
Math Meth Oper Res (2011) 73:381–400
DOI 10.1007/s00186-011-0356-3

ORIGINAL ARTICLE

Graph problems arising from parameter identification
of discrete dynamical systems

Steffen Borchers · Sandro Bosio · Rolf Findeisen ·
Utz-Uwe Haus · Philipp Rumschinski ·
Robert Weismantel

Received: 13 November 2009 / Accepted: 23 February 2011 / Published online: 21 April 2011
© Springer-Verlag 2011

Abstract This paper focuses on combinatorial feasibility and optimization prob-
lems that arise in the context of parameter identification of discrete dynamical systems.
Given a candidate parametric model for a physical system and a set of experimental
observations, the objective of parameter identification is to provide estimates of the
parameter values for which the model can reproduce the experiments. To this end,
we define a finite graph corresponding to the model, to each arc of which a set of
parameters is associated. Paths in this graph are regarded as feasible only if the sets of
parameters corresponding to the arcs of the path have nonempty intersection. We study
feasibility and optimization problems on such feasible paths, focusing on computa-
tional complexity. We show that, under certain restrictions on the sets of parameters,
some of the problems become tractable, whereas others are NP-hard. In a similar vein,
we define and study some graph problems for experimental design, whose goal is to
support the scientist in optimally designing new experiments.

Keywords Graph problems · Computational complexity · Dynamical systems ·
Parameter identification

1 Introduction

Discrete dynamical systems are an important modeling tool for analysis and predic-
tion of physical processes, describing the discrete-time evolution (xt)t∈N of the system

S. Borchers · R. Findeisen · P. Rumschinski
Institut für Automatisierungstechnik, Otto-von-Guericke Universität, Universitätsplatz 2,
39106 Magdeburg, Germany

S. Bosio (B) · U.-U. Haus · R. Weismantel
Institute for Operations Research (IFOR), Eidgenössischen Technischen Hochschule (ETH) Zürich,
Rämistrasse 101, 8092 Zürich, Switzerland
e-mail: sandro.bosio@ifor.math.ethz.ch

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159148348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

382 S. Borchers et al.

state by means of a transition function xt+1 = f (xt , p), with f : R
nx × R

n p → R
nx ,

where p ∈ R
n p is some fixed parameter vector. Limited knowledge about the sys-

tem structure, however, frequently results in competing modeling hypotheses, whose
parameters are often unknown. A successful analysis of the system under study, result-
ing in a model that captures its essential behavior, requires discrimination among these
alternatives. While model correctness is in general impossible to prove, as this would
require infinite experimental evidence, it may be possible to prove that some of the
model alternatives are inconsistent with the available experimental data. This is known
as model invalidation, and amounts to deciding whether there is any parameter value
for which the model can reproduce the measurements. A more ambitious goal is that
of explicitly finding, for each model alternative, the set of all such parameters, if they
exist. This is known as parameter identification.

Traditional statistical approaches to parameter identification are Monte Carlo simu-
lation [see e.g. Robert and Casella (2004)] and data fitting. The latter is often performed
by optimization of some likelihood criteria, the most common of which is least squares
(Marquardt 1963). Some interesting recent works in this field consider the use of col-
location methods (Ramsay et al. 2007) approximating the output of the dynamical
system, coupled with profiled estimation techniques. Statistical approaches, however,
provide results of probabilistic nature. Some studies of necessary conditions for model
validity use frequency-domain data (Smith and Doyle 1992) and time-domain data
(Evans et al. 2004; Schnell et al. 2006), but are frequently limited to linear models.
A recent approach to model invalidation, applicable to a larger class of models, is based
on the existence of a barrier function separating model trajectories from measurement
data (Prajna 2006). However, finding a barrier is a nontrivial task with several degrees
of freedom, and its very existence is not guaranteed for all invalid models.

In this paper we present a graph-based combinatorial approach to parameter iden-
tification and model invalidation, with a focus on computational complexity. The
application of this approach to real-size problems is out of the scope of this paper, and
requires algorithmic tools that are subject to ongoing research. The approach consists
in building a transition graph, a layered graph representing system trajectories for
entire parameter regions. Each layer of this graph corresponds to a time index, and its
nodes represent the discrete states (state space regions, as obtained by discretization)
at the given time. Arcs between nodes of consecutive layers represent the possible
discrete-state transitions. Associated to each arc is the subset of parameters allowing
the corresponding transition, denoted transition parameters. We say that a path in a
transition graph is a transition path if the intersection of the transition parameters
associated to the arcs of the path is nonempty. The parameters in such an intersection,
which we denote path parameters, are those that are consistent with all the transitions
in the path.

Consider a discrete dynamical system and a time-indexed set of experimental mea-
surements. By mapping the measurements onto nodes of the transition graph of the
system, model invalidation can be relaxed into the problem of finding a transition path
that touches the measurement nodes, and parameter identification into the problem
of computing the union of the path parameters over all such paths. Similarly, some
experimental design problems can be formulated as optimization problems on tran-
sition paths. This approach is applicable to any system class for which the transition

123

Graph problems arising from parameter identification 383

parameters can be efficiently derived. This is for example the case for polynomial
and rational transition functions, for which a semidefinite programming relaxation
approach, introduced in Kuepfer et al. (2007) for stationary systems and extended to
discrete dynamical systems in Borchers et al. (2009), allows to efficiently bound the
transition parameters.

The remainder of the paper is organized as follows. In Sect. 2 the concept of
transition graph is defined, describing its relation with the corresponding dynami-
cal system. The problem of finding a transition path is studied in Sect. 3, show-
ing how its computational complexity depends on the way transition parameters are
defined. The application of the framework to parameter identification is discussed in
Sect. 4, and some experimental design problems defined upon transition paths are
proposed in Sect. 5. Section 6 provides some concluding remarks and outlines future
work.

2 Transition graphs

A discrete dynamical system is a system of parametric equations xt+1 = f (xt , p)

describing the discrete-time evolution of a state vector xt ∈ X at the time-index t ∈ N

for a given parameter vector p ∈ P by means of a transition function f : X × P → X .
The feasible regions X ⊆ R

nx and P ⊆ R
n p for states and parameters are typically

polyhedra, and frequently simply boxes.
This paper focuses on parameter identification of discrete dynamical systems, deriv-

ing a transition graph that represents the possible discrete-time trajectories for entire
parameter regions. In order to define the transition graph, we consider a discretization
of the state space X (which is typically continuous) by means of a partition into a
finite set of regions D = {X j ⊆ X : j ∈ D}. We refer to an index j ∈ D of the
partition as a discrete state, by that indicating the state region X j ∈ D . For simplicity
we consider a time-invariant space discretization. Our approach can be easily extended
to time-variant discretizations, but with higher computational requirements.

For a fixed parameter p ∈ P , each point x ∈ X is mapped by the transition func-
tion to a unique point f (x, p) ∈ X . Conversely, as shown in Fig. 1, a discrete state is
not necessarily mapped to a unique discrete state (i.e., the discrete dynamical system
becomes non-deterministic when the state space is discretized). The set of discrete
states reachable from a discrete state j ∈ D for a parameter p ∈ P is given by

Fig. 1 State and discrete-state transitions. A point x is mapped to a point f (x, p), while a discrete state j
is mapped to a set of discrete states g(j, p), which is the smallest set of discrete states containing the image
of X j under the transition function f

123

384 S. Borchers et al.

g(j, p) = {� ∈ D : y = f (x, p) for some x ∈ X j , y ∈ X�}, g : D × P → 2D,

where 2D = {D′ ⊆ D} is the power set of D. A function taking values in a power
set is also called a multimap. Given a pair of discrete states j, � ∈ D, the transition
parameters that allow the transition from j to � can then be defined by the multimap

φ(j, �) = {p ∈ P : � ∈ g(j, p)}, φ : D × D → 2P .

