminal expression of AE1 was detected in the
kidney from a patient carrying the S613F mutation [210].
However, some intracellular AE1 staining was detected;
AE1 was absent from the basolateral side. Interestingly, the
number of type-A intercalated cells appeared to be greatly
reduced in this particular kidney biopsy, and remaining
type-A intercalated cells appeared small and abnormal in
shape. In the kidney from a patient with the dominant
R589H mutation, no AE1 staining was detected in
intercalated cells which were reduced in number [164].
Similarly, in mice lacking total AE1 expression, we
detected a reduced number of intercalated cells, which
might indicate that functional AE1 is required for normal
type-A intercalated cell proliferation, differentiation, or
survival (unpublished results).

Mutations in CAII are associated with a severe disease
characterized by the occurrence of osteopetrosis, (distal)
renal tubular acidosis, and cerebral calcifications due to the
expression of CAII in all these tissues [147]. In the kidney,
CAII is localized in the cytosol of proximal tubular cells as
well as in all subtypes of intercalated cells and plays an
important role in the intracellular hydration of CO2 for the
generation of bicarbonate and protons [137]. Moreover,
CAII is (directly) interacting with several acid–base trans-
porters such as AE1 (see above). Impaired CAII function,
thus, leads to reduced generation of transport substrates of
bicarbonate and proton translocating pumps and carriers
with subsequent loss of bicarbonate reabsorption in the
proximal tubule, bicarbonate generation in the collecting
duct, and reduced proton secretion by intercalated cells.
Studies in rats with chronic pharmacological carbonic
anhydrase inhibition with acetazolamide and mice with
genetic ablation of carbonic anhydrase revealed both effects

on the remodeling of the collecting duct [14, 30]. Chronic
carbonic anhydrase inhibition increased the relative number
of type-A intercalated cells at the expense of non-type-A
intercalated cells in the CCD, whereas in the OMCD the
number of intercalated cells increased and principal cells
were reduced [14]. In contrast, genetic deletion of carbonic
anhydrase II in mice causes an overall depletion of
intercalated cells in all regions of the collecting duct [30].
Thus, chronic impairment of intercalated cell function may
impact on differentiation or survival of these cells and lead
to replacement by principal cells. Whether this is also the
case in human kidney has not been examined to date.

Dent’s disease: defective ClC5 chloride/proton exchangers

Dent’s disease is primarily a proximal tubule disorder
characterized by low-molecular-weight proteinuria that may
be associated with hypercalciuria, nephrocalcinosis, and
renal failure. It is caused by inactivating mutations of the
renal chloride-proton exchanger ClC-5, which colocalizes
with the vacuolar H+-ATPase in proximal tubule cells and
type-A intercalated cells [48, 107, 124]. Investigations of
renal biopsies of patients with inactivating mutations of
ClC-5 revealed that apical H+-ATPase expression was
absent in type-A intercalated cells, whereas the polarity of
H+-ATPase was modified in proximal tubule cells. The
significance of these abnormal H+-ATPase localizations
will need further studies in patients to understand the defect
in tubular acidification that is reported in a subset of
patients with Dent’s disease [116, 154].

Acquired problems of collecting duct acid–base transport

A number of acquired states are associated with dysregu-
lation of collecting duct acid–base transport and can be
caused by a variety of diseases such autoimmune disease
(Sjögren’s disease, autoimmune hypothyrodism), isolated
hypothyroidism [114, 127, 219], or hypoaldosteronism.
Moreover, a number of drugs may impair the collecting
ducts ability to excrete acid or to adapt appropriately to
altered systemic acid–base status. These drugs include
lithium [11, 22, 113, 118, 146], the immunosuppressants
cyclosporine [172] and FK506 [71, 220], amphotericin
[112, 145], or toxins such as toluene [24, 181].

Sjögren’s disease affects kidney function in about one
third of all cases and may cause dRTA [136]. Autoanti-
bodies isolated from patients react with different structures
of the kidney including intercalated cells, but the exact
antigen(s) have not been further identified. Kidney biopsies
have been investigated of few patients and reduced or
absent staining for the E and B1 H+-ATPase subunit [20,
37, 45, 78, 210] or the AE1 exchanger reported [210]. In a
recent series of five patients, we confirmed reduced H+-
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ATPase expression (a4 and B1 subunits) in intercalated
cells, complete absence of AE1 immunoreactivity, and a
reduction in the total number of intercalated cells
(Mohebbi, Lemaire, Devuyst, Wagner, unpublished results).
Thus, Sjögren’s disease may cause dRTA due to loss of
important collecting duct acid–base transport proteins and
less intercalated cells. The order of these events as well as
the primary immunologic insult in the kidney need to be
further clarified.

