
Adv Comput Math (2012) 37:39–91
DOI 10.1007/s10444-011-9194-3

Multiple traces boundary integral formulation
for Helmholtz transmission problems

R. Hiptmair · C. Jerez-Hanckes

Received: 26 November 2010 / Accepted: 16 January 2011 /
Published online: 11 October 2011
© Springer Science+Business Media, LLC 2011

Abstract We present a novel boundary integral formulation of the Helmholtz
transmission problem for bounded composite scatterers (that is, piecewise
constant material parameters in “subdomains”) that directly lends itself to
operator preconditioning via Calderón projectors. The method relies on local
traces on subdomains and weak enforcement of transmission conditions. The
variational formulation is set in Cartesian products of standard Dirichlet and
special Neumann trace spaces for which restriction and extension by zero are
well defined. In particular, the Neumann trace spaces over each subdomain
boundary are built as piecewise ˜H−1/2-distributions over each associated in-
terface. Through the use of interior Calderón projectors, the problem is cast in
variational Galerkin form with an operator matrix whose diagonal is composed
of block boundary integral operators associated with the subdomains. We
show existence and uniqueness of solutions based on an extension of Lions’
projection lemma for non-closed subspaces. We also investigate asymptotic
quasi-optimality of conforming boundary element Galerkin discretization.
Numerical experiments in 2-D confirm the efficacy of the method and a perfor-
mance matching that of another widely used boundary element discretization.
They also demonstrate its amenability to different types of preconditioning.
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1 Introduction

We focus on the time-harmonic scattering of acoustic waves by a bounded
penetrable object � ∈ R

d, d = 2, 3, composed of several subdomains �i,
i = 1, . . . , N. Specifically, in each subdomain �i the solution u satisfies a
Helmholtz equation with wavenumber κi. This is generally referred to as a
Helmholtz Transmission Problem (HTP) and is a relevant model for applica-
tions ranging from ultrasound and electromagnetic biomedical imaging [1, 51]
to blood cell scattering [14] and antenna design [42]. A solution of the HTP
on a given subdomain is related to the surrounding ones via continuity or
transmission conditions for Dirichlet and Neumann traces across interfaces.
More precisely, if u represents the total wave inside the scatterer � and the
scattered field in the exterior �0 := R

d \ �̄, the problem for N subdomains
can be stated as follows:

Problem 1 (Multiple Transmission Problem) Seek u in a suitable functional
space such that:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−�u − κ2
i u = 0 in �i, i = 0, . . . , N,

+inhom. transmission conditions on ∂�,

+homogeneous transmission conditions on all interfaces �i ∩ � j,

+radiation conditions for |x| −→ ∞.

(1)

By employing adequate Green’s functions, one can reduce the above
transmission problem to boundary integral equations set on the subdomains’
boundaries [8, 21, 23, 39]. In the case of a single homogeneous object (N = 1),
direct boundary integral equations for the scattering transmission problem
are readily deduced from the Calderón projector formulas. For scalar elliptic
problems this is textbook knowledge, see [43, Sect. 3.4] and electromagnetic
scattering at homogeneous objects is discussed in [39, Sect. 5.63] and [4, 15].
In a recent work by Laliena et al. [29], the authors propose a symmetric
formulation based on [8] while introducing an additional mortar unknown.
Unfortunately, this formulation is affected by spurious resonances and its ex-
tension to more than one subdomain is not clear. The HTP for one subdomain
can also be converted into an intrinsically well-conditioned second-kind BIE
but to our knowledge no extension to multiple subdomains is available and one
must choose a first kind formulation.
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There are different variants of boundary integral equations for several
subdomains, i.e. N > 1. Loosely speaking, all these methods arise from the
following variational equation:

a(u, v) :=
∫

Rd
grad u · grad v dx −

∫

Rd
κ2(x)u v dx = 0, ∀ v ∈ H1

comp(R
d), (2)

where κ2(x) is simply defined as the piecewise constant function with values κi

on each �i, i = 0, . . . , N. Obviously,

a(u, v) =
N
∑

i=0

∫

�i

grad u · grad v dx −
N
∑

i=0

∫

�i

κ2
i uv dx . (3)

Now, using Green’s first formula over one subdomain and �u + κ2
i u = 0, we

arrive at
∫

�i

grad u · grad v dx −
∫

�i

κ2
i uv dx =

∫

∂�i

(

ni · grad u
)

v ds , (4)

and, thus, if ni denotes the outward unit normal to �i, (2) reduces to the sum

a(u, v) =
N
∑

i=0

∫

∂�i

(

ni · grad u
)

v ds , (5)

wherein terms in brackets are the new unknowns and represent Neumann
traces taken from the interior of �i. Notice that the trace of v is in fact globally
defined over the set of interfaces

⋃

i ∂�i. At this point, one has two choices to
describe the Neumann data:

(i) as independent unknowns defined over each subdomain boundary ∂�i

and linked by continuity conditions—local traces,
(ii) as suitably oriented restrictions of an intrinsically defined Neumann trace

over the entire set of interfaces—global trace.

In either case, Neumann traces are related to their Dirichlet counterparts via
Dirichlet-to-Neumann (DtN) operators.

In [49], von Petersdorff presents a first-kind integral formulation based on
DtN operators mapping a global Neumann trace defined over the entire set
of interfaces and equipped with an intrinsic orientation. This so-called Single
Trace Formulation (STF) requires local orientation operators according to �i

and has a minimum number of degrees of freedom (DOFs). Moreover, one can
show existence and uniqueness of solutions and asymptotic quasi-optimality
for Galerkin boundary element discretization.

Yet, as is typical of first-kind integral equations, the associated discrete
linear problems on fine meshes suffer from poor conditioning. Unfortunately,
standard preconditioning techniques are not successful, in particular operator
preconditioning [5, 17, 33, 47], as there are no Calderón identities on global
trace spaces due to the presence of triple points (2-D) or multiply shared edges
(3-D) (see Fig. 1).
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Fig. 1 Geometry, notation
and normal orientations

Alternative boundary integral formulations based on local definitions for
Neumann traces can be derived as non-overlapping domain decomposition
methods [12] or substructuring methods [13, 20]. These are based on relating
transmission conditions to Lagrange multipliers and reducing the model to its
Schur complement. In [30], the foundations of the boundary element tearing
and interconnecting (BETI) technique are laid following its finite element
counterpart [10]. Since independent approximations are realized on each
subdomain including its boundary, a discontinuous approximation space is
retrieved. Then, the global continuity of the solution is enforced by point-wise
algebraic constraints, modeled by Lagrange multipliers. The resulting saddle
point problem is equivalent to a dual problem which is symmetric positive
semidefinite. Although the method can readily be preconditioned, inversion
of local discrete Steklov–Poincaré operators as well as local and global pre-
conditioners for the dual problem [22] is required. Moreover, these methods
are prone to spurious modes. A remedy for this consists in introducing Robin-
type conditions instead of classic transmission conditions [48]. Nonetheless, the
model still requires the inclusion of Lagrange multipliers.

In this work, we introduce a formulation in terms of both local Dirichlet and
local Neumann subdomain boundary traces henceforth called Multiple Traces
Formulation (MTF) which enjoys existence and uniqueness of solutions and is
easy to precondition. Its construction employs

(i) Calderón projectors for the individual subdomains; and,
(ii) weakly enforced jump conditions across interfaces and partial subdomain

boundaries.

This entails extending and restricting Neumann traces over the interfaces, and
thus, instead of working on standard local Neumann basis on each subdomain
boundary, we have to use piecewise ˜H−1/2-distributions per interface. They
supply valid test functions for a variational formulation, which forms the
foundation for Galerkin discretization. This results in a system matrix whose
block diagonal is composed of discrete boundary integral operators amenable
to Calderón preconditioning.

The plan of the present article is as follows. Section 2 introduces the
pertinent definitions for geometric parameters, functional space elements,
trace and integral operators. In Section 3.1, we derive and analyze the MTF
for the simple case of one subdomain (N = 1) and show existence and unique-
ness of solutions for the method. Extension to many subdomains is given in
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Section 3.2 wherein the uniqueness result is found via multiple applications
of the representation formula and existence is based on an extensions of
Lion’s projection lemma for non-closed subspaces [31]. In Section 4 we analyze
the convergence of a low-order boundary element Galerkin discretization.
Numerical experiments in 2-D are given in Section 5 which validate the method
for one and two subdomains when compared to other alternatives and we show
its amenability to different types of preconditioning. A particular advantage of
our proposed methodology relies on the straightforward implementation using
standard BEM codes.

Remark 1 In algorithmic terms, the method outlined in the paper can be easily
extended to more general Helmholtz transmission problems, where, with αi >

0, the solution u satisfies

− div αi grad u − κ2
i u = 0, in �i, i = 0, . . . , N , (6)

plus appropriate transmission and radiation conditions as in (1). Our theory
can also be extended to this setting, though regularity estimates will become
more delicate. For the sake of readability we forgo this generality.

2 Preliminaries

2.1 Geometry

Let � ⊂ R
d, d = 2, 3, designate the part of space occupied by a bounded object,

assumed to be a curvilinear Lipschitz polygon or polyhedron, accordingly, with
boundary ∂�, composed of N subdomains �i, i.e.