If φ(j, �) �= ∅ we say that (j, �) is a feasible (discrete-state) transition.
Given a discretization D, the transition parameters multimap φ : D × D → 2P ,

and a discrete time interval T = {1, . . . , τ } for some τ ∈ N, the resulting discretized
dynamical system can be described as a layered digraph T G(D, φ, T) = (V, A),
where the node set

V = {vt
j : j ∈ D, t ∈ T }

contains one node for each discrete state and time step, and the arc set

A =
{(

vt
j , v

t+1
�

)
: φ(j, �) �= ∅, j, � ∈ D, t, t + 1 ∈ T

}
,

contains one arc for each feasible transition and time step but τ , where t, t + 1 ∈ T
stands for t ∈ T\{τ }. We denote by V t = {vt

j ∈ V : j ∈ D} the node set for layer t ,

and by At =
{(

vt
j , v

t+1
�

)
∈ A : j, � ∈ D

}
the set of arcs between two consecutive

layers V t and V t+1 (Fig. 2).
In the remainder we assume that the transition parameter multimap φ is given in

some compact form, and study the complexity of connectivity problems on transition
graphs, and their relation to model invalidation and parameter identification. Let us
remark that finding the transition parameters is in general a challenging task by itself,
whose solution is out of the scope of this paper. Here we only notice that an approxi-
mation of such sets can be obtained by repeatedly solving, within a recursive bisection
algorithm, the following nonlinear decision problem.

Problem 1 (Feasibility problem) Given j, � ∈ D and Q ⊆ P , decide if there exists
some x ∈ X j , y ∈ Xl , and p ∈ Q for which y = f (x, p).

Fig. 2 Example of transition
graph with T = {1, . . . , 4}. Note
that the layers have the same
structure. More formally, all the

subgraphs
(

V t ∪ V t+1, At
)

for

t, t + 1 ∈ T are isomorphic to
each other. This is because the
parameters and the transition
function are assumed to be time
invariant

123

Graph problems arising from parameter identification 385

Solving Problem 1 is in general non-trivial, in particular for highly-nonlinear sys-
tems. For a solution approach by semidefinite programming for the case of polynomial
and rational transition functions, the reader is referred to Borchers et al. (2009).

3 Connectivity problems for transition graphs

Given a transition graph T G(D, φ, T) = (V, A) and two nodes s ∈ V t , d ∈ V �,
with t < �, an s–d path is an ordered sequence of nodes B = (vt

it
, . . . , v�

i�
) such

that vt
it

= s, v�
i�

= d, and (vk
ik
, vk+1

ik+1
) ∈ A for every t � k < �. We define the path

parameters of B as the intersection of the transition parameters associated to the arcs
of the path, denoted

φ(B) =
�−1⋂
k=t

φ(ik, ik+1).

If φ(B) �= ∅ we say that B is a transition path, or equivalently a φ-feasible path.
We then say that s is φ-connected to d if there exists a φ-feasible s–d path. Note that
φ-connectivity is neither symmetric nor transitive, as the graph is directed and the
composition of φ-feasible paths is not necessarily φ-feasible.

Given a path B = (vt
it
, . . . , v�

i�
), we say that a state trajectory (xk)t�k�� lies inside

B if xk ∈ Xik for all t � k � �. The set φ(B) contains all parameters p ∈ P for which
there exists a state trajectory (xk)t�k�� lying inside B such that xk+1 = f (xk, p)

for all t � k < �. Note that, due to the state space discretization, there may exist
some p ∈ φ(B) that does not realize any such trajectory. Emptiness of φ(B) is thus
a sufficient condition for proving that no trajectory lying inside B exists, but not a
necessary one.

3.1 φ-connectivity for arbitrary graphs

A transition graph is a particular layered digraph, defined upon the transition param-
eters. More generally, given an arbitrary digraph G = (V, A) and a groundset P ,
finite or infinite, let us define an arc multimap as a multimap φ : V × V → 2P for
which φ(u, v) �= ∅ if and only if (u, v) ∈ A. In other words, an arc multimap is an
association of nonempty sets to the arcs of a digraph. In the remainder, we assume that
the membership test p ∈ φ(u, v) can be done efficiently, if p admits a compact rep-
resentation. Whenever considering an arbitrary digraph G = (V, A), we also assume
that |A| � |V |.

For simplicity of notation, let us denote φ(a) = φ(u, v) for an arc a = (u, v) ∈ A,
and given a path B in G let φ(B) be the intersection of φ(a) for all the arcs in B. Note
that for φ-connectivity problems we can restrict our attention to simple paths (paths
that do not contain a loop), as for any non-simple s–d path B there exists a simple s–d
path B ′ for which φ(B) ⊆ φ(B ′). As simple paths can be represented by the subset
of arcs used, we can naturally extend the notation φ(B) to an arbitrary subset of arcs

123

386 S. Borchers et al.

(a) (b)

Fig. 3 a An example digraph G = (V, A) with 3 layers, with nodes s and d outlined. b The transition
graph T G(V, φ, T), which contains the original digraph G as the largest connected component (in evidence
in the figure)

B ⊆ A by defining φ(B) = ∩a∈Bφ(a). We can then formulate φ-connectivity for a
general graph.

Problem 2 Given a digraph G = (V, A), two nodes s, d ∈ V , a groundset P , and an
arc multimap φ : V × V → 2P , decide whether there exists a φ-feasible s–d path.

A positive φ-connectivity result obtained for an arbitrary digraph G and arc mul-
timap φ is clearly directly valid also for transition graphs. Moreover, the following
lemma implies that any negative result obtained for the case in which G is layered
directly holds for the case of transition graphs.

Lemma 1 Given a layered digraph G = (V, A), a groundset P, and an arc multimap
φ : V × V → 2P , it is possible to build in polynomial time a transition graph that is
equivalent to G in terms of φ-connectivity.

Proof Let T = {1, . . . , τ } be the index set of the layers of G. We show that checking
φ-connectivity in G is equivalent to checking φ-connectivity in the transition graph
T G(V, φ, T).

Let two nodes s, d ∈ V be given, and assume without loss of generality that s
belongs to the first layer, and d to the last one. The transition graph T G(V, φ, T) has
by definition one layer for each t ∈ T . For each layer, it has one node vt

u for every
u ∈ V and one arc

(
vt

u, vt+1
w

)
for every u, w ∈ V for which φ(u, w) �= ∅, that is, for

every (u, w) ∈ A. As shown in Fig. 3, this transition graph is composed of “diagonal”
connected components (assuming a proper vertical placement of the nodes), the largest
of which is isomorphic to the original digraph G. In particular, it is easy to see that
there exists a φ-feasible s–d path in G if and only if there exists a φ-feasible path in
T G(V, φ, T) between nodes v1

s and vτ
d .
�

Arbitrary multimaps have a large degree of expression freedom. Indeed, the fol-
lowing simple result shows that in general even testing φ-feasibility for a given path
B is NP-hard. The problem belongs to NP when a compact certificate for φ(B) �= ∅
exists. A rational point p ∈ φ(B) with compact encoding is clearly a valid certificate,

123

Graph problems arising from parameter identification 387

and can always be found e.g. if the sets φ are polyhedral, or if P is a bounded discrete
set. In the general case, however, the existence of such a point cannot be guaranteed.