The use of the calcineurin inhibitors cyclosporine and
FK506 is often associated with dRTA in the setting of
patients receiving kidney or other organ transplants [71,
220]. In a rat model, cyclosporine has been shown to cause
dRTA [23]. Interestingly, Watanabe et al. demonstrated in
the CCD of cyclosporine-treated rats that after an acute acid
exposure for 3 h, the adaptive downregulation of bicarbon-
ate secretion by non-type-A intercalated cells was abolished
[211]. This effect was secondary to inhibition of the
cyclophilin activity by cyclosporine since inhibition of
calcineurin alone (by FK506) did not affect the adaptive
response in the CCD [211]. Moreover, cyclophilin appears
critical for hensin polymerization required to induce
terminal differentiation and plasticity of intercalated cells
[135].

Application of FK506 to rats did not alter acid–base
status or renal acid excretion but transiently caused more
pronounced metabolic acidosis upon acid-loading. Detailed
analysis of acid–base transport protein expression in the
kidney revealed inappropriately high pendrin expression
and late reduction in non-type-A intercalated cell numbers
during acid-loading (Mohebbi, Wagner, manuscript in
revision). These data point again to delayed adaption of
the collecting duct due to calcineurin inhibition. However,
at least in the case of cyclosporine, dRTA develops
independent from calcineurin function suggesting different
mechanisms of action of cyclosporine and FK506 [211].
Thus, cyclophilin and hensin may be required for the rapid
response of the collecting duct to acid-loads within hours
whereas calcineurin may modulate more chronically the
expression of pendrin and subsequently the number of non-
type-A intercalated cells. A role of calcineurin in the
collecting duct is further supported by the fact that
calcineurin may be involved in aquaporin-2 water channel
regulation and trafficking [103].

Summary and future perspectives

Research over the past 60 years has uncovered major
mechanisms of renal acid–base handling, the critical role of
the collecting duct in excretion of acids or bicarbonate,
identified many molecules involved in these transport
processes and their regulation. Transgenic mouse models
and rare inherited human diseases have highlighted the

importance of some mechanisms described and have
allowed to start dissecting molecular pathways.

Despite this tremendous progress, we still lack insights
in major components of the function and regulation of the
collecting duct in renal fine-tuning of acid–base homeosta-
sis. The precise mechanism(s) mediating ammonium
excretion remained to be uncovered and the role of the
Rhesus proteins RhBG and RhCG investigated. Also the
role of other transport proteins such as the AE4 anion
exchanger, the eletroneutral NBCn1 (SLC4A7) transporter,
or the K+/Cl− cotransporter KCC4 needs to be clarified.
Regulation of the H+-ATPase, its exact subunit composition
in various subdomains of intercalated cells, and its
(physical and functional) interaction with other intercalated
cell proteins is only poorly understood.

Regulation of collecting duct acid–base handling occurs
on various levels ranging from cell proliferation on the one
side to acute regulation of transport processes on the other
side. We are only starting to understand that and how cell
proliferation may contribute to collecting duct acid–base
control. Obviously, cell proliferation and differentiation
must be controlled and regulated tightly. Moreover, the
developmental origin and differentiation of the various cell
types making up the collecting duct is only partially
elucidated. The role of segment or cell-specific transcrip-
tion factors such as Foxi1 will be important to understand
normal development of the collecting duct as well as
regeneration of cells and nephrons. Another major open
question is how are remodeling of the collecting duct or
transport processes acutely and chronically adapted to the
systemic and local acid–base status of the body. Proton
activated G protein coupled receptors OGR1 and GPR4
have been identified [106] and are expressed also in the
kidney. If these receptors, however, contribute to the
control of collecting duct acid–base handling has not been
reported. Several hormones have been shown to be
increased during metabolic acidosis such as endothelin or
the angiotensin II-aldosterone axis. In vivo and in vitro
evidence demonstrated their importance. How these and
possibly other hormones respond to acid–base status and
how they regulate collecting duct function needs to be
further examined.
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