�̄ =
N
⋃

i=1

�̄i,

where the �i are mutually disjoint, curvilinear Lipschitz polygons or polyhedra
with boundaries ∂�i. Denote the exterior isotropic unbounded domain by
�0 := R

d \ �̄. For each �i, we write its complement as �c
i := R

d \ �̄i.
Furthermore, let �ij := ∂�i ∩ ∂� j represent the interface between domains

�i and � j, equal to the empty set, if the domains are not adjacent. Notice that
�ij = � ji and that each ∂�i can be decomposed into its interfaces:

∂�i =
⋃

j∈�i

�̄ij, (7)

where we have introduced the index set:

�i := {

j = 0, . . . , N : j �= i and �ij �= ∅} . (8)

The union of all interfaces �ij or skeleton is denoted by 	 and we set 	0 :=
	 \ ∂�, representing the union of only interior interfaces. Lastly, denote by
ϒ the union of points (2-D) or curves (3-D) on 	 shared by more than two
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subdomains. This describes the set of triple points (2-D) or “wire-basket”
(3-D) of 	.

Remark 2 The geometric assumptions allow for non-connected boundaries
∂�i. Although this imposes no further difficulties in the following analysis,
henceforth we assume all {�i}i=1,N homeomorphic to a disk (sphere) in R

2 (R3)
as depicted in Fig. 1.

2.2 Functional framework

Let D denote a d-dimensional manifold. We write D(D) for compactly sup-
ported infinitely differentiable functions. The space of distributions or linear
functionals D(D) is D ′(D) and S

′
(Rd) is the space of tempered distributions

[2]. Duality products are denoted by angular brackets, 〈· , ·〉, with subscripts
accounting for specific duality pairings. Adjoint operators are denoted by a
prime superscript. In the case of Hilbert spaces, the inner product is denoted
by round brackets. Adjoint operators with respect to the inner product are
designated by an asterisk. For complex-valued functions, one defines the
sesquilinear form

(u , v)X ′×X := 〈u , v〉X ′×X u ∈ X ′ , v ∈ X, (9)

on the product space X ′ × X.
For s ∈ R, Hs(Rd) are the classic Sobolev spaces [34, Chapter 3] with

H0(Rd) ≡ L2(Rd) as pivot space. If P is a partial differential operator, one
usually works in the following subspace of Hs(Rd):

Hs(P, R
d) := {

u ∈ Hs(Rd) : P u ∈ L2(Rd)
}

. (10)

with corresponding graph norm. For any non-empty open set D ⊆ R
d, one

writes

Hs(D) = {

u ∈ D ′(D) : u = U |D for some U ∈ Hs(Rd)
}

(11)

and equivalently for Hs(P, D). For s ≥ 0, we say that a distribution belongs
to the local Sobolev space Hs

loc(R
d) (resp. Hs

loc(P, R
d)) if its restriction to

every compact set K � R
d lies in Hs(K) (resp. Hs(P, K)). Also, we denote by

Hs
comp(D) the space of Hs(D)-functions compactly supported in D. If D has

a boundary, we assume that it can be extended to a closed manifold ˜D, with
D ⊂ ˜D, and write ũ for the extension of u by zero over ˜D \ D. For s > 0 and
D Lipschitz, one defines the closed subspace of Hs(D):

˜Hs(D) := {

u ∈ Hs(D) : ũ ∈ Hs(˜D)
}

, (12)

provided with the norm ‖u‖
˜Hs(D) = ‖ũ‖Hs(˜D), where the last norm is the

standard one. If D is a bounded domain in R
d then one uses ˜D := R

d and if
D is closed ˜Hs(D) ≡ Hs(D). For negative s, we identify ˜Hs(D) with the dual
space of H−s(D). In particular,

˜H−1/2(D) ≡ (

H1/2(D)
)′

and H−1/2(D) ≡ (

˜H1/2(D)
)′

. (13)
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2.2.1 Standard trace spaces and cross pairings

As shorthand, we define the product trace spaces over closed boundaries ∂�i:

Vs
i := Hs+1/2(∂�i) × Hs−1/2(∂�i), s ∈ R, (14)

equipped with the norm:

‖·‖Vs
i
= ‖·‖Hs+1/2(∂�i)

+ ‖·‖Hs−1/2(∂�i)
(15)

and set Vi ≡ V0
i as the standard Cauchy data space. Let Idi denote the identity

operator. If Qi is the matrix operator that exchanges Dirichlet and Neumann
data on a boundary ∂�i, i.e.

Qi :=
(

0 Idi

Idi 0

)

: Vi −→ V′
i , (16)

we can define the dual of Vi as V′
i := Qi Vi with duality product obtained as

the sum of component-wise dual products. If one identifies V′′
i with Vi, one

can conclude that Q′
i = Qi, where the prime denotes adjoint in the standard

dual sense. Thus, Q2
i = Idi and Q−1

i = Qi. For two elements u, v ∈ Vi, we define
their dual product as

〈u , v〉×,i := 〈

Qi u , v
〉

i = 〈

u , Qi v
〉

i , (17)

and their associated sesquilinear form:

(u , v)×,i := 〈u , v〉×,i . (18)

In the forthcoming analysis, it will be convenient to introduce the ×-adjoint of
an operator Hi : Vi → Vi, through the following relation:

(

H†
i u , v

)

×,i
:= (u , Hi v)×,i , ∀ u, v ∈ Vi . (19)

Consequently, it holds H†
i = Qi H′

i Qi : Vi → Vi.

2.2.2 Piecewise trace spaces

In the case of multiple interfaces, we will require the piecewise or broken
spaces:

˜H∓1/2
pw (∂�i) := {

u ∈ H∓1/2(∂�i) : u|�ij ∈ ˜H∓1/2(�ij), ∀ j ∈ �i
}

, (20)

whose dual can be identified with

H±1/2
pw (∂�i) := {

u ∈ D ′(∂�i) : u|�ij ∈ H±1/2(�ij), ∀ j ∈ �i
}

, (21)

respectively. The following space inclusion chain with L2(∂�i) as pivot space
holds

˜H1/2
pw ⊂ H1/2 ⊂ H1/2

pw ⊂ L2 ⊂ ˜H−1/2
pw ⊂ H−1/2 ⊂ H−1/2

pw , (22)
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where the domain of definition, ∂�i, is implied. With this, one can build the
product spaces

Vpw,i := H1/2
pw (∂�i) × H−1/2

pw (∂�i), (23)

˜Vi := H1/2(∂�i) × ˜H−1/2
pw (∂�i), (24)

≈

Vi := ˜H1/2
pw (∂�i) × ˜H−1/2

pw (∂�i), (25)

for which we have the inclusions
≈

Vi ⊂ ˜Vi ⊂ Vi ⊂ Vpw,i. (26)

Note that these inclusions are strict, once ∂�i is composed of more than one
interface. Also observe that

V′
i = Qi Vi, V′

pw,i = Qi
≈

Vi, but ˜V′
i � Qi Vpw,i, ˜V′

i �= Qi ˜Vi. (27)

We will also make use of the subspaces defined by restriction over �ij:

Vpw,ij := Vpw,i
∣

∣

�ij
, Vij := Vi

∣

∣

�ij
, ˜Vij := ˜Vi

∣

∣

�ij
,

≈

Vij :=
≈

Vi
∣

∣

�ij
, (28)

with associated dual product 〈· , ·〉×,ij following (17). Notice that the following
duality relations immediately follow:

V′
ij = Qi

≈

Vij = V′
pw,ij and ˜V′

ij = Qi ˜Vij, (29)

where the last one is not immediate from (27).

Remark 3 In [7], it was shown that C∞-functions supported away from ϒ are
dense in the function spaces H1(R3). Thus, L2-functions compactly supported
inside interfaces �ij will be dense in the Dirichlet trace spaces. Then, by duality
one can show the dense embeddings:

≈

Vi ↪→ ˜Vi ↪→ Vi.

These embeddings are pivotal for the multiple traces Galerkin formulation for
the HTP.

Remark 4 Recall that if the interface �ij is a closed manifold, ˜H−1/2(�ij) ≡
H−1/2(�ij). Since we have assumed all �i homeomorphic to the d-dimensional
sphere, this case will only occur for N = 1.

2.2.3 Trace operators and transmission conditions

Let γ i denote the trace operator taken from within �i which maps D(�̄i)

onto C0(∂�i). Its extension to Sobolev spaces is achieved by density [32].
Designate by ni = [ni

j]d
j=1 the unit outward normal to �i. For clarity, we will
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distinguish between Dirichlet and Neumann traces defined as [43, Section 2.6],
[34, Theorem 3.37],

γ i
Du := γ iu and γ i

Nu := γ i (ni · grad u
)

,

respectively, and construct the vector trace operator:

γ iu :=
(

γ i
Du

γ i
Nu

)

: H1
loc(�, �i) −→ Vi.