Proposition 1 Given a path B in a digraph G = (V, A), a groundset P, and an arc
multimap φ : V × V → 2P , deciding whether B is φ-feasible is NP-hard.

Proof We prove Proposition 1 by reduction from the NP-complete problem of check-
ing emptiness of a binary set Q = {x ∈ {0, 1}n : Ax � b}, with A ∈ Z

m×n

and b ∈ Z
m . Let Q j = {x ∈ {0, 1}n : A jx � b j } be the binary set defined by

the j th constraint. We assume without loss of generality that Q j �= ∅ for every
j (which can be easily checked in polynomial time), as otherwise the instance is
infeasible. We then create a digraph G = (V, A) with V = {v1, . . . , vm+1} and
A = {(v j , v j+1) : 1 � j � m}, which is a path of m + 1 nodes, and define an arc
multimap φ : V × V → 2P , with P = {0, 1}n , by setting φ(v j , v j+1) = Q j for
every 1 � j � m. Note that a compact encoding of φ requires only A and b. Then,
checking if the path B = (v1, . . . , vm+1) is φ-feasible is clearly the same as checking
if Q �= ∅.
�

3.2 Testing φ-connectivity for box multimaps

As we have seen in the previous section, for arbitrary multimaps even testing φ-fea-
sibility for a given path is NP-hard. Thus, to solve φ-connectivity efficiently one has
to require some structure on the multimap. One of the simplest structures that can be
considered is to require the sets φ(u, v) to be axis-aligned boxes. In this case testing
φ-feasibility for a given path becomes a simple component-wise check on a set of
boxes. However, even for this very simple structure testing φ-connectivity is NP-com-
plete, both for finite and infinite groundsets.

Theorem 1 Given a digraph G = (V, A), two nodes s, d ∈ V , a groundset P, and
an arc multimap φ : V × V → 2P for which testing φ-feasibility is in P, deciding
whether there exists a φ-feasible s–d path is NP-complete, even if the sets φ(·, ·) are
axis-aligned boxes, G is layered, and has at most three nodes per layer.

Proof As testing φ-feasibility is in P, deciding φ-connectivity is in NP. We prove The-
orem 1 by reduction from 3-SAT, a well-known NP-complete problem. An instance
of 3-SAT consists of n variables X1, . . . , Xn and m disjunctive clauses C1, . . . , Cm ,
each involving three literals (variables or negated variables). The goal is to find a
truth assignment satisfying all the clauses. Let each clause be given as a set Ct =
{Lt

1, Lt
2, Lt

3}, with Lt
k ∈ {X1,¬X1, · · · , Xn,¬Xn} for k ∈ {1, 2, 3}. We assume

without loss of generality that each clause is composed of three distinct literals, and
that there is no clause Ct for which Xi ,¬Xi ∈ Ct for some variable Xi , as otherwise
such a clause can be discarded.

Given a 3-SAT instance, we build a layered digraph G = (V, A) as follows. For
each clause Ct we build a layer V t = {vt

1, v
t
2, v

t
3} with three nodes, one for each literal

in Ct . For every pair of consecutive layers V t , V t+1 we include an arc
(
vt

k, v
t+1
�

)

for every k, � ∈ {1, 2, 3}. We then add an initial layer V 0 = {s} and an ending layer

123

388 S. Borchers et al.

Fig. 4 Digraph obtained by the reduction of a 3-SAT instance with 4 clauses

V m+1 = {d}, each with a single node, and include the arcs (s, v1
k) and (vm

k , d) for all
k ∈ {1, 2, 3}. Note that the resulting digraph, depicted in Fig. 4, depends only on the
number of clauses.

We set P = {0, 1}n , and define the arc multimap φ : V × V → 2P as follows.
Each node vt

k ∈ V corresponds to a literal Lt
k , and hence to some variable Xi . If

Lt
k = Xi we set φ

(
vt

k, w
) = {x ∈ P : xi = 1} for all (vt

k, w) ∈ A. If Lt
k = ¬Xi

we set φ(vt
k, w) = {x ∈ P : xi = 0} for all (vt

k, w) ∈ A. Note that these sets are
(n − 1)-dimensional boxes. Finally, we set φ(s, w) = P for every (s, w) ∈ A.

It is easy to see that a φ-feasible s–d path B cannot touch nodes corresponding to
opposite literals, and hence that it yields a (partial) truth assignment satisfying all the
clauses. Conversely, given a satisfying truth assignment we can easily derive, although
not uniquely, a φ-feasible s–d path. Therefore, there exists a φ-feasible s–d path if
and only if the 3-SAT instance admits a satisfying truth assignment.

The result can be extended to the continuous case simply by choosing P = [0, 1]n .
If the boxes must be full-dimensional, we can adapt the proof by defining φ(vt

k, w) =
{x ∈ P : xi � 1 − ε} if Lt

k = Xi and φ(vt
k, w) = {x ∈ P : xi � ε} if Lt

k = ¬Xi , for
every (vt

k, w) ∈ A, for an arbitrary positive constant ε < 0.5. Note that, as a result,
any non-empty intersection of boxes is full-dimensional as well.
�

3.3 Testing φ-connectivity for explicit groundsets

Proposition 1 and Theorem 1 show that a compact representation of an arc multimap
φ : V × V → 2P for a digraph G = (V, A) does not require the groundset P nor the
sets φ(u, v) to be given explicitly, and can express exponentially large or unbounded
sets. In this section we show that if P is explicit, i.e., finite and given explicitly, then
φ-connectivity can be solved in polynomial time in the size of G and P .

Let us introduce some notation, which will also be used later. Given a digraph
G = (V, A), a groundset P , an arc multimap φ : V × V → 2P , and a subset Q ⊆ P ,
we define G Q = (V, AQ) as the subgraph of G induced by Q, in which AQ contains
only those arcs a ∈ A for which Q ⊆ φ(a). If the subset Q is explicit, then G Q can
be created in polynomial time in |A| and |Q|. For simplicity, we denote by G p the
subgraph G{p} for every p ∈ P .

Proposition 2 Given a digraph G = (V, A), an explicit groundset P, and an arc
multimap φ : V × V → 2P , φ-connectivity can be checked in time O(|A| · |P|).

123

Graph problems arising from parameter identification 389

Proof Given two nodes u, v ∈ V , it is easy to see that there exists a φ-feasible u–v

path in G if and only if there exists an u–v path in G p for at least one p ∈ P . As both
constructing the subgraph G p and searching for an u–v path in G p cost O(|A|) time,
the complexity O(|A| · |P|) directly follows.
�

As a straightforward corollary, if the cardinality of P is limited by a polynomial
in the size of the graph, then φ-connectivity can be solved in polynomial time. This
is however not true if P is not explicit, as it is in general NP-hard to enumerate the
elements of a set, even assuming there is only one (Valiant and Vazirani 1985).

Given two nodes u, v ∈ V , we are also interested in finding the union of the path
parameters over all u–v paths in G. We formally define such sets as the multimap
� : V × V → 2P with

�(u, v) =
{⋃

B∈B(u,v) φ(B) if u �= v

P otherwise,

where B(u, v) is the set of all simple u–v paths in G (there is no need to restrict to
φ-feasible paths). If G is the transition graph of a dynamical system, �(u, v) gives an
outer-approximation of the set of parameters that can produce a trajectory starting in
the region corresponding to node u and ending in the region corresponding to node v

(see Sect. 4 for further details). Let us then formalize this problem.

