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Abstract. A generalization of the Roy-Gallai Theorem on the chromatic number
of a graph is derived which is also an extension of several other results of Berge and
of Li. A simple inductive proof is given which provides a direct way of deriving
the Theorem of Li. We also show that some classical results valid for optimal
colorings cannot be transposed to suboptimal colorings. We finally investigate some
elementary properties which are also valid in suboptimal colorings.
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1 Introduction

Bounds on the chromatic number of a graph have been obtained by using various
coloring techniques like sequential coloring of nodes or construction of circuit-free
orientations of edges.

In this note we exploit further the relation between orientations and colorings
and we generalize the results in (Li 2001) and in (de Werra and Hansen 2003); in
addition we provide a simple inductive proof of a Theorem of (Li 2001). From these
results, the Roy-Gallai Theorem (Roy 1967; Gallai 1968) as well as some general-
izations of (Berge 1982) can be derived. We also investigate the case of suboptimal
colorings (i.e., colorings where the number of colors used is not minimum).

For all graph theoretical terms not defined here the reader is referred to (Berge
1973).
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2 Preliminary results

Recall that a graph G = (V , E) is simple if it has neither multiple edges nor loops.
V (or V (G)) is a finite set of nodes and E (or E(G)) is a family of edges [v, w]
(unordered pairs). A graph G = (V , U) is oriented if U consists of a family of
ordered pairs (v, w), called arcs.

A set S of nodes of G is stable if no two nodes in S are linked by an edge (or
an arc).

A k-coloring of G is a partition of its node set V into k stable sets S1, S2, . . ., Sk;
this amounts to assigning to each node v a color c(v) in {1, . . ., k} in such a way
that no two adjacent nodes have the same color.

It is not difficult to see that a simple graph G admits a k-coloring iff its edges
can be oriented in such a way that the resulting graph G′ has no (oriented) circuit
and no path in G′ has more than k nodes.

Exploiting this connection between colorings and orientations, B. Roy and
T. Gallai obtained independently the following result for oriented graphs where
circuits may be present:

Theorem 1 (Roy 1967; Gallai 1968). If in an oriented graph G, every elementary
path has at most k nodes, then G has a k-coloring.

Let us recall the definition of the chromatic number of G denoted by χ(G)): it
is the smallest k for which G has a k-coloring. If s(P ) is the number of nodes on a
path P , Theorem 1 can be stated as follows:

χ(G) ≤ max {s(P ) |P is an elementary path in G } .

In (Li 2001) a direct extension of Theorem 1 was given by considering the root of
a graph G; the root is a node r such that for any other node w of G there is a path
from r to w. Calling R(G) the set of roots of G (which may be empty) and defining

p(r) = max{s(P )|P is an elementary path in G starting at node r }, one can state:

Theorem 2 (Li 2001). For any oriented graph G = (V , U)

χ(G) ≤ min(|V |, min(p(v)|v ∈ R(G))) .

It is obvious that Theorem 2 implies Theorem 1 for all graphs such that R(G) �= ∅.
In the same paper, Li obtains another result which can be formulated as follows:

Theorem 3 (Li 2001). Let G be a connected graph and let k = χ(G); then for
any k-coloring of G and for any node v there exists an elementary chain starting
at v which meets all k colors.
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However, as mentioned in (Li 2001), Theorem 3 cannot be applied to oriented
graphs (a cycle C5 on 5 nodes with an adequate orientation of its edges provides a
counter-example).

In (de Werra and Hansen 2003) a generalization of Theorem 2 was derived by
using the concept of basis of an oriented graph; it is a subset B of nodes of G such
that:

a) for every node w not in B, there is some node b in B from which an elementary
path reaches w;

b) no two nodes in B are linked by a path.

Observe that a basis B is a stable set; unlike roots, bases always exist.
Let us define for a stable set S the number p(S) by

p(S) = max {p(b) : b is a node of S } .

Then the following result can be stated where a stable set is called basic if it contains
some basis of G.