Now, when considering traces taken from the complementary domain �c
i ,

denoted γ i,c, it is customary to define the Neumann trace using the same
sense of the outward normal to �i. Thus, if � j ⊆ �c

i the following transmission
conditions hold in the sense of distributions:

γ
j

Du
∣

∣

�ij
= γ

i,c
D u

∣

∣

�ij
and γ

j
Nu

∣

∣

�ij
= −γ

i,c
N u

∣

∣

�ij
, u ∈ H1

loc(�, R
d), (30)

due to opposite senses of the normal vectors ni and n j. We introduce the
endomorphism on product spaces Vi:

Xi :=
(

Idi 0
0 − Idi

)

: Vi −→ Vi (31)

to succinctly rewrite (30) as

γ i,cu
∣

∣

�ij
= (

X j γ
j)u

∣

∣

�ij
, u ∈ H1

loc(P, R
d). (32)

The action of Xi should be interpreted according to the associated trace
operator. When there is no risk of confusion we will drop the subindex i.
Moreover, one can easily show:

Lemma 1 It holds X2
i = Idi and X†

i = − Xi where X†
i is the ×-adjoint of Xi.

Proof The first property is immediate. For the second one, take ηi and ϕi in

Vi. The ×-adjoint operator X†
i is defined through the equality

(

X†
i ηi , ϕi

)

×,i
=

(

ηi , Xi ϕ
i
)

×,i. On the other hand, expansion of the duality pairing gives
(

ηi , Xi ϕ
i)

×,i = − (

ηi
D , ϕi

N

)

i + (

ηi
N , ϕi

D

)

i = − (

Xi η
i , ϕi)

×,i , (33)

and the conclusion follows. ��

2.2.4 Trace jumps and averages

Introduce the trace jump operator,
[

γ
]

∂�i
, across the subdomain boundary ∂�i

as the standard exterior minus interior traces, i.e.

[

γ
]

∂�i
:=

(
[

γD
]

∂�i[

γN
]

∂�i

)

=
(

γ
i,c
D − γ i

D
γ

i,c
N − γ i

N

)

on ∂�i. (34)
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When restricting the above over an interface �ij, the action of the jump
operator over u ∈ H1

loc(�, R
d) takes the form:

[

γ u
]

�ij
=

(

γ
i,c
D u

∣

∣

�ij
− γ i

Du|�ij

γ
i,c
N u

∣

∣

�ij
− γ i

Nu|�ij

)

=
(

γ
j

Du
∣

∣

�ij
− γ i

Du|�ij

−γ
j

Nu
∣

∣

�ij
− γ i

Nu
∣

∣

�ij

)

= (

X j γ
ju − γ iu

) ∣

∣

�ij

(35)

in distributional sense. Equivalently, we define trace average operators over
∂�i:

{γ }∂�i
:=

({γD}∂�i{γN}∂�i

)

= 1
2

(

γ
i,c
D + γ i

D
γ

i,c
N + γ i

N

)

, (36)

whose restriction over �ij is written down as

{γ u}�ij
= 1

2

(

γ
j

Du
∣

∣

�ij
+ γ i

Du
∣

∣

�ij

−γ
j

Nu
∣

∣

�ij
+ γ i

Nu
∣

∣

�ij

)

= 1
2

(

X j γ
ju + γ iu

) ∣

∣

�ij
. (37)

Remark 5 These definitions, and in particular sign conventions, are key when
defining the boundary integral operators of Section 2.3.1.

2.2.5 Skeleton spaces

Let us also define Dirichlet and Neumann spaces over the skeleton 	 as
follows. Let

H
±1/2
N := H±1/2(∂�0) × · · · × H±1/2(∂�N),

then

H1/2(	) :=
{

u ∈ H
1/2
N : ∃ U ∈ H1(Rd) s.t.

γ i
DU = u|∂�i ∈ H1/2(∂�i), i = 0, . . . , N,

⊂ H
1/2
N ,

endowed with the norm:

‖u‖H1/2(	) := inf
{‖U‖H1(R3) : U |	 = u

}

.

As seen in (4), Neumann traces arise from integration by parts formulae. This
invokes an induced or relative orientation of the boundary which is, in fact,
given by the exterior normal ni to subdomain �i. Thus, local orientations are
required to define Neumann trace spaces. Specifically,

H−1/2(	) :=
{

ψ ∈ H
−1/2
N :

N
∑

i

〈

ψ i , vi〉

∂�i
= 0, ∀v ∈ H1/2(	)

}

⊂ H
−1/2
N ,

wherein ψ i has been accordingly oriented (cf. (121)) and provided with the
natural norm. These spaces constitute the intrinsic setting for the single trace
formulation.
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2.3 Integral operators

From this section on, we introduce the necessary elements for analyzing
Helmholtz and Laplace transmission problems in the setting of boundary
integral equations [43, Chapter 3], [34, Chapters 7–9]. Consider a single domain
�i with complement �c

i and boundary ∂�i. One defines the Helmholtz oper-
ator Pi := −(� + κ2

i ) over R
d \ ∂�i wherein κi is a real non-negative bounded

constant over R
d \ ∂�i–if κi = 0 one retrieves the Laplace operator −�. We

aim at solving the following problem:

Problem 2 Let �i ⊂ R
d and f have compact support in R

d \ ∂�i. We seek u ∈
H1

loc(�i ∪ �c
i ) such that

{

Pi u = f, in �i ∪ �c
i ,

+radiation/decay conditions.
(38)

The associated radiation conditions for κi �= 0 assume a harmonic time
dependence of the form exp(−iωt), where the pulsation ω is real and positive
so that κ2

i = ω2/c2
i where ci is the wave speed in �i. For bounded scatterers,

these conditions are due to Sommerfeld [34, 45]. We thus speak of solutions
of Problem 2 as Helmholtz radiating solutions. In the static case (κi = 0), the
conditions are written differently.

Let Gi(x − y) ∈ S
′
(Rd) denote the fundamental solution for Helmholtz

(κi > 0) and Laplacian equation (κi = 0). With it, the Newton potential for
compactly supported functions f is [43, Section 3.1.1]

N i( f )(x) :=
∫

Rd
Gi(x − y) f (y)dy, x ∈ R

d. (39)

Similarly, one defines the standard single and double layer potentials:

� i
SL := N i ◦ γ ∗

D and � i
DL := N i ◦ γ ∗

N, (40)

respectively, where the asterisk denotes adjoint traces with respect to the L2-
duality product taken on ∂�i.

Theorem 1 (Representation formula [43, 49], Section 3.1.1) Let u be a solution
of Problem 2 and suppose that f := (Pi u)|Rd\∂�i

has compact support. Then, we
have the integral representation:

u(x) = N i( f )(x) + � i
(

[

γ u
]

∂�i

)

(x), x ∈ R
d \ ∂�i, (41)

where

� i
(

[

γ u
]

∂�i

)

:= � i
DL

(

[

γDu
]

∂�i

)

− � i
SL

(

[

γNu
]

∂�i

)

, (42)

with trace jumps def ined as in Section 2.2.4.
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Remark 6 If u|�i ∈ H1
loc(�i) is a solution of the homogeneous problem Pi u = 0

satisfying outgoing radiation conditions, then application of Theorem 1 with
f = 0 and u|�c

i
= 0 gives

u = − � i
DL

(

γ i
Du

) + � i
SL

(

γ i
Nu

)

in R
d \ ∂�i . (43)

For a solution u ∈ H1
loc(�

c
i ) with u|�i = 0 and f = 0, then

u = � i
DL

(

γ
i,c
D u

)

− � i
SL

(

γ
i,c
N u

)

in R
d \ ∂�i . (44)

One can build a radiating solution for Problem 2 for any λi = (λi
D, λi

N) ∈ Vi as

� i(λi) = � i
DL

(

λi
D

) − � i
SL

(

λi
N

)

. (45)

The above results will be extensively used in the derivation of the so-called
Calderón projectors and in subsequent proofs.

2.3.1 Boundary integral operators

For each κi, let us introduce the standard boundary integral operators (BIOs)
over ∂�i [6, Theorem 3.1.16], [43, Section 3.1]:

Vi := {

γD � i
SL

}

∂�i
: H−1/2(∂�i) −→ H1/2(∂�i), (46a)

K′
i := {

γN � i
SL

}

∂�i
: H−1/2(∂�i) −→ H−1/2(∂�i), (46b)

Ki := {

γD � i
DL

}

∂�i
: H1/2(∂�i) −→ H1/2(∂�i), (46c)

Wi := − {

γN � i
DL

}

∂�i
: H1/2(∂�i) −→ H−1/2(∂�i). (46d)

For the potentials one can deduce [43, Section 3.3.1]

γ
i,c
D � i

SL = Vi, γ i
D � i

SL = Vi, (47a)

γ
i,c
N � i

SL = 1
2

Id + K′
i, γ i

N � i
SL = −1

2
Id + K′

i, (47b)

γ
i,c
D � i

DL = −1
2

Id + Ki, γ i
D � i

DL = 1
2

Id + Ki, (47c)

γ
i,c
N � i

DL = − Wi, γ i
N � i

DL = − Wi . (47d)

Remark 7 The reader should be aware of the varying definitions of Wi to-
gether with trace jump conventions when comparing different works [34,
39, 43]. Also, factors ±1/2 multiplying Idi come classically only for smooth
boundaries and should be modified according to the solid angle described
at the point where the trace is taken. However, since all our domains are
assumed to be piecewise smooth, the change of values only occurs in sets of
zero measure and can be discarded.
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2.3.2 Coercivity properties

Lemma 2 ([3, 43], Lemma 3.9.8) If κi �= 0, the following operators are compact

δ Vi := Vi − V0 : H−1/2(∂�i) −→ H1/2(∂�i), (48a)

δ K′
i := K′

i − K′
0 : H−1/2(∂�i) −→ H−1/2(∂�i), (48b)

δ Ki := Ki − K0 : H1/2(∂�i) −→ H1/2(∂�i), (48c)

δ Wi := Wi − W0 : H1/2(∂�i) −→ H−1/2(∂�i). (48d)

Lemma 3 ([43], Proposition 3.5.5) Operators Wi and Vi satisfy Gårding-type
inequalities:

Re
{(

ϕ ,
(

Vi + TVi

)

ϕ
)

i

} ≥ αVi ‖ϕ‖2
H−1/2(∂�i)

, ∀ ϕ ∈ H−1/2(∂�i), (49)

Re
{(

v ,
(

Wi + TWi

)

v
)

i

} ≥ αWi ‖v‖2
H1/2(∂�i)

, ∀ v ∈ H1/2(∂�i), (50)

with αVi , αWi > 0 and TVi : H−1/2(∂�i) → H1/2(∂�i) and TWi : H1/2(∂�i) →
H−1/2(∂�i) are compact. In particular, we can identify TVi ≡ δ Vi and TWi ≡
δ Wi.