Problem 3 Given a digraph G = (V, A), two nodes u, v ∈ V , a groundset P , and an
arc multimap φ : V × V → 2P , compute the set �(u, v).

Node u is φ-connected to v if and only if �(u, v) �= ∅. The set �(u, v) can indeed
be equivalently defined as the set of all elements p ∈ P for which there exist an u–v

path B in G with p ∈ φ(B), i.e., for which there exists an u–v path in G p. This gives
the following simple result.

Lemma 2 Given a digraph G = (V, A), an explicit groundset P, and an arc multi-
map φ : V × V → 2P , the set �(u, v) for a given pair of nodes u, v ∈ V can be
computed in O(|A| · |P|) time. Moreover, the sets �(u, v) for a given source u ∈ V
and every destination v ∈ V can also be computed in O(|A| · |P|) time, and the sets
�(u, v) for all pairs u, v ∈ V can be computed in O(|V | · |A| · |P|) time.

Proof The set �(u, v) for a given pair u, v can be computed in time O(|A| · |P|)
by deriving in time O(|A|) the subgraph G p for each p ∈ P , and then searching in
time O(|A|) for an u–v path in G p. The same complexity applies to the single-source
version of the problem, finding in time O(|A|) the set of nodes reachable from u in
G p. The time complexity for the all-pairs case then follows directly. Other complexity
bounds for the all-pairs case can be obtained by computing the reachability matrix of
G p, i.e., the incidence matrix of the transitive closure [see e.g. Schrijver (2003)].
�

123

390 S. Borchers et al.

Due to path composition, it is also easy to verify that the following properties hold
for every pair of distinct nodes u, v ∈ V :

�(u, v) =
⋃

w∈V \{u}
φ(u, w) ∩ �(w, v)

=
⋃

w∈V \{v}
�(u, w) ∩ φ(w, v)

= φ(u, v) ∪
⋃

w∈V \{u,v}
�(u, w) ∩ �(w, v).

These properties are the analogue of the composition properties for shortest paths.
Instead of distance labels and edge weights, we have parameter sets � and φ respec-
tively, with empty sets playing the role of infinite weights for arcs not belonging to
the graph. Then, as path composition operation, instead of cost addition we have set
intersection, and instead of taking the minimum among the alternative path labels we
take the union. As a consequence, any shortest-path algorithm with complexity O(f)

can be adapted to compute the sets � in time O(f · |P|). Note that, contrary to the
shortest-path case, there is no notion of negative cycle for φ-feasible paths, so that the
sets � are always defined.

For a layered digraph, the transitive closure can be computed more efficiently. In
particular, for a transition graph T G(D, φ, T) = (V, A) the transition parameters are
defined for pairs of discrete states, and not for pairs of nodes. For any pair of nodes
vt

j , v
k
� ∈ V , with t < k, we can write the recursion

�
(
vt

j , v
k
�

)
=

⋃
i∈D

�
(
vt

j , v
k−1
i

)
∩ φ(vk−1

i , vk
�)

=
⋃
i∈D

φ
(
vt

j , v
t+1
i

)
∩ �

(
vt+1

i , vk
�

)
.

We can then define �t (j, �) = �(u1
j , v

t+1
�), for t, t + 1 ∈ T . It is straightforward to

see that �1 = φ, and that �(ut
j , v

k
�) = �k−t (j, �), for every t, k ∈ T with t < k.

This gives the following result.

Proposition 3 Given a transition graph T G(D, φ, T) = (V, A), with φ : D × D →
2P for an explicit groundset P, the sets �(u, v) for all pairs u, v ∈ V can be computed
in O(|D| · |A| · |P|) time.

3.4 Finding φ-infeasible paths

Assuming testing φ-feasibility is in P, Theorem 1 shows that deciding if a φ-feasible
s–d path exists is NP-complete, so that to find one, if it exists, one may need to enumer-
ate exponentially many φ-infeasible paths (unless P = NP). Interestingly, deciding if
a φ-infeasible s–d path exists is also NP-complete, and remains NP-complete even
when the groundset P is explicit. Note that this is not the co-NP version of Problem 2,

123

Graph problems arising from parameter identification 391

which would require to prove that all the s–d paths are φ-infeasible. Indeed, given
any instance, solving at least one of these two problems is trivial, as any path is either
φ-feasible or φ-infeasible.

Lemma 3 Given a digraph G = (V, A), two nodes s, d ∈ V , an explicit groundset
P, and an arc multimap φ : V ×V → 2P , deciding whether there exists a φ-infeasible
s–d path is NP-complete, even if G is layered and |P| = O(k

√|V |) for some k ∈ N.

Proof For an explicit groundset, testing φ-feasibility is in P, and hence the problem is
in NP. We prove Lemma 3 by reduction from the NP-complete problem of deciding
if a given graph has an Hamiltonian path (a path touching each node exactly once).
Given a graph H = (U, E), with |U | = n, we build an instance of our problem as
follows. We create a layered digraph G = (V, A) with n layers V t = {vt

u : u ∈ U } of
n nodes each, for 1 � t � n, and two additional layers V 0 = {s} and V n+1 = {d}. The
arc set is defined by introducing an arc (vt

u, vt+1
w) for every {u, w} ∈ E and 1 � t < n,

and the arcs (s, v1
u) and (vn

u , d) for every u ∈ U . The groundset is P = U , and the arc
multimap is defined by φ(vt

u, vt+1
w) = U\{w}, φ(s, v1

u) = U\{u}, and φ(vn
u , d) = U .

An s–d path B in G corresponds to a path in H touching n (not necessarily distinct)
nodes, and it is easy to see that φ(B) contains exactly those nodes that are not touched
by the path. Therefore, the path in H corresponding to an s–d path B is simple, and
hence Hamiltonian, if and only if φ(B) = ∅. In the reduction we have |P| = O(

√|V |),
but it is easy to add an arbitrary polynomial number of nodes and arcs to G without
changing the structure of the reduction, thus completing the proof.
�

Lemma 3 can be easily extended into the following corollary.

Corollary 1 Given a digraph G = (V, A), two nodes s, d ∈ V , an explicit groundset
P, an arc multimap φ : V × V → 2P , and a subset Q ⊆ P, deciding whether there
exists an s–d path B such that φ(B) = Q is NP-complete, even if G is layered and
|P\Q| = O(k

√|V |) for some k ∈ N.

Proof For Q = ∅, Corollary 1 is exactly Lemma 3. We prove the case Q �= ∅ by
reduction from Lemma 3. Let the input in Lemma 3 consist of a layered digraph
G = (V, A), two nodes s, d ∈ V , an explicit groundset R, and an arc multimap
θ : V × V → 2R with |R| = O(k

√|V |) for some k ∈ N. The reduction keeps G,
creates a groundset P = R ∪ Q, where we assume without loss of generality that
R ∩ Q = ∅, and builds an arc multimap φ : V × V → 2P defined as φ(a) = θ(a)∪ Q
for all a ∈ A. It is then trivial to see that there exists an s–d path B with φ(B) = Q if
and only if there exists a θ -infeasible s–d path. The proof is concluded by noting that
P\Q = R, from which the condition |P\Q| = O(k

√|V |) follows.
�
The above corollary shows that an oracle providing an s–d path B with φ(B) = Q

for an arbitrary Q ⊆ P allows to solve φ-infeasibility, even if Q is restricted to be
non-empty. The following results shows that the converse also holds, and hence that
the two problems are equivalent.