Theorem 4 (de Werra and Hansen 2003). For any oriented graph G

χ(G) ≤ min{p(S)|S is a basic stable set } .

Clearly Theorem 4 implies Theorem 2 (and Theorem 1). It also implies a result
of (Berge 1982) as shown in (de Werra and Hansen 2003), i.e., if k is the largest
number of nodes in a path of an oriented graph G and if P is a path with k nodes,
there is a k-coloring of G such that P meets every color (exactly once).

For the unoriented case, we may define q(S) as the maximum number of nodes
in an elementary chain starting at some node in S and having no other node in S.
Then one gets:

Corollary (de Werra and Hansen 2003). For any simple graph G

χ(G) ≤ min{q(S)|S is a stable set} .

In the next section we shall derive a result which is a generalization of all
unoriented versions of the above theorems.

For the moment let us recall a result given in (Gyarfas et al. 1980) and in
(Sumner 1981):

Proposition 5. Let G be a graph with χ(G) = k and T = (W, F ) a tree on k

nodes; let f : V → {1, . . . , k} be a k-coloring of G and g : W → {1, . . . , k}
an injection. Then there exists an edge preserving injection h : W → V such that
g(v) = f (h(v)) for any v ∈ W .
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This implies in particular that in any k-coloring of G (with χ(G) = k) for
any order a1, ar , . . . , ak of the colors there exists a chain which meets each color
exactly once in the order a1, . . . , ak (just take T = chain on k nodes 1, 2, . . . , k;
then g(i) = ai). It also follows that in any χ (G)-coloring of G there exists a node
v such that N [v] contains χ(G) colors (take T = star formed by edges [w1, wi]
for i = 2, . . . , χ(G) and g(wi) = i for i = 1, . . . , χ(G)).

At this stage one may wonder whether these properties carry over to the case
where one has a q-coloring with q > χ(G); in other words, let G be a graph and
�(W, F ) a tree on k = χ(G) nodes; let f : V → {1, . . . , q} be a q-coloring (with
q > χ(G)) of G and g : W → {1, . . . , q} an injection. Does there exist an edge
preserving injection h : W → V such that g(v) = f (h(v)) for any v ∈ W?

Rather unexpectedly, the answer is negative as can be seen: a graph G (called
pentaK3,3) has been constructed by I. Blöchliger which satisfies χ(G) = 4. A
5-coloring f of G can be constructed in such a way that for any node v, N [v]
contains at most 3 colors. This means that by taking a tree � formed by edges
[w1, wi] i = 2, 3, 4 and g(wi) = i (1 ≤ i ≤ 4), one cannot find an edge
preserving injection h : {w1, w2, w3, w4} → V such that g(w) = f (h(w)) for any
w ∈ W .

The graph pentaK3,3 is constructed as follows (see Blöchliger and de Werra
2003): let C = {1, . . . , 5}, then for every c ∈ C and every subset {i, j} of C − {c},
construct a node (c, i, j). So we obtain 30 nodes ((c, i, j) and (c, j, i) are the same
node).

Now nodes (c, i, j) and (c̄, ī, j̄ ) are linked by an edge iff c ∈ {ī, j̄} and c̄ ∈
{i, j}. By giving color c to all nodes (c, i, j) we get a 5-coloring f such that N [v]
contains 3 colors for each node v. One can furthermore show that χ(G) = 4 (see
Blöchliger and de Werra 2003).

As a conclusion q-colorings (with q > χ(G)) are less structured than χ (G)-
colorings as can be expected, and it follows that results like Proposition 5 cannot
be directly transposed to that case.

In the remainder of the paper we shall concentrate on some properties which
can be extended to q-colorings and which can be derived by simple techniques.