Lemma 4 ([19], Lemma 3.3) Let ∂�i be a Lipschitz boundary. There exists a
compact operator TKi : H−1/2(∂�i) → H−1/2(∂�i) such that

(

K′
i ϕ , v

)

i = ((

K∗
i − TKi

)

ϕ , v
)

i (51)

holds true for all ϕ ∈ H−1/2(∂�i) and v ∈ H1/2(∂�i), where K∗
i is the L2-adjoint

of Ki.

Later on we will appeal to the smoothing properties of the above operators.
These are summarized in the following lemma:

Lemma 5 ([36], Section 2, [46], Section 6.1, [43], Theorem 3.5.5) If ∂�i is
piecewise smooth, the compact operators TVi , TWi and TKi def ined in Lemmas 3
and 4 are smoothing, i.e.

TVi : H−1/2(∂�i) −→ H1(∂�i), (52a)

TKi : H−1/2(∂�i) −→ H1(∂�i), (52b)

TWi : H1/2(∂�i) −→ L2(∂�i). (52c)

Proof We start with the proof for TVi . Based on the identifications of
Lemma 3, and the definitions of the boundary operator and potentials
(46a), (40), we analyze the mapping properties of the difference operators
γD(N i −N 0)γ ∗

D. We first observe that the continuity of γD : H1
loc(R

d) →
H1/2(∂�i) implies the continuity of the adjoint operator γ ∗

D : H−1/2(∂�i) →
H−1

comp(R
d). Secondly, it is well known [43, Remark 3.1.3] that N i −N 0 :
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Hl
comp(R

d) → Hl+4
loc (Rd), for l ∈ R. Lastly, for piecewise smooth domains [34,

Theorem 3.37], γD : Hs(Rd) → Hs−1/2(∂�i) for 1/2 < s ≤ 3/2. Thus, we have

H−1/2(∂�i) −→
γ ∗

D

H−1
comp(R

d) −−−−→
N i −N 0

H3
loc(R

d) ↪→ H3/2
loc (Rd) −→

γD
H1(∂�i) (53)

as stated in (52a), and where the curved arrow denotes compact injection (see
[43, Theorem 2.6.7]). For TWi and TKi , the proof follows similarly (see the proof
of Lemma 3.9.8 in [43]). ��

2.3.3 Calderón projectors

For a single κi, we recall the interior and exterior Calderón projectors acting
on Vi denoted Ci and Cc

i , respectively [43, Section 3.6]. These are obtained by
taking interior γ i (resp. exterior γ i,c) traces of the integral representations (43)
(resp. (44)) and using (47)

Ci := 1
2

Id + Ai and Cc
i := 1

2
Id − Ai, (54)

where

Ai :=
(− Ki Vi

Wi K′
i

)

: Vi −→ Vi. (55)

They possess the projector property:

C2
i = Ci , (Cc

i )
2 = Cc

i , and Ci + Cc
i = Idi, (56)

which implies

A2
i = 1

4
Idi . (57)

A key result is the following characterization of possible traces for Helmholtz
solution, see [19, Thm. 4.1]

Theorem 2 If and only if λ ∈ Vi satisf ies Ci λ = λ, there is a (radiating)
Helmholtz solution u in �i such that λ = γ iu.

Theorem 3 [18] The operator Ai : Vi → Vi is coercive, i.e. it satisf ies the
Gårding inequality

Re

{

(

ϕ ,
(

Ai + TAi

)

ϕ
)

×,i

}

≥ αAi ‖ϕ‖2
Vi

, ∀ ϕ ∈ Vi, (58)

where TAi : Vi → Vi is a compact operator given by

TAi :=
(

TKi TVi

TWi 0

)

, (59)

with TVi : H−1/2(∂�i) → H1/2(∂�i), TWi : H1/2(∂�i) → H−1/2(∂�i), TKi :
H−1/2(∂�i) → H−1/2(∂�i) compact themselves.
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Lemma 6 The operator TAi is also smoothing, i.e. it maps Vi to V1/2
i =

H1(∂�i) × L2(∂�i).

Proof After observing (59), this is a direct consequence of Lemma 5. ��

3 Multiple traces boundary integral equations

The gist of the MTF construction can be more easily understood when con-
sidering a single subdomain (N = 1). Thus, we first explain the derivation in
this simple case and compare it to the single trace formulation (STF). Then, in
Section 3.2, we present the full extension of the method to N > 1 subdomains
highlighting the arising technical difficulties.

3.1 Single scatterer (N = 1)

Let �1 be bounded, �0 = R
d \ �1 with interface � = �10 = ∂�. Also, let g =

(gD, gN) ∈ V0. We seek u ∈ H1
loc(�0 ∪ �1) satisfying the Helmholtz transmis-

sion problem:
⎧

⎪

⎨

⎪

⎩

Pi u = 0, in �i, i = 0, 1,
[

γ u
] = g, on �,

+ radiation conditions for |x| −→ ∞,

(60)

where Pi := −(� + κ2
i ) is defined over �i with κi corresponding wavenumbers

such that κ0 �= κ1. As shown in Section 2.2.4, transmission conditions across the
interface can be expressed as

X0 γ 0u = γ 1u + g on �, (61)

or equivalently,

γ 0u = X1 γ 1u + X1 g on �. (62)

One should notice that X0 ≡ X1 and so henceforth we drop subindices. On the
other hand, if u is solution of (60), it holds (cf. Theorem 2)

γ iu = Ci γ
iu =

(

1
2

Id + Ai

)

γ iu =⇒ 1
2
γ iu = Ai γ

iu , i = 0, 1. (63)

We now depart from the standard “thought track” and combine (63) with (61)
and (62) to obtain

γ 0u − X γ 1u = 2 A0 γ 0u − X γ 1u = X g, (64)

− X γ 0u + γ 1u = − X γ 0u + 2 A1 γ 1u = −g. (65)
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Identifying λi = γ iu, the Helmholtz problem (60) can be cast in the variational
form:

Problem 3 (MTF for N = 1) Seek λ = (λ0, λ1) ∈ V1 := V0 × V1 such that:

m1(λ, ϕ) := 〈M1 λ , ϕ〉× =
〈

1
2

(

X g
−g

)

, ϕ

〉

×
, ∀ ϕ ∈ V1, (66)

where M1 :=
(

A0 − 1
2 X

− 1
2 X A1

)

: V1 −→ V1.

Remark 8 Henceforth, we will compare both theoretically and numerically the
MTF to the single trace formulation (STF). For N = 1, if interior traces γ iu are
again denoted by λi, one can arbitrarily choose either λ0 or λ1 as the unknown.
Let us state the problem in terms of λ0 and eliminate λ1 in (64) via the Calderón
identity (63) using (61):

2 A0 λ0 − X λ1 = 2 A0 λ0 − 2 X A1 λ1 = X g,

=⇒ A0 λ0 − X A1(X λ0 − g) = 1
2

X g.
(67)

which, after rearranging terms, yields

Problem 4 (STF for N = 1) Seek λ0 ∈ V0 such that:
〈

(A0 − X A1 X) λ0 , ϕ0〉

× = 〈

X Cc
1 g , ϕ0〉

× , ∀ ϕ0 ∈ V0. (68)

where λ0 = γ 0u, with u being the solution of the inhomogeneous transmis-
sion problem (60).

The STF, although written differently in [49], is proved to be unique and
stable, and is equivalent to the above form. Indeed, the operator product
X A1 X preserves the right orientations as expected, and, on the right-hand side,
the exterior Calderón projector multiplied by X is also consistently oriented.