Proposition 4 Given a digraph G = (V, A), two nodes s, d ∈ V , an explicit ground-
set P, and an arc multimap φ : V × V → 2P , if an oracle for θ -infeasibility for arc
multimaps θ(a) : V × V → 2P is available, then it is possible to find in polynomial
time a path B with φ(B) = Q, for any Q ⊆ P.

123

392 S. Borchers et al.

Proof Consider the subgraph G Q = (V, AQ), which contains the arcs a ∈ A for
which Q ⊆ φ(a). Any s–d path B in G such that φ(B) = Q is an s–d path in G Q .
We can then define a multimap θ : V × V → 2P by setting θ(a) = φ(a)\Q for every
a ∈ AQ . Note that G Q and the multimap θ can be constructed efficiently.

It is easy to see that there exists an s–d path B in G with φ(B) = Q if and only if
there exists a θ -infeasible s–d path B in G Q . The multimap θ , however, is not neces-
sarily an arc multimap for G Q , as there could be arcs in G Q for which θ(a) = ∅. To
apply the oracle, we proceed as follows. For any a ∈ AQ with θ(a) = ∅, if there exists
an s–d path B in G Q with a ∈ B, which can be found by two connectivity tests, then
we have found a path (not necessarily simple) with φ(B) = Q. Otherwise, the arc can
be removed. At the end we are left with a smaller graph, for which θ is a proper arc
multimap.
�

The next result shows that if P is sufficiently small, both problems become easy.

Proposition 5 Given a digraph G = (V, A), with |A| = m, two nodes s, d ∈ V , an
explicit groundset P with |P| = log k log m for some k > 0, and an arc multimap
φ : V × V → 2P , then finding a φ-infeasible s–d path can be solved in polynomial
time.

Proof If |P| = log k log m, we can enumerate all the subcollections Q ⊆ 2P of the
power set of P , whose number is O(mk). For each Q ⊆ 2P , let GQ be the sub-
graph of G obtained by including only arcs a ∈ A for which φ(a) ∈ Q. Then, there
is a φ-infeasible s–d path in G if and only if there exists an s–d path in GQ for a
subcollection Q ⊆ 2P for which the intersection of all Q ∈ Q is empty.
�

A special case of Proposition 5 is a groundset with constant cardinality. Note that
the assumption |P| = log k log m is equivalent to |P| = log log m +k′. Multiplicative
constants as in |P| = O(log log m) would result, for the above enumeration, in a
super-polynomial complexity. Whether φ-infeasibility can be solved for this case, or
more in general for |P| = O(log m), remains open.

3.5 Testing φ-connectivity in fixed dimension

Theorem 1 states that testing φ-connectivity is NP-complete, even for multimaps φ

where each set φ(u, v) is an axis-aligned box. In this section we study the case P ⊆ R
d ,

where d is assumed to be constant, and we show that if each φ(u, v) is a (possibly
nonconvex) polyhedron in R

d , then φ-connectivity can be solved in polynomial time.
For simplicity, let us start considering axis-aligned boxes in R

d .

Theorem 2 Given a digraph G = (V, A), a groundset P ⊆ R
d with d constant, and

an arc multimap φ : V × V → 2P where each φ(u, v) is an axis-aligned box, the sets
�(u, v) for all pairs u, v ∈ V can be computed in O(md+1) time, where m = |A|.
Proof Let the arc multimap be φ(a) = {x ∈ R

d : sa
i � xi � ea

i , 1 � i � d},
for a ∈ A. Given any subset B ⊆ A, φ(B) is the axis-aligned box φ(B) = {x ∈
R

d : maxa∈B sa
i � xi � mina∈B ea

i , 1 � i � d}. We assume that φ(B) is either
empty or full-dimensional for every B ⊆ A, which is equivalent to assuming that

123

Graph problems arising from parameter identification 393

there are no a, b ∈ A with φ(a) ∩ φ(b) �= ∅ such that ea
i = sb

i for some component i .
This is without loss of generality, as otherwise we can simply enlarge the boxes in all
directions by a positive constant smaller than half the distance between all pairs of
non-overlapping boxes.

Let us assume without loss of generality that P is the bounding box of ∪a∈Aφ(a).
We show that in time O(md+1) one can determine a collection D = {Pj ⊆ P : j ∈ D}
with |D| = O(md) and an arc multimap θ : V ×V → 2D such that φ(B) = ∪ j∈θ(B) Pj

for every B ⊆ A. This implies the equivalence of φ-connectivity and θ -connectivity
on G, and allows to derive � in terms of �, as �(u, v) = ∪ j∈�(u,v) Pj for every
u, v ∈ V . Theorem 2 then follows from the application of Lemma 2 and the bound on
|D|. Note that D is not required to be a partition of P .

The collection D and the multimap θ are obtained in time O(md+1) as follows. For
each component 1 � i � d, the endpoints sa

i , ea
i for all a ∈ A are sorted, removing

duplicates. This gives a monotonic sequence Xi = (xi
k)1�k�ri of ri � 2m points, and

a corresponding sequence Yi = (yi
k)1�k<ri of ri − 1 mid-points yi

k = (xi
k + xi

k+1)/2.
The Cartesian product Y = Y1 ×· · ·×Yd ⊂ R

d represents a grid subdivision of P into
|Y | = 	d

i=1(ri − 1) = O(md) closed boxes Py , each identified by its center y ∈ Y .
For sake of simplicity we directly use y as an index, as Y is a finite set.

For each point y ∈ Y we derive the subset My = {a ∈ A : y ∈ φ(a)} of
arcs whose box contains y. This problem is known as point location. Each set My

can be derived in O(logd−1 m + |My |) query-time with output-sensitive algorithms
(Chazelle 1986; Edelsbrunner and Haring 1986; Chazelle 1988), and the overall time
required is at most O(md+1). From the sets My one can directly define a collec-
tion D = {Py ⊆ P : y ∈ Y, My �= ∅} and a multimap θ : V × V → 2Y by
θ(a) = {y ∈ Y : a ∈ My} with the desired properties.
�

The collection D is not minimal. Regions Py, Pz for which My = Mz represent
the same intersection, and can be merged. Merging all such regions is equivalent to
removing duplicates from a binary matrix, which can be done in linear time (Tomlin
and Welch 1986). Note that each resulting region is in general a set of disconnected
orthogonal (possibly nonconvex) polyhedra, and in the worst case still O(md) such
regions are needed.

In the two-dimensional case, the collection obtained after the above post-processing
is the planar subdivision defined by the collection of rectilinear polygons (orthogonal
polyhedra in R

2) obtained by “cutting” the plane with the sides of the m rectangles
φ(a), for a ∈ A. For this case it is easy to show that the resulting planar subdivi-
sion contains at most 2m2 − 2m + 1 connected regions, and that this upper bound is
tight. Such a tight bound however does not easily generalize to higher dimensions.
A problem related to finding the planar subdivision is that of listing all pairwise
intersections of m rectangles. Indeed, each subdivision vertex is either a vertex of
some rectangle or an intersection of two rectangles. Listing all pairwise intersections
is a well-known problem (see e.g. Preparata and Shamos (1985) and the references
therein). The straightforward solution of checking all pairs is worst-case optimal, as
the number k of intersecting pairs could be as large as
(m2). However, output-sen-
sitive algorithms can solve the problem in O(m log m + k) time, which is both input
and output optimal.