3 Panchromatic chains

Let us now state a direct extension of Theorem 3 which is similar to Theorem 4 and
its corollary in the sense that it involves stable sets as well. Recall that a k-critical
graph G is such that χ(G) = k, but removal of any node v gives a graph G′ = G−v

with χ(G′) ≤ k − 1.
In a graph G with χ(G) = k and with a k-coloring (S1, . . ., Sk) a set C of nodes

(or a partial graph defined on C) will be called panchromatic if C ∩ Si �= ∅ for
i = 1, . . ., k. The next result deals with colorings which may also be suboptimal
(k ≥ χ(G)).
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Theorem 6. Let G be a connected graph and let k be an integer with k ≥ χ(G); let
furthermore H be a χ(G)-critical subgraph of G and (S1, S2, . . . , Sk) a k-coloring
of G.

Then for any subset of nodes S ⊆ S1, there is an elementary chain C which
starts at some node of S, has no other node in S and meets at least χ(G) colors.

In addition after entering into H , chain C remains inside H .

Corollary 7. Let G be a connected graph with χ(G) = k and (S1, . . . , Sk) a k-
coloring of G. Then for any S ⊆ S1, there is an elementary panchromatic chain C

starting in S and such that |C ∩ S| = 1.

It is clear that Theorem 6 implies Theorem 3: take a subset S with |S| = 1 and
k = χ(G); it also implies the Corollary of Theorem 4 since the chain C is allowed
to have only its starting node in the stable set S, in the same way as in the corollary.

Proof of Theorem 6. We shall give a proof by induction on the number n of nodes
and the chromatic number χ(G) of G. The result is trivial for a connected graph G

with 2 nodes and with χ(G) = 2.

Let us assume that the result is true for graphs with at most n − 1 nodes and
chromatic number at most p − 1.

Let now G = (V , E) be a graph with |V | = n nodes and chromatic number
χ(G) = p ≤ k; (S1, . . ., Sk) is a k-coloring of G. Consider now a χ(G)-critical
subgraph H of G; notice that χ(H) = p and H is connected.

Let S ⊆ S1 and let SH = S ∩ V (H). Let V ∗ be a set of nodes such that
the subgraph H ′ = H − (S1 ∪ V ∗) obtained by removing the nodes of S1 ∪ V ∗
from H , has χ(H ′) = p − 1. Then H ′ (which is possibly not connected) has
some connected component, say H ′′, with χ(H ′′) = p − 1 (otherwise we would
have χ(H ′) < p − 1). Since S1 �= ∅, we have |V (H ′′)| ≤ |V (H ′)| ≤ n − 1; so
the theorem holds for H ′′ by the induction hypothesis, i.e., by choosing a subset
S = {v′′} there exists from any node v′′ in V (H ′′) an elementary chain C′′ which
meets at least p − 1 of the colors 2, 3, . . ., k and which remains inside H ′′ and
hence inside H .

A) Assume now that SH �= ∅. Let us choose some node v in SH ; since H is
connected there exists an elementary chain between node v and any node in
H ′′. Let us consider such a chain Ĉ; we follow its edges from v in SH and
interrupt it as soon as we reach a node v′′

o in H ′′. All intermediate nodes of such
a Ĉ are in V (H) − V (H ′′) (Ĉ remains in H ); now following the chain Ĉ in
reverse order from v′′

o we follow its edges until we meet a first node in SH ; let
w be this node. Such a w exists since v is in SH ; we remove all edges of Ĉ

between v and w. The remaining chain C̄ from w to v′′
o can be extended by a

chain from v′′
o in H ′′ which meets at least p − 1 of the colors 2, 3, . . . , k. The

resulting chain C meets at least p colors (since its first node w is in SH ⊆ S1);
it remains inside H and it is elementary. Finally V (C) ∩ SH = {w}.
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B Assume that SH = ∅, i.e., S ⊆ S1 − V (H). Since G is connected there is an
elementary chain from an arbitrary node v in S to some arbitrary node u in H ;
we interrupt such a chain at the first node which is in H . As before we may
destroy from the beginning of the chain all edges which are traversed before
we leave S for the last time. Let C1 be the resulting chain from a node v̄ in S to
a node ū in H .

Now if ū is in V (H ′′), we are done: there is by the induction assumption
an elementary chain C2 in H ′′ from ū which meets at least p − 1 of the colors
2, 3, . . . , k. Concatenation of C1 and C2 gives the required chain of G.