3.1.1 Uniqueness of solutions of Problem 3

Theorem 4 The multiple trace formulation of Problem 3 admits at most one
solution.
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Proof We need to show that for g = 0, from
(

A0 − 1
2 X

− 1
2 X A1

)(

λ0

λ1

)

= 0 (69)

we conclude λ1 = λ0 = 0. Let λi be trace solutions of (69). By Theorem 1, we
can define the (radiating) Helmholtz solutions

u1 := �1(λ1) on �1 and u0 := �0(λ0) on �0 . (70)

Taking interior traces yields

γ 0u0 =
(

1
2

Id + A0

)

λ0 = 1
2

(

λ0 + X λ1) , (71)

γ 1u1 =
(

1
2

Id + A1

)

λ1 = 1
2

(

λ1 + X λ0) , (72)

where the second equalities are due to (69). Hence, the trace jump

[

γ u
]

�
= 1

2
X
(

λ0 + X λ1) − 1
2

(

λ1 + X λ0) = 0 (73)

since X2 = Id. Consequently, we conclude that

u :=
{

u0, in �0,

u1, in �1,
(74)

is a Helmholtz solution over the whole R
d. By uniqueness of the Helmholtz

radiating solution [26, 28, 37], [49, Section 2], it holds u0 ≡ 0 and u1 ≡ 0 so that

λ1 + X λ0 = 0 (75)

and

C0 λ0 = 0 and C1 λ1 = 0. (76)

Thus, λ0 is Cauchy data in �c
0 for a wavenumber κ0, i.e. λ0 ∈ Ran Cc

0. Similarly,
λ1 is also Cauchy data in �c

1 for κ1. Hence, let us now construct the following
radiating Helmholtz solutions:

uc
0 := �0(λ0) on �c

0 ≡ �1, (77)

uc
1 := −�1(λ1) on �c

1 ≡ �0, (78)

and define

uc :=
{

uc
1, in �0,

uc
0, in �1.

(79)
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We now take interior traces over �:

γ 1uc
0 = X γ 0,cuc

0 = X
(

1
2

Id − A0

)

λ0 = 1
2

X
(

λ0 − X λ1) = 1
2

(

X λ0 − λ1) ,

γ 0uc
1 = X γ 1,cuc

1 = − X
(

1
2

Id − A1

)

λ1 = −1
2

X
(

λ1 − X λ0) = 1
2

(− X λ1 + λ0) ,

and again it holds
[

γ uc
]

�
= 0 implying that uc is also a radiating solution of a

Helmholtz problem with discontinuous coefficients over the entire space. By
analytic continuation [26, 28, 37], [49, Section 2], uniqueness is guaranteed and
the entire solution is equal to zero and, in particular, its trace vanishes

−λ1 + X λ0 = 0 , (80)

which, together with (75), yields λ1 = 0 and λ0 = 0. ��

3.1.2 Coercivity of M1 and stability

Theorem 5 The operator Q M1 : V1 −→ V′
0 × V′

1 is coercive, where

Q :=
(

Q0 0
0 Q1

)

: V1 −→ V′
0 × V′

1, (81)

i.e. for all λ ∈ V1 there exists a constant αM1 such that

Re

{

(

λ ,
(

M1 + TM1

)

λ
)

×
}

≥ αM1 ‖λ‖2
V1

, ∀ λ ∈ V1. (82)

where TM1 : V1 → V1 is compact.

Proof Let us study the sesquilinear form:
((

ϕ0

ϕ1

)

,

(

A0 − 1
2 X

− 1
2 X A1

)(

ϕ0

ϕ1

))

×
= (

ϕ0 , A0 ϕ0)

× − 1
2

(

ϕ0 , X ϕ1)

×

− 1
2

(

ϕ1 , X ϕ0)

× + (

ϕ1 , A1 ϕ1)

× ,

(83)

where the sesquilinear product (· , ·)× is defined in Section 2.2 here without
the subscript. Cross terms yield only purely imaginary terms as

(

ϕ0 , X ϕ1)

× = (

X† ϕ0 , ϕ1) = − (

X ϕ0 , ϕ1) = − (

ϕ1 , X ϕ0
)

× (84)

by Lemma 1. Coercivity follows by Theorem 3 applied on the real part of the

remaining terms in (83) and defining TM1 :=
(

TA0 0
0 TA1

)

. ��

Using the Fredholm alternative together with Theorems 4 and 5 we imme-
diately deduce
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Corollary 1 For all g ∈ V0, there exists a unique solution λ ∈ V1 of Problem 3
satisfying the stability estimate

‖λ‖V1
≤ c

∥

∥

∥

∥

(

X g
−g

)∥

∥

∥

∥

V1

≤ C
∥

∥g
∥

∥

V0
. (85)

3.1.3 Mapping properties of M−1
1

Lastly, we study the mapping properties of the MTF solution operator for any
excitation term. In particular, for more regular right-hand sides, the solution is
expected to become more regular.

Theorem 6 Recall the def inition of the trace space V1/2
i (14). The operator TM1

is regularizing, i.e.

TM1 : V1 −→ V1/2
0 × V1/2

1 . (86)

Proof This is an immediate consequence of Lemma 6 and the definition of TM1

(cf. Proof of Theorem 5). ��

Theorem 7 Let gi ∈ V1/2
i for i = 0, 1 be boundary data. Then, the solution

components of the MTF, λ = (λ0, λ1), satisfying

m1(λ, ϕ) =
〈(

g0
g1

)

, ϕ

〉

×
, ∀ ϕ ∈ V1, (87)

also lie in V1/2
0 × V1/2

1 .

Proof The proof is based on the regularity results for the STF. Therefore,
a connection must be made between both formulations which is immediate
when the right-hand side has the structure presented in the formulation of
Problem 3 as shown Remark 8. However, for arbitrary sources, as in (87),
we must rearrange terms adequately. Let us try to derive the associated STF
formulation from (87). For this, we proceed as follows

(

X 0
0 2 A1

)(

A0 − 1
2 X

− 1
2 X A1

)(

λ0

λ1

)

=
(

X 0
0 2 A1

)(

g0
g1

)

,

(

X A0 − 1
2 Id

− A1 X 1
2 Id

)(

λ0

λ1

)

=
(

X g0
2 A1 g1

)

,

(88)

where in the last step, we have used identity (57). Adding both equations yields

(X A0 − A1 X) λ0 = X g0 + 2 A1 g1, (89)

or equivalently,

(A0 − X A1 X) λ0 = g0 + 2 X A1 g1. (90)
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This last equation corresponds to the STF for λ0 (cf. Problem 4) with well-
defined jump data. If ∂� is smooth, standard regularity results for pseudo-
differential operators ensure a solution λ0 ∈ V1/2

0 for our choice of (g0, g1)

[8, Section 6]. In the same reference, Theorem 6.1 allows to conclude the stated
result for two-dimensional Lipschitz boundaries since Dirichlet and Neumann
jumps are independent on material constants. Similar results hold for 3-D
piecewise smooth boundaries (see Remark 9). ��

Remark 9 There is a vast literature on local and global regularity results for
elliptic transmission problems, see [9, 24, 25, 27, 38, 40] to cite a few. The
main observation is that volume solutions can be decomposed into a regular
term plus a series of “singular functions” associated to a particular corner
or edge. These functions are independent on the data and vanish outside a
neighborhood of their respective corner or edges. For the HTP studied, jumps
occur only on the zeroth order term, namely in the wavenumbers κi, and,
consequently, they will not affect the smoothness of solutions much. On the
other hand, for Lipschitz polygons or polyhedra there is a Dirichlet trace
mapping Hs(�) → Hs−1/2(∂�) for 1 ≤ s < 2. Hence, by choosing s = 3/2 we
retrieve the result of Theorem 7.

3.2 Composite scatterers (N > 1)

We now consider the problem of wave propagation in non-homogeneous or
composite scatterers modeled by the Helmholtz transmission problem, see (1):

Problem 5 Seek u ∈ H1
loc (� ∪ �0) such that

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Pi u := −(� + κ2
i )u = 0 in �i i = 0, . . . , N,

[

γ u
] = g on ∂�,

[

γ u
] = 0 on 	0,

+ radiation conditions for |x| −→ ∞,

(91)

where the boundary data g = (gD, gN) ∈ V0 is given.

Extension of the method presented in Section 3.1 is not straightforward due
to the presence of “triple points”, see Fig. 1. Indeed, in order to write down
transmission conditions per subdomain interface �ij requires the ability to
extend by zero and restrict trace functions defined over the entire subdomain
boundary ∂�i. Therefore we have to resort to the piecewise spaces ˜H±1/2

pw (∂�i)

introduced in Section 2.2.2.
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3.2.1 Functional space setting

Recall that the normal vector ni on each ∂�i points to the exterior of �i. The
space for total Cauchy data is

VN := V0 × · · · × VN (92)

with Vi defined in Section 2.2. Hence, if QN := diag{Qi}N
i=0, the dual space of

VN is V
′
N := QN VN with duality pairing given naturally as follows. Let ϕ =

(ϕ0, . . . , ϕN) and λ = (λ0, . . . , λN) belong to VN , then we write

〈λ , ϕ〉× :=
N
∑

i=0

〈

λi , ϕi〉

×,i (93)

to which we also associate a sesquilinear form ( , )× based on individual forms
( , )×,i. We call ϕi the “component”-projection onto Vi of ϕ. Equivalently, we
define the product spaces

Vpw,N :=Vpw,0 × . . . × Vpw,N, ˜VN :=˜V0 × . . . × ˜VN,
≈

VN:=≈

V0 × . . . × ≈

VN,

satisfying
≈

VN ⊂ ˜VN ⊂ VN ⊂ Vpw,N with Vpw,i,˜Vi,
≈

Vi defined in (23)–(25),
respectively.