123

394 S. Borchers et al.

The most common generalization of the pairwise rectangle intersection problem to
boxes in R

d consists in listing all the pairwise box intersections, for which efficient
output-sensitive algorithms are known (Six and Wood 1982; Edelsbrunner 1983).
However, the space subdivision induced by the boxes cannot be derived by consider-
ing only the vertices of pairwise intersections. Intersections of up to d boxes must be
considered. The subdivision approach considered in this paper, as well as its extensions
hereafter, are only intended as a complexity characterization. Although the derived
bounds are worst-case optimal, the study of output-sensitive algorithms, as well as of
tight upper and lower bounds, would deserve proper attention.

Theorem 2 can be extended to convex polyhedra by defining D as the cell com-
plex induced by the faces of all polyhedra. Such a complex contains O(kd) cells and
can be derived in O(kd) time (Edelsbrunner et al. 1986), where k is the total number
of inequalities describing the polyhedra. Note that a description as convex hull of n
points can be transformed into an inequality description in O(n log n + n�d/2�) time
(Chazelle 1993), which is worst-case optimal (McMullen 1970). Theorem 2 can then
be extended to nonconvex polyhedra, which are commonly described as a union of
convex polyhedra, possibly overlapping. This is done by splitting each arc a ∈ A into
a set of parallel arcs, one for each convex polyhedron defining φ(a). Nonconvex poly-
hedra in R

2 and R
3 also allow for a natural face description. In this case, a description

in terms of union of convex polyhedra can be found by convex decomposition. Find-
ing a minimum cardinality partition of a simple nonconvex polyhedron in R

2 is easy
(Chazelle 1980; Chazelle and Dobkin 1985). In dimension three, and in dimension
two if holes are allowed, the problem is NP-hard (Lingas 1982), but approximable
with efficient heuristics (see e.g. Chazelle 1984). The decomposition cardinality can
decrease if instead of a partition one searches for a cover, but then the minimization
becomes NP-hard already in dimension two (O’Rourke and Supowit 1983), and even
if holes are not allowed (Culberson and Reckhow 1989).

4 Model invalidation and parameter identification

In this section we apply the results presented in Sect. 3 to model invalidation and
parameter identification. Given a discrete dynamical system with transition function
f : X × P → X and a set of experimental measurements, we say that a parameter
p ∈ P is consistent with the measurements if there exists a state trajectory (xt)t∈N

with xt+1 = f (xt , p) for t ∈ N that is compatible with the measurements. Model
invalidation aims at proving that no consistent parameter exists. Parameter identifica-
tion aims at bounding the set PF ⊆ P of consistent parameters. In our approach, we
search for an outer-approximation P̃F ⊇ PF, which allows to prove model invalidity
whenever P̃F = ∅.

In the remainder, given a discrete time interval T = {1, . . . , τ }, let M = {t1, . . . , te}
be the set of time indexes at which the measurements are taken, with t1 < t2 < · · · < te
and, t1 = 1, te = τ without loss of generality. Furthermore, assume that a state-space
discretization D = {X j : j ∈ D} of X is defined, and that the corresponding tran-
sition parameters φ(j, �) are given for all j, � ∈ D. By mapping the measurements
onto the nodes of the transition graph G = T G(D, φ, T), the problem of searching

123

Graph problems arising from parameter identification 395

for a consistent parameterization can be relaxed into the problem of searching for a
transition path in G that touches the measurement nodes. In this section we formulate
this problem more precisely, considering the various forms in which a measurement
can be provided.

4.1 Error-bounded state measurements

Real world measurements of continuous quantities always carry some error. If the error
can be bounded, the measurement at each t ∈ M can be given as a subset X∗

t ⊆ X
containing the unknown state x∗

t . In the ideal case, the measurement accuracy is suffi-
cient to have, for each measurement X∗

t , a discrete state j∗t ∈ D for which X∗
t ⊆ X j∗t .

This uniquely identifies a node v∗
t ∈ V t of the transition graph, with v∗

t = vt
j∗t

. If mea-
surements are available at all time steps (M = T), the corresponding measurement
nodes directly yield a path B = (v∗

t)t∈T in the transition graph. Model invalidation
then amounts to deciding if there exists a state trajectory that lies inside B, which can
be relaxed into the problem of checking if B is a transition path, that is, if φ(B) �= ∅.
Similarly, parameter identification can be approximated by the set P̃F = φ(B). As
shown in Corollary 1, deciding if φ(B) �= ∅ is in general NP-hard, but can be solved
efficiently if the sets in the multimap φ are polyhedral.

If M ⊂ T , then we have to search for paths in the transition graph that touch all
the measurement nodes. Let us solve this case by considering the more general sit-
uation in which measurement uncertainty does not yield single nodes, that is, where
measurements X∗

t are not strictly contained in any single discrete state. In this case,
we can bound each set X∗

t with a set of discrete states (possibly the smallest one),
deriving a corresponding set of nodes V ∗

t ⊆ V t . Now we can assume without loss
of generality that M = T , as whenever t /∈ M one can simply set V ∗

t = V t . Model
invalidation can then be relaxed into the problem of finding a path B in the transition
graph that touches each set V ∗

t , for all t ∈ T . The set of parameters consistent with
the measurements can then be approximated by the union of the parameter sets φ(B)

over all such φ-feasible paths. Let us formulate these problems in general terms.

Problem 4 Given a layered graph G = (V, A) with layers V 1, . . . , V τ , an arc mul-
timap φ : V × V → 2P , and nonempty subsets V ∗

1 ⊆ V 1, . . . , V ∗
τ ⊆ V τ , find a

φ-feasible path B with B ∩ V ∗
t �= ∅ for all 1 � t � τ .

Problem 5 Given a layered graph G = (V, A) with layers V 1, . . . , V τ , an arc mul-
timap φ : V × V → 2P , and nonempty subsets V ∗

1 ⊆ V 1, · · · , V ∗
τ ⊆ V τ , compute

the subset

P̃F =
⋃

B :B∩V ∗
t �=∅ ∀t∈T

φ(B) =
⋃

(v∗
1 ,...,v∗

τ)∈V ∗
1 ×···×V ∗

τ

τ−1⋂
k=1

�(v∗
k , v∗

k+1).

Problems 4 and 5 are NP-hard in general, even if the sets φ are axis-aligned boxes
(see Theorem 1), as they include as special cases Problems 2 and 3 respectively. Indeed,
these problems are actually equivalent. Due to the layered structure of the graph, the

123

396 S. Borchers et al.

combinatorial explosion in the above equation can be eliminated by defining, for every
v ∈ V ∗

tk with k > 1, the recursion

ω(v) =
⋃

w∈V ∗
tk−1

ω(w) ∩ �(w, v),

with ω(v) = P for every v ∈ V ∗
t1 . Due to this recursion, given the multimap � we

can compute the parameter approximation as P̃F = ∪v∈V ∗
te
ω(v). This allows to apply

Theorem 2, as well as its extensions for the case where φ is defined by polyhedral sets.
The equivalence of these problems can also be seen as follows. Construct a digraph

G̃ by copying G, discarding all nodes in V t \ V ∗
t , for every t ∈ T , and adding an

initial layer V 0 = {s} and a final layer V τ+1 = {d}. Finally, construct a multimap θ

by copying φ for the arcs that are both in G and G̃, and by setting φ(s, u) = P for all
u ∈ V 1 and φ(v, d) = P for all v ∈ V τ . It is then easy to see that Problem 4 admits
a solution if and only if there exists a θ -feasible path in G̃, and that P̃F = �(s, d).