Finally assume ū is in V (H) − V (H ′′); now since H is connected, there is an
elementary chain (inside H ) from ū to some arbitrary node v′′ in V (H ′′); this chain
from ū can be interrupted at the first node v̄′′ which is in V (H ′′); then, as before,
it can be extended by a chain from v̄′′ which remains inside H ′′ and meets at least
p − 1 of the colors 2, 3, . . . , k. Combining this chain C2 with the chain C1 from v̄

to ū, we get the required chain C in G; it satisfies V (C) ∩ S = {u}: since SH = ∅,
when the chain enters into H , it remains inside and it does not meet any node of S

other than v. �
Remark 1. The above inductive proof (where k = χ(G), H is omitted and S chosen
with |S| = 1) provides a simple way of proving Theorem 3 directly; the resulting
derivation appears to be much simpler than the original proof of (Li 2001). �
Remark 2. The statement of Theorem 6 is best possible in the following sense: if
S is not monochromatic, the statement is not true:
consider a cycle C7 on 7 nodes a, b, c, d, e, f, g; take S1 = {a, c, e}, S2 =
{b, d, f }, S3 = {g} and S = {b, e, g}. Then there is no elementary chain out
of S which meets all colors and has only its first node in S.

In addition, one cannot choose arbitrarily the node v in S from which the chain
C is constructed: take the same coloring of the graph C7 and S = S1, then there is
no chain out of node c in S which meets all colors. �

Finally we mention another direct consequence of the above result:

Corollary 8 (deWerra and Hansen 2003). Let G = (V , E) be a connected simple
graph and let k = χ(G). Let H be a k-critical subgraph of G. Then for any k-
coloring of G and for any subset S ⊆ V , there is a collection C of |S| node disjoint
chains starting at nodes in S, having no other nodes in S and meeting together all
k colors in H . Furthermore if achain of C enters into H it remains inside.

4 Stars and flutes

It is well known that the following statement holds:
Let (S1, . . . , Sk) be any k-coloring of a graph G with χ(G) = k ≥ 2. Then

there is a connected subgraph H of G with diameter at most 2 which meets every
color class exactly once.
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It is worth observing that it is not true if k > χ(G): a chain P4 on 4 nodes
colored with 1, 2, 3, 4 is a counter example. �

At this stage, we would like to mention a consequence of the equivalence be-
tween colorings and circuit-free orientations.

In a graph G with χ(G) ≤ k, given a k-coloring (S1, . . . , Sk), a flute F will be
a chain such that |F ∩ Si | ≤ 1 for i = 1, . . . , k. So a panchromatic flute meets all
k colors exactly once. The size |F | of a flute F will be the number of its nodes.

Let us now consider a k-coloring of a graph G with k = χ(G). We have the
following well known consequence of Proposition 5:

for any k-coloring of G with χ(G) = k and for any permutation
a1, a2, . . . , ak of the colors 1, 2, . . . , k there exists a panchromatic flute
which meets colors a1, a2, . . . , ak in this order.

This property does of course not hold when k > χ(G): for a chain on three nodes
colored with 1, 2, 3 there is no flute F with |F | = 2 meeting consecutively colors
1 and 3.

More generally, we can state

Proposition 9. Let G be a graph and χ(G) its chromatic number. Let k be an
integer with k ≥ χ(G). For any k-coloring of G there is at least one flute F with
|F | ≥ χ(G) meeting its colors in increasing order.

Proof. We construct the orientation associated to the k-coloring (edge [u, v] be-
comes arc (u, v) if the colors c(u), c(v) of its end nodes satisfy c(u) < c(v)).

In the oriented graph G, there is no circuit and there is at least one path P with
at least χ(G) nodes; indeed if there would be no such paths, G could be colored
with less than χ(G) colors, a contradiction.