3.2.2 Restriction and extension operators

Transmission conditions are stated in weak sense by restricting test functions

ϕ ∈ ≈

VN over interfaces �ij. For this, we start by introducing the following
operators

restriction: RD
ij : H1/2

pw (∂�i) −→ H1/2(�ij), (94)

extension by zero: ED
ij : H1/2(�ij) −→ H1/2

pw (∂�i), (95)

satisfying
〈

λ , RD
ij ϕ

〉

ij
= 〈λ , ϕ〉ij , ∀ λ ∈ ˜H−1/2(�ij), ϕ ∈ H1/2

pw (∂�i), (96)

〈

λ , ED
ij ϕ

〉

i
= 〈λ , ϕ〉ij , ∀ λ ∈ ˜H−1/2

pw (∂�i), ϕ ∈ H1/2(�ij), (97)

so that
〈

λ , ED
ij RD

ij ϕ
〉

i
= 〈λ , ϕ〉ij , ∀ λ ∈ ˜H−1/2

pw (∂�i), ϕ ∈ H1/2
pw (∂�i). (98)
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Their dual adjoints are denoted

EN
ij :=

(

RD
ij

)′ : ˜H−1/2(�ij) −→ ˜H−1/2
pw (∂�i), (99)

RN
ij :=

(

ED
ij

)′ : ˜H−1/2
pw (∂�i) −→ ˜H−1/2(�ij), (100)

where EN
ij can be interpreted as the extension by zero for Neumann data over

∂�i since by definition

〈

EN
ij ψ , ϕ

〉

i
=
〈

(

RD
ij

)′
ψ , ϕ

〉

i
=
〈

ψ , RD
ij ϕ

〉

ij
,

for all ψ ∈ ˜H−1/2(�ij), ϕ ∈ H1/2
pw (∂�i). Similarly, RN

ij can be understood as the

restriction operator for elements in ˜H−1/2
pw (∂�i). Let now Rij be the linear re-

striction operator over �ij mapping H1/2
pw (∂�i) × ˜H−1/2

pw (∂�i) → ˜Vij and defined
as follows, cf. (13)

Rij ϕ
i :=

⎧

⎪

⎨

⎪

⎩

(

RD
ij 0

0 RN
ij

)

ϕi if j ∈ �i,

0 any other case,

(101)

for all j ∈ {0, . . . , N}. It also satisfies the obvious mapping property Vpw,i →
Vij. The adjoint operator R′

ij : ˜V′
ij → ˜H−1/2

pw (∂�i) × H1/2
pw (∂�i) is the formal

extension by zero, since by definition, if j ∈ �i, for all ϕ ∈ ˜V′
ij it holds

〈

R′
ij ϕ , λ

〉

×,i
=

〈

(

RD
ij

)′
ϕN , λD

〉

i
+
〈

(

RN
ij

)′
ϕD , λN

〉

i

=
〈

EN
ij ϕN , λD

〉

i
+
〈

ED
ij ϕD , λN

〉

i

(102)

or, succinctly,

R′
ij ϕ

i :=

⎧

⎪

⎨

⎪

⎩

(

EN
ij 0

0 ED
ij

)

ϕi if j ∈ �i,

0 any other case,

(103)

for all j ∈ {0, . . . , N}. Now, the ×-adjoint given by

R†
ij = Qi R′

ij Q j : ˜Vij −→ H1/2
pw (∂�i) × ˜H−1/2

pw (∂�i) (104)

should be interpreted in weak sense, i.e. if ϕ ∈ ˜Vij and λ ∈ ˜Vi one has
(

R†
ij ϕ , λ

)

×,i
=

(

ED
ij ϕD , λN

)

i
+
(

EN
ij ϕN , λD

)

i

= (ϕD , λN)ij +
(

ϕN , RD
ij λD

)

ij
= (

ϕ , Rij λ
)

×,ij (105)
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which is well defined for the dual pairings H1/2(�ij) × ˜H−1/2(�ij) with sesquilin-
ear form (· , ·)×,ij. Similarly, it holds R†

ij : Vij → Vpw,i now testing with dual

space functions, i.e. functions in
≈

Vi. With it, we have the following result:

Lemma 7 The identity

N
∑

j=0

R†
ij Rij = Idi (106)

holds weakly over Vi and Vpw,i, when testing with functions in
≈

Vi. It also holds
over ˜Vi if tested against ˜Vi-functions.

Proof Let ϕ, λ ∈ ˜Vi. Then, by property (98) and (105), we observe that

(

R†
ij Rij ϕ , λ

)

×,i
=

(

ED
ij RD

ij ϕD , λN

)

i
+
(

EN
ij RN

ij ϕN , λD

)

i

= (ϕD , λN)ij +
(

ϕN , ED
ij RD

ij λD

)

i
= (ϕ , λ)×,ij (107)

or equal to zero if j /∈ �i. Hence,

N
∑

j=0

(

R†
ij Rij ϕ , λ

)

×,i
=

∑

j∈�i

(ϕ , λ)×,ij = (ϕ , λ)×,i (108)

as stated. For ϕ ∈ Vpw,i or in Vi and λ ∈ ≈

Vi the proof is exactly the same. ��

3.2.3 Multiple traces formulation (MTF)

Expansion of the jump operator in (91) over each interface �ij in 	 in weak
sense yields

(

R0i γ
0u − Ri0 Xi γ

iu , R0i ϕ
0)

×,0i = (

R0i X0 g , R0i ϕ
0)

×,0i , (109a)

(− R0 j X0 γ 0u + R j0 γ ju , R j0 ϕ j)

×, j0 = − (

R0 j g , R j0 ϕ j)

×, j0 , (109b)

(

R ji γ
ju − Rij Xi γ

iu , R ji ϕ
j)

×, ji = 0, (109c)

1 ≤ i �= j ≤ N, for all ϕ ∈ ≈

VN and where restrictions operators have been used
accordingly, cf. (61) and (62) for the case N = 1. Notice that we have used
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�ij = � ji and doubled the number of transmission conditions. Moreover, since

γ iu ∈ Vi their restriction Rij γ
iu ∈ Vij while the restrictions R ji ϕ

j ∈ ≈

Vij. Thus,
we can extend conditions (109) over each ∂�i in order to define transmission
conditions as follows:

(

γ 0u , R†
0i R0i ϕ

0
)

×,0
−
(

R†
0i Ri0 Xi γ

iu , ϕ0
)

×,0
=
(

X0 g , R†
0i R0i ϕ

0
)

×,0
, (110a)

−
(

R†
j0 R0 j X0 γ 0u , ϕ j

)

×, j
+
(

γ ju , R†
j0 R j0 ϕ j

)

×, j
= −

(

R†
j0 R0 j g , ϕ j

)

×, j
, (110b)

(

γ ju , R†
ji R ji ϕ

j
)

×, j
−

(

R†
ji Rij Xi γ

iu , ϕ j
)

×, j
= 0, (110c)

1 ≤ i �= j ≤ N, for all ϕ ∈ ≈

VN . For simplicity, we introduce the operator

˜X ji := R†
ji Rij Xi : Vi −→ Vpw, j (or ˜Vi −→ ˜V j). (111)

Again, it should be interpreted in weak sense. We use Lemma 7 to simplify the
sum of conditions (110a) with respect to i to obtain:

(

γ 0u , ϕ0)

×,0 −
N
∑

i=1

(

˜X0iγ
iu , ϕ0)

×,0 = (

X0 g , ϕ0)

×,0 , ∀ ϕ0 ∈ ≈

V0, (112)

while the sum
∑

i(110c)+(110b) with respect to i yields, for all ϕ j ∈ ≈

V j,

(

γ ju , ϕ j)

×, j −
N
∑

i=0
i �= j

(

˜X jiγ
iu , ϕ j)

×, j = −
(

R†
j0 R0 j g , ϕ j

)

×, j
, (113)

for fixed j ∈ {1, . . . , N}. These last steps are not necessary in the case of a single
homogeneous scatterer (Section 3.1) since there is a single interface. On the
other hand, by Theorem 2 solutions of Problem 5 must satisfy

γ iu = Ci γ
iu =

(

1
2

Id + Ai

)

γ iu =⇒ 1
2
γ iu = Ai γ

iu on ∂�i, (114)

i = 0, . . . , N, due to the properties of Calderón projectors (see Section 2.3.3).
Replacing the above in (112) and (113), and identifying λi = γ iu, gives a
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boundary integral formulation for Problem 5, which extends Problem 3 to
N > 1:

Problem 6 (MTF) Seek λ ∈ VN such that the variational form:

mN(λ, ϕ) := (MN λ , ϕ)× = 1
2

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

X0 g
− R†

10 R01 g
...

− R†
N0 R0N g

⎞

⎟

⎟

⎟

⎠

, ϕ

⎞

⎟

⎟

⎟

⎠

×

, forall ϕ ∈ ≈

VN,

(115)
is satisfied for g ∈ V0 with

MN :=

⎛

⎜

⎜

⎜

⎝

A0 − 1
2
˜X01 · · · − 1

2
˜X0N

− 1
2
˜X10 A1 · · · − 1

2
˜X1N

...
...

. . .
...

− 1
2
˜XN0 − 1

2
˜XN1 · · · AN

⎞

⎟

⎟

⎟

⎠

: VN −→ Vpw,N. (116)

Remark 10 Now it becomes clear why we have to resort to the spaces
≈

V
instead of V for test functions. If both λi and λ j belong to Vi and V j,
respectively, then extension by zero is meaningless and we cannot proceed
as in Section 3.1. Nonetheless, observe that for a single scatterer, N = 1, we
retrieve Problem 3.

3.2.4 Continuity properties

Theorem 8 (Continuity of the MTF) The sesquilinear form mN from (115) is

continuous as a mapping VN× ≈

VN → C as well as on ˜VN ×˜VN.

Proof Write the variational form as a sum:

mN(λ, ϕ) =
N
∑

i=0

(

Ai λ
i , ϕi)

×,i − 1
2

N
∑

i=0

N
∑

j=0
i �= j

(

˜Xijλ
j , ϕi)

×,i

|mN(λ, ϕ)| ≤
N
∑

i=0

∣

∣

∣

(

Ai λ
i , ϕi)

×,i

∣

∣

∣ + 1
2

N
∑

i=0

N
∑

j=0
i �= j

∣

∣

∣

(

˜Xijλ
j , ϕi)

×,i

∣

∣

∣ (117)

Each cross term is bounded by continuity of Rij, R†
ji, and Xi as follows

∣

∣

∣

(

˜Xijλ
j , ϕi)

×,i

∣

∣

∣ = (

R ji X j λ
j , Rij ϕ

i)

×,i ≤ Cij
∥

∥λ j
∥

∥

V j

∥

∥ϕi
∥

∥

≈

Vi
, (118)
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i �= j, while the operator Ai is well known to be continuous from Vi to itself,
and thus the form,

∣

∣

∣

(

Ai λ
i , ϕi)

×,i

∣

∣

∣ ≤ ∥

∥Ai λ
i
∥

∥

Vi

∥

∥ϕi
∥

∥

≈

Vi
≤ CAi

∥

∥λi
∥

∥

Vi

∥

∥ϕi
∥

∥

≈

Vi
. (119)

Thus, by rearraging terms

|mN(λ, ϕ)| ≤
N
∑

i=0

CAi

∥

∥λi
∥

∥

Vi

∥

∥ϕi
∥

∥

≈

Vi
+ 1

2

N
∑

i=0

N
∑

j=0
i �= j

Cij
∥

∥λ j
∥

∥

V j

∥

∥ϕi
∥

∥

≈

Vi
,

≤
N
∑

i=0

(

CAi

∥

∥λi
∥

∥

Vi
+ 1

2

N
∑

j=0
i �= j

Cij
∥

∥λ j
∥

∥

V j

)

∥

∥ϕi
∥

∥

≈

Vi
,

≤
N
∑

i=0

N
∑

j=0

C̃ij
∥

∥λ j
∥

∥

V j

∥

∥ϕi
∥

∥

≈

Vi
≤ C∗ ‖λ‖VN

‖ϕ‖≈

VN
, (120)

where C∗ := maxi, j{C̃ij} with C̃ij = max{CAi ,
1
2 Cij}, which yields the first asser-

tion. The second is established by analoguous considerations. ��

3.2.5 Single trace formulation (STF)

The STF can be directly derived from the MTF when restricting test and trial
functions to skeleton spaces as introduced in Section 2.2.5. Specifically, for
functions ϕ ∈ H1/2(	) × H−1/2(	), in weak sense

Rij ϕ = R ji X j ϕ, 0 ≤ i �= j ≤ N. (121)

We will denote the orientation aware restriction of ϕ to a subdomain boundary
∂�i as ϕi. The STF follows by simply testing (115) with ϕ and using (121).
Explicitely,

N
∑

i=0

(

Ai λ
i , ϕi)

×,i − 1
2

N
∑

i=0

N
∑

j=0
j�=i

(

˜Xijλ
j , ϕi)

×,i = 1
2

(

X0 g , ϕ0
)

×,0

− 1
2

∑N
i=1

(

R†
i0 R0i g , ϕi

)

×,i
. (122)

By (121) the right-hand side becomes

1
2

(

X0 g , ϕ0
)

×,0
− 1

2

N
∑

i=1

(

R0i g , Ri0 ϕi
)

×,i
= 1

2

(

X0 g , ϕ0
)

×,0
− 1

2

N
∑

i=1

(

R0i g , R0i X0 ϕ0
)

×,0i

(by Lemma 1) = 1
2

(

X0 g , ϕ0
)

×,0
+ 1

2

N
∑

i=1

(

X0 R†
0i R0i g , ϕ0

)

×,0

(by Lemma 7) =
(

X0 g , ϕ0
)

×,0
.
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Now, double sum terms in (122) can be written as
(

˜Xijλ
j , ϕi)

×,i + (

˜X jiλ
i , ϕ j)

×, j = (

R ji X j λ
j , Rij ϕ

)

×,ij +
(

Rij Xi λ
i , R ji ϕ

)

×,ij

(121) = (

R ji X j λ
j , Rij ϕ

)

×,ij +
(

Rij Xi λ
i , Rij Xi ϕ

)

×,ij

(by Lemma 1) = (

R ji X j λ
j , Rij ϕ

)

×,ij −
(

Rij λ
i , Rij ϕ

)

×,ij

= (

R ji X j λ
j − Rij λ

i , Rij ϕ
)

×,ij .

Transmission conditions built into H1/2(	) and H−1/2(	) for 1 ≤ i �= j ≤ N,
imply that these terms vanish whereas for i = 0 and j = 1, . . . , N, we have

(

R j0 X j λ
j − R0 j λ

0 , R0 j ϕ
)

×,0 j = − (

R0 j X0 g , R0 j ϕ
)

×,0 j , (123)

so that
N
∑

i=0

N
∑

j=0
j�=i

(

˜Xijλ
j , ϕi)

×,i = −
N
∑

j=1

(

R0 j X0 g , R0 j ϕ
)

×,0 j = − (

X0 g , ϕ
)

×,0 (124)

again thanks to Lemma 7. Thus, one obtains the following formulation

Problem 7 (STF for N > 1) Seek λ ∈ H1/2(	) × H−1/2(	) such that

N
∑

i=0

(

Ai λ
i , ϕi)

×,i = 1
2

(

X0 g , ϕ0)

×,0 , for all ϕ ∈ H1/2(	) × H−1/2(	),

(125)
is satisfied for g ∈ V0.

Finally, notice that for N = 1, we recover Problem 4 as
(

A0 λ0 , ϕ0)

×,0 + (

A1 λ1 , ϕ1)

×,1 = (

A0 λ0 , ϕ0)

×,0 + (

A1 λ1 , X0 ϕ0)

×,0

(121)= (

A0 λ0 − X0 A1 λ1 , ϕ0)

×,0

trans. cond. = (

A0 λ0 − X0 A1(X0 λ0 − g) , ϕ0)

×,0

= (

(A0 − X0 A1 X0)λ
0 , ϕ0)

×,0

+ (

X0 A1 g , ϕ0)

×,0 ,

with the term in g subtracting the r.h.s in (125).

3.2.6 Uniqueness of solutions for Problem 6

Theorem 9 (c.f. Theorem 4) Problem 6 admits at most one solution.
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Proof Take g = 0, then one must show that λ ≡ 0.

(i) The first step of the proof runs parallel to the first part of the proof
of Theorem 4. Inside each domain �i use the potential (42) to define
(radiating) Helmholtz solutions ui := � i(λi) based on the local compo-
nents λi ∈ Vi of λ ∈ VN , for i = 0, . . . , N, and set

u(x) := ui(x) for x ∈ �i , i = 0, . . . , N . (126)

Take interior traces for ui on the boundary ∂�i, which, by (47) and the
definition (55) yields

γ iui =
(

Ai +1
2

Id
)

λi (115)= 1
2
λi + 1

2

N
∑

j=0
j�=i

˜Xijλ
j , (127)

where we used (115) with g = 0. At an interface �ij, we take the dual
product between the jump operator and a smooth function ϕ in D(�ij) ×
D(�ij) ⊂ ≈

Vij compactly supported on �ij. Recall (35) to see
(

[

γ u
]

�ij
, ϕ

)

×,ij
= (

R ji X j γ
ju j , ϕ

)

×,ij −
(

Rij γ
iui , ϕ

)

×,ij . (128)

Using (127) and the definition ˜X jl = R†
jl Rl j Xl from (111), the first term

can be expanded into

(

R ji X j γ
ju j , ϕ

)

×,ij

(127)= 1
2

(

R ji X j λ
j + 1

2

N
∑

l=0
l �= j

R ji X j R
†
jl Rl j Xl λ

l, ϕ
)

×,ij

= 1
2

(

R ji X j λ
j , ϕ

)

×,ij−
1
2

N
∑

l=0
l �= j

(

Rl j Xl λ
l , R jl X j R†

ji ϕ
)

×,ij
︸ ︷︷ ︸

=0 for l �=i

= 1
2

(

R ji X j λ
j , ϕ

)

×,ij −
1
2

(

Rij Xi λ
i , R ji X j ϕ

)

×,ij

= 1
2

(

R ji X j λ
j , ϕ

)

×,ij +
1
2

(

Rij λ
i , ϕ

)

×,ij

(129)

by Lemma 1 and by definition of R ji. The second term in (128) can be
treated similarly and becomes

(

Rij γ
iui , ϕ

)

×,ij = 1
2

(

Rij λ
i , ϕ

)

×,ij +
1
2

N
∑

l=0
l �=i

(

Rij R†
il Rli Xl λ

l , ϕ
)

×,ij

= 1
2

(

Rij λ
i , ϕ

)

×,ij +
1
2

(

R ji X j λ
j , ϕ

)

×,ij . (130)
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Consequently,
[

γ u
]

�ij
= 0 for all �ij ∈ 	 and u is a radiating solution over

the entire R
d space. On the other hand, the strong analytic continuation

property for the HTP [26, 28, 37], [49, Section 2], implies u ≡ 0 in R
d.