4.2 Output functions and unbounded error measurements

In many applications the state cannot be directly measured, as one can only observe
some output function of state and parameters. In this case, to apply our framework
one needs first to bound the state value, either by inverting the output function (if
possible) or by state-estimation techniques. In case of a polynomial output function,
the techniques for parameter identification described in Borchers et al. (2009) can be
applied. A further important remark is that in many real-case scenarios the measure-
ment error cannot be bounded, due to its stochastic nature. In that case a measurement
is given as a probability distribution, or, when not possible, as a confidence inter-
val, a set that contains the unknown value with a given probability. In this case our
approach remains applicable, but the validity of the corresponding model invalidation
and parameter identification results assume a probabilistic sense.

5 Experimental design

If the given measurements yield an unsatisfactory parameter estimate, by repeating the
experiment the measurement errors might be reduced, hopefully improving the results.
However, experiments cost time and money, and this may be inefficient. Moreover, the
poor estimate could be inherent, if the trajectory followed by the experiment is robust
to parameter changes, in which case the experiment has to be changed. The goal of
experimental design is to devise new experiments, or to support the practitioners in
doing so, so as to optimize some target, as e.g. to optimize the resulting parameter
identification, or to minimize the cost of the experiments required to obtain a given
parameter identification quality.

Numerical analysis and statistical approaches to experimental design are well
known for linear dynamical systems (Pázman 1986; Atkinson and Donev 1992), and
during the last decade the nonlinear case has attracted significant attention (see e.g.

123

Graph problems arising from parameter identification 397

Bauer et al. (2000), Schittkowski (2007) and the references therein). In this section
we consider experimental design from the viewpoint of transition graphs, defining
some simple combinatorial optimization problems. In the framework considered here,
devising a new experiment amounts to deciding the initial conditions, the duration of
the experiment, and the measurement times. Experimental design is however partic-
ularly relevant for systems in which an input can be applied during the experiment.
The extension of this framework to such systems is out of the scope of this paper, and
will be subject of future work.

5.1 Minimum and maximum cardinality φ-feasible paths

Consider a graph G = (V, A) and an arc multimap φ : V ×V → 2P , with P finite. For
a given path B in G, the intersection φ(B), when G is a transition graph, contains all
the parameters p ∈ P that are consistent with the path. If the experiment were to fol-
low a trajectory lying inside B, then φ(B) would be the resulting parameter estimate.
Given two nodes s, d ∈ V , it is then natural to consider the two problems of finding
a φ-feasible path B with minimum and maximum cardinality |φ(B)|, respectively.
Such paths correspond to the best and worst possible outcome of an experiment, so
that when setting up the experiment we would like to stay as close as possible to the
first, and as far as possible from the second. Let us define these problems explicitly.

Problem 6 Given a graph G = (V, A), an arc multimap φ : V × V → 2P , and two
nodes s, d ∈ V , find a φ-feasible s–d path B that minimizes |φ(B)|.
Problem 7 Given a graph G = (V, A), an arc multimap φ : V × V → 2P , and two
nodes s, d ∈ V , find an s–d path B that maximizes |φ(B)|.

Note that in Problem 7, due to its objective function, we don’t need to explicitly
require φ-feasibility of the path B. As a simple corollary to Lemma 3, obtained by
adding r fictitious elements to the groundset P , we have that finding a φ-feasible path
B with |φ(B)| � r is NP-complete, for any constant r . As a consequence, Problem 6
is NP-hard, even if G is a layered graph and |P| =
(k

√|V |) for any k > 0. Hereafter
we provide an inapproximability result for Problem 7.

Theorem 3 Problem 7 cannot be approximated within a factor |P|1−ε for any ε > 0,
unless NP = ZPP, even if G is a layered graph with at most two nodes per layer, and
P is explicit and has polynomial cardinality in the size of G, where ZPP is the class
of problems that admit a randomized algorithm with zero probability of error.

Proof We proceed by reduction from Maximum Independent Set (MIS). Given a graph
H = (U, E), in MIS one has to find an independent set (a subset of pairwise non-adja-
cent nodes) with maximum cardinality. MIS cannot be approximated within a factor
|U |1−ε for any ε > 0, unless NP = ZPP (Håstad 1999). This inapproximability factor
will directly carry over to Problem 7.

Given H = (U, E), with U = {u1, . . . , un}, we build a layered digraph G = (V, A)

with n + 2 layers and at most two nodes per layer as follows. The first and last layer
contain a single node each, and are denoted V 0 = {s} and V n+1 = {d} respectively.

123

398 S. Borchers et al.

Then, for each 1 � t � n we build a layer V t = {vt
Y , vt

N } containing two nodes.
The arc set is A = {(w, z) : w ∈ V t , z ∈ V t+1, 0 � t � n}, with every pair of
consecutive layers inducing a complete bipartite digraph. The groundset is P = U ,
and the arc multimap φ : V × V → 2P is defined as follows. We set φ(s, w) = U for
every w ∈ V 1. Then, we set φ(vt

Y , w) = U \δ(ut) and φ(vt
N , w) = U \{ut } for every

1 � t � n and w ∈ V t+1, where δ(u) = {w ∈ U : {u, w} ∈ E} is the set of nodes
adjacent to u in H .

Any s–d path B must touch either vt
Y or vt

N for every node ut ∈ U . We can then
correspondingly partition the nodes U into two subsets T Y

B and T N
B . It is easy to see that

φ(B) ⊆ U is an independent set, with φ(B) = T Y
B if and only if T Y

B is an independent
set as well. Conversely, given an independent set T we can easily construct a path B
with φ(B) = T by setting T Y

B = T and T N
B = U \T . Given the equivalence of the

objective functions, the result directly follows.
�
At this point, we have convinced ourselves that finding minimum and maximum

cardinality φ-feasible paths is hard, unless the multimap and the graph have some
special structure. Hereafter we show that Problem 7 is polynomial-time solvable if P
has logarithmic cardinality in the size of the graph.

Proposition 6 If |P| = O(log |A|), then Problem 7 can be solved in polynomial time.

Proof Recall that, as outlined in Sect. 3.3, finding an s–d path B with Q ⊆ φ(B) for
any given Q ⊆ P can be easily done by searching for an s–d path in G Q . Therefore,
an s–d path B maximizing |φ(B)| can be found by enumerating all subsets Q ⊆ P ,
which are polynomially many if |P| = O(log m), and selecting the largest Q ⊆ P
for which there exists an s–d path in G Q .
�

This proof would be extended to Problem 6 if one could find in polynomial-time
an s–d path B in G Q with φ(B) = Q. As mentioned in Sect. 3.4, this is solvable in
polynomial time whenever finding a φ-infeasible s–d path is. Proposition 5 shows that
this holds when |P| = log k log m for some k > 0. Whether this is true also for the
case |P| = O(log m) remains open. Note that if for some instance class Problem 6 is
tractable, then clearly finding a φ-infeasibile s–d path becomes tractable as well.

5.2 Worst-case initial conditions and additional measurement times

Let us assume that exact state measurements can be obtained at every time step, and
that the duration of the experiment is bounded by T ∈ N. Designing an optimal
worst-case experiment consists in deciding the initial conditions for which the result-
ing parameter estimate will be in the worst case as good as possible. Let us assume
that P is finite and that we can measure the quality of a parameter estimate P̃F by its
cardinality. Given the transition graph T G(D, φ, T), designing an optimal worst-case
experiment can be formulated as

arg min
s∈V 1

max
d∈V T

|�(s, d)|.