Now path P is a flute which meets at least χ(G) colors in increasing order. �
For claw free graphs we can give a more specific statement on the existence of

a panchromatic flute.
A graph is claw-free if it does not contain a complete bipartite graph K1,3 as an

induced subgraph. N [v] will again denote the set {v} ∪ N(v) where N(v) is the set
of neighbors of v.

Proposition 10. Let G be a claw-free graph with chromatic number χ(G); then
for any k-coloring (S1, . . . , Sk) with k ≥ χ(G) and for any node v, the set N [v]
contains a flute G meeting all colors present in N [v].

Proof. Consider a node v and assume ∪{i|Si ∩ N(v) �= ∅} = {1, . . . , r}; let vi be
a node of N(v) ∩ Si for i = 1, . . . , r .

Claim. Let Q be a connected component of N(v); then there is a chain meeting
all nodes of Q.
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Proof of the claim. The result is trivial if Q has at most 3 nodes. Let Q have at
least 4 nodes and assume the result is not true. Let R be a chain in Q meeting the
largest possible number of nodes of Q. There is at least one node, say v̄, which is
not met by R. Since Q is connected, we may even assume that v̄ is at distance 1
from R, i.e., there is an edge [v̄, u] where u is in the chain. Observe that u cannot
be the first nor the last node of R since otherwise R ∪ [v̄, u] would form a chain
meeting more nodes of Q than R. So let a and b be the first and the last nodes of
R; clearly a and v̄ (resp. b and v̄) are not linked. Hence a and b must be linked,
otherwise v, a, b, v̄ induce a claw in G. But then starting at v̄ and traversing edge
[v̄, u] and the subchain R(u, b) of R between u and b, followed by [b, a] and the
subchain R(a, u∗) of R between a and u∗ (the predecessor of u in R), we get a
chain meeting more nodes of Q than R. This is not possible. Hence there exists in
Q a chain, which visits all nodes of Q. This ends the proof of the claim.

Now since G is claw-free, the set {v1, . . . , vr} ⊂ N(v) has at most two con-
nected components.

If there is one, say Q1, there exists from the claim a chain R0 meeting all nodes
of Q1; then C is obtained from R0 by going from its last node b to node v by
following [b, v].

If there are two components Q1, Q2, let b1 (resp. a2) be the last (resp. first) node
of a chain R1 (resp. R2) meeting all nodes of Q1 (resp. Q2). Then C is obtained
by following consecutively R1, [b1, v], [v, a2], R2. �

By setting k = χ(G) in Proposition 10 and by observing that in any k-coloring
of a graph G there is a node v such that N [v] contains all χ(G) colors, we obtain:

Corollary 11. If G is a claw-free graph with chromatic number χ(G) amd
(S1, . . . , Sk) a k-coloring with k = χ(G), then there exists a node v such that
N [v] contains a panchromatic flute.

As a conclusion, we mention a conjecture that would generalize previous results.

Conjecture. Given a connected graph with a k-coloring (S1, . . . , Sk) for some
k ≥ χ(G) and a node v of G, there exists an elementary chain C = (v0, v1, . . . , vq)

such that v0 = v and the last χ(G) nodes form a flute.

The conjecture is true for χ(G) = 3 as shown below.

Proposition 12. Let G be a connected graph with χ(G) = 3, (S1, . . . , Sk) a k-
coloring for some k ≥ 3 and v a node of G. There exists an elementary chain
starting at v and such that the last three nodes have different colors.

Proof. G contains a 3-critical subgraph H (which is an odd cycle). Assume first
v /∈ H then there exists an elementary chain C from v to some node v′ of H

containing no other node of H .
If v ∈ H , we set v = v′. If H is a triangle, we are done since its nodes have

3 different colors and for any choice of v′ we can extend the chain as required to
meet all three colors.
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Let H be an odd cycle with at least 5 nodes; then for any k-coloring with k ≥ 3
of H there are at least two triples (no necessarily disjoint) of consecutive nodes
with different colors. A node v′ of H cannot be the middle point of two triples, so
we will always be able to extend the chain around H from v′ and meet a triple of
consecutive nodes with all different colors. �
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