Hence, from (127) it follows that the interior Calderón projection is equal
to zero all over ∂�i and

λi = −
N
∑

j=0
j�=i

˜Xijλ
j, i = 0, . . . , N. (131)

(ii) For the second step of the proof, let us now consider the following
radiating solutions on the complementary domains �c

i . Since for N ≥ 2,
complementary domains overlap, we follow an argument presented in
[49, Section 4.2] and will construct solutions over (N + 1) sheets of R

d,
with sheets connected through the skeleton 	 (see Fig. 2). One can
interpret this as the existence of a multi-valued Helmholtz solution over
R

d×(N+1). Let R
d
i denote the associated sheet to a subdomain �i, i =

0, . . . , N, and define

uc
i := � i(λi) on �c

i ⊂ R
d
i . (132)

Then, we construct the multi-valued solution

uc,σ := {

σiuc
i : R

d
i �→ C, i = 0, . . . , N

}

, (133)

with signs σi ∈ {±1} independently chosen for the individual sub-
domains. The superscript σ in uc,σ indicates the dependence on these
signs. Again, it is our goal to establish uc,σ = 0. To do so, we appeal
to the strong unique continuation principle for solutions of the homoge-
neous Helmholtz equation with piecewise constant wavenumber, see [16,
Sect. 3.4.1]:

Let the open domain D ⊂ R
d be partitioned into open subsets with

piecewise smooth boundaries and let κ ∈ L∞(D), be piecewise con-
stant with respect to that partition. Then a solution u of �u + κ2u = 0
is uniquely determined by its values on any open ball inside D.

Fig. 2 Multivalued
Helmholtz solution in R

2 for
N = 2
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This principle extends to multivalued solutions in a straightforward
manner.
To begin with, we take interior traces, compute the trace jump, see (35),
over the interface �ij and test it with a smooth compactly supported

ϕ ∈ ≈

Vij:
(

[

γ uc,σ ]

�ij
, ϕ

)

×,ij
= σ j

(

R ji X2
j γ

j,cuc
j , ϕ

)

×,ij
− σi

(

Rij Xi γ
i,cuc

i , ϕ
)

×,ij .

(134)

By the exterior Calderón projector formula, see (47) and (55), and the
integral equations of the multiple traces formulation with g = 0, it holds

γ i,cuc
i =

(

− Ai +1
2

Id
)

λi (115)= 1
2
λi − 1

2

N
∑

j=0
j�=i

˜Xijλ
j . (135)

Analogous to the derivation of (129) and (130) we can express the terms
in (134) as
(

R ji X2
j γ

j,cuc
j , ϕ

)

×,ij
= (

R ji γ
j,c� j(λ j) , ϕ

)

×,ij

(135)= 1
2

(

R ji λ
j , ϕ

)

×,ij−
1
2

N
∑

k=0
k�= j

(

R ji R†
jk Rkj Xk λk , ϕ

)

×,ij
︸ ︷︷ ︸

=0 for k�=i

= 1
2

(

R ji λ
j , ϕ

)

×,ij −
1
2

(

Rij Xi λ
i , ϕ

)

×,ij

and
(

Rij Xi γ
i,cuc

i , ϕ
)

×,ij = (

Rij Xi γ
i,c� i(λi) , ϕ

)

×,ij

(135)= 1
2

(

Rij Xi λ
i, ϕ

)

×,ij− 1
2

N
∑

k=0
k�=i

(

Rij Xi R†
ik Rki Xk λk,ϕ

)

×,ij
︸ ︷︷ ︸

=0 for k�= j

= 1
2

(

Rij Xi λ
i , ϕ

)

×,ij −
1
2

(

R ji λ
j , ϕ

)

×,ij .

Thus, (134) is equal to zero, and, consequently, the jump
[

γ uc,σ
]

�ij
van-

ishes, if σiσ j < 0. Now we fix σ0 = +1 and consider suitable permutations
of the remaining signs σ1, . . . , σN .
If we can select the σi such that adjacent subdomains always carry
opposite signs we adapt the argument from the case N = 1 discussed
in Section 3.1.1; the corresponding uc,σ will be a global multi-valued
homogeneous Helmholtz solution satisfying radiation conditions. Hence,
as in [49, Section 4.2] we can conclude that it will vanish.
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If such a sign pattern is not possible, we have to rely on the above
unique continuation principle. Let us elucidate the reasoning leading to
the conclusion uc,σ

i = 0 for the case N = 2 and the situation depicted in
Fig. 2. Then three multivalued solutions of the homogeneous Helmholtz
equation may be taken into account, listed according to the choice of σi

in the different subdomains:

σ1 σ2 On �01 On �02 On �12

− − (uc,−−) uc
0 − X0uc

1 = 0 uc
0 − X0uc

2 = 0 No information
− + (uc,−+) uc

0 − X0uc
1 = 0 No information uc

1 − X1uc
2 = 0

+ − (uc,+−) No information uc
0 − X0uc

2 = 0 uc
1 − X1uc

2 = 0

The three multivalued solutions may have a non-zero jump across a single
interface. In addition, they all agree on �c

0. By the strong continuation
principle they must agree everywhere away from the interfaces:

uc,−− = uc,+− = uc,−+ on �c
0 ∪ �c

1 ∪ �c
2 . (136)

By their definition in (133) we conclude

uc
1 = −uc

1 and uc
2 = −uc

2 ⇒ uc
1 = uc

2 = 0 . (137)

Hence, uc
0 can be extended by zero to a homogeneous Helmholtz solution

on R
d and, thus, must vanish, too. These considerations can be general-

ized to any N > 2 in a straightforward fashion. Eventually, (135) implies

λi =
N
∑

j=0
j�=i

˜Xijλ
j i = 0, . . . , N . (138)

Consequently, condition (131) implies λ identically equal to zero. ��

3.2.7 Coercivity of MN

We shall first show the following properties:

Lemma 8 Let λi ∈ ˜Vi and λ j ∈ ˜V j. Then, it holds

(

λi , ˜Xijλ
j)

×,i = −(

λ j , ˜X jiλ
i
)

×, j. (139)

Proof Let us assume �i non-empty as otherwise the identity holds trivially
since ˜Xij ≡ 0 for all j = 0, . . . , N. Direct expansion of the sesquilinear forms
defined over ∂�i yields

(

λi , ˜Xijλ
j)

×,i =
(

λi , R†
ij R ji X j λ

j
)

×,i
=
(

X†
j R†

ji Rij λ
i , λ j

)

×, j

= −
(

X j R†
ji Rij λ

i , λ j
)

×, j

(140)
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now over ∂� j and where the last step is due to Lemma 1. Due to linearity and
to the diagonal structure of the operators, one can easily show that X j R

†
ji Rij =

R†
ji Rij Xi = ˜X ji in weak sense. Hence,

(

λi , ˜Xijλ
j)

×,i = − (

˜X jiλ
i , λ j)

×, j = −(

λ j , ˜X jiλ
i
)

×, j
(141)

as stated. ��

Theorem 10 The multi-trace formulation of the Helmholtz transmission prob-
lem (115) is VN-coercive for λ ∈ ˜VN, i.e. there exists a constant αMN such that

Re

{

(

λ ,
(

MN + TMN

)

λ
)

×
}

≥ αMN ‖λ‖2
VN

, for all λ ∈ ˜VN, (142)

where TMN : VN → VN is compact. This result also holds for λ ∈≈

VN ⊂ ˜VN.

Proof We need to show that MN is positive-definite up to a compact perturba-
tion. Let λ ∈ ˜VN and take the skew duality product:

(λ , MN λ)× =
N
∑

i=0

(

λi , ξ i)

×,i (143)

where ξ i is the i-projection of MN λ ∈ VN . Expansion of the right-hand side
yields

N
∑

i=0

(

λi , ξ i)

×,i =
N
∑

i=0

(

λi , Ai λ
i)

×,i − 1
2

N
∑

i=0

N
∑

j=0
j�=i

(

λi , ˜Xijλ
j)

×,i . (144)

The double sum in (144) is purely imaginary due to Lemma 8. Hence, we obtain

Re
{

(λ , MN λ)×
} =

N
∑

i=0

Re

{

(

λi , Ai λ
i)

×,i

}

, (145)

wherein each summand is coercive as shown in Theorem 3 with compact
operators TAi and coercivity constants denoted αAi , i = 0, . . . , N. Then, by
taking αMN := mini=0,...,N αAi and TMN := diag(TAi)

N
i=0 : VN → VN , the result

follows. ��

3.2.8 Existence and stability

We observe a fundamental mismatch beetween the coercivity result of
Theorem 10 which refers to the norm of VN and the continuity of the sesquilin-

ear form mN on VN× ≈

VN . This defies the standard Fredholm argument [44]
and forces us to resort to the more refined stability theory provided by the
following two lemmas.
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Lemma 9 (Lion’s projection lemma [31], Chapter III, Theorem 1.1) Let H be
a Hilbert space and � a subspace of H (not necessarily closed). Moreover, let
b : H × � → R be a bilinear form satisfying the following properties:

1. For every