123

Graph problems arising from parameter identification 399

Similarly, given an experiment with measurements x∗
t for t ∈ M , deciding whether a

measurement time should be added can be cast as a min-max problem. Let P̃F be the
estimate given by the current experiment, as defined in Sect. 4.1. The best additional
measurement time is the time t ∈ T \M for which the worst-case among all possible
realizations w ∈ V t of the resulting parameter estimate is as good as possible. This
can be formulated as

arg min
t∈T \M

max
w∈V t

|P̃F ∩ �(v∗
t− , w) ∩ �(w, v∗

t+)|,

where t− and t+ are the closest measurement times before and after t respectively.
Both problems can therefore be solved by evaluating the multimap �. These problems
can be easily extended to account for a weight function f (Q) evaluating the quality of
a parameter estimate Q ⊂ P , as well as to account for bounded measurement errors.

6 Conclusions and future work

In this paper we have considered an interesting combinatorial framework arising from
parameter identification and model validation of dynamical systems, which allows
also to formulate some experimental design problems. Given a graph and nonempty
sets associated to the arcs, we studied how hard it is to find a path for which the sets
associated to the arcs of the path have non-empty intersection, and how hard it is
to optimize the cardinality of such intersections. This framework has strong connec-
tions with dynamic programming, as it allows to add a “memory” to the path, and the
resulting combinatorial problems are interesting on their own.

This study focused on establishing the computational complexity of such connec-
tivity problems, considering different possible assumptions on the structure of the sets
associated to the arcs. Open questions to be investigated in our future work include
an extension of the complexity results to other interesting structures, as well as the
development of efficient algorithms for treating the polynomial-solvable cases, and of
good heuristics for the hard ones.

From the viewpoint of dynamical systems, the framework considered here provides
a necessary condition for the existence of a trajectory in the state space. It would be
interesting to find sufficient conditions under which the trajectory can be guaranteed,
possibly within a given error. Another important direction of study concerns the exten-
sion of this framework to dynamical systems in which a control input can be applied,
which is of particular importance in experimental design.

References

Atkinson AC, Donev AN (1992) Optimum experimental designs. Oxford statistical science series. Oxford
University Press, Oxford

Bauer I, Bock HG, Körkel S, Schlöder JP (2000) Numerical methods for optimum experimental design in
DAE systems. J Comput Appl Math 120(1–2):1–25

123

400 S. Borchers et al.

Borchers S, Rumschinski P, Bosio S, Weismantel R, Findeisen R (2009) Model discrimination and param-
eter estimation for dynamical biochemical reaction networks. In: 15th IFAC symposium on system
identification

Chazelle B (1980) Computational geometry and convexity. Ph.D. thesis, Yale University
Chazelle B (1984) Convex partitions of polyhedra: a lower bound and worst-case optimal algorithm. SIAM

J Comput 13(3):488–507
Chazelle B (1986) Filtering search: a new approach to query-answering. SIAM J Comput 15(3):703–724
Chazelle B (1988) A functional approach to data structures and its use in multidimensional searching. SIAM

J Comput 17(3):427–462
Chazelle B (1993) An optimal convex hull algorithm in any fixed dimension. Discret Comput Geom 10:

377–409
Chazelle B, Dobkin DP (1985) Optimal convex decompositions. In: Toussaint GT (ed) Computational

Geometry. North-Holland, Amsterdam, pp 63–133
Culberson JC, Reckhow RA (1989) Orthogonally convex coverings of orthogonal polygons without holes.

J Comput Syst Sci 39(2):166–204
Edelsbrunner H (1983) A new approach to rectangle intersections. I, II Int J Comput Math 13(3–4):209–219,

221–229
Edelsbrunner H, Haring G, Hilbert D (1986) Rectangular point location in d dimensions with applications.

Comput J 29(1):76–82
Edelsbrunner H, O’Rourke J, Seidel R (1986) Constructing arrangements of lines and hyperplanes with

applications. SIAM J Comput 15(2):341–363
Evans ND, Chappell MJ, Chapman MJ, Godfrey KR (2004) Structural indistinguishability between uncon-

trolled (autonomous) nonlinear analytic systems. Automatica 40:1947–1953
Håstad J (1999) Clique is hard to approximate within n1−ε . Acta Math 182(1):105–142
Kuepfer L, Sauer U, Parrilo PA (2007) Efficient classification of complete parameter regions based on

semidefinite programming. BMC Bioinf 8:12
Lingas A (1982) The power of non-rectilinear holes. In: 9th colloquium on automata, languages and pro-

gramming, Lecture notes in computer science, vol 140. pp 369–383
Marquardt DW (1963) An algorithm for least-squares of nonlinear parameters. SIAM J Appl Math 11:

431–441
McMullen P (1970) The maximum numbers of faces of a convex polytope. Mathematika 17:179–184
O’Rourke J, Supowit KJ (1983) Some NP-hard polygon decomposition problems. IEEE Trans Inf Theory

29(2):181–190
Pázman A (1986) Foundations of optimum experimental design. Reidel, Dordrecht
Prajna S (2006) Barrier certificates for nonlinear model validation. Automatica 42:117–126
Preparata F, Shamos MI (1985) Computational geometry. Spinger, New York
Ramsay JO, Hooker G, Campbell D, Cao J (2007) Parameter estimation for differential equations: a gen-

eralized smoothing approach. J R Stat Soc Ser B 69(5):741–796
Robert CP, Casella G (2004) Monte Carlo statistical methods. Springer, Berlin
Schittkowski K (2007) Experimental design tools for ordinary and algebraic differential equations. Ind Eng

Chem Res 46(26):9137–9147
Schnell S, Chappell MJ, Evans ND, Roussel MR (2006) The mechanism distinguishability problem in

biochemical kinetics: the single-enzyme, single-substrate reaction as a case study. CR Biol 329:51–61
Schrijver A (2003) Combinatorial optimization. Polyhedra and efficiency. Algorithms and combinatorics,

vol 24. Springer-Verlag, Berlin
Six HW, Wood D (1982) Counting and reporting intersections of d-ranges. IEEE Trans Comput 31(3):

181–187
Smith RS, Doyle JC (1992) Model validation: a connection between robust control and identification. IEEE

Trans Autom Control 37(7):942–952
Tomlin JA, Welch JS (1986) Finding duplicate rows in a linear programming model. Oper Res Lett 5(1):

7–11
Valiant LG, Vazirani VV (1985) NP is as easy as detecting unique solutions. In: 17th ACM symposium on

theory of computing. pp 458–463

123

	Graph problems arising from parameter identification of discrete dynamical systems
	Abstract
	1 Introduction
	2 Transition graphs
	3 Connectivity problems for transition graphs
	3.1 φ-connectivity for arbitrary graphs
	3.2 Testing φ-connectivity for box multimaps
	3.3 Testing φ-connectivity for explicit groundsets
	3.4 Finding φ-infeasible paths
	3.5 Testing φ-connectivity in fixed dimension

	4 Model invalidation and parameter identification
	4.1 Error-bounded state measurements
	4.2 Output functions and unbounded error measurements

	5 Experimental design
	5.1 Minimum and maximum cardinality φ-feasible paths
	5.2 Worst-case initial conditions and additional measurement times

	6 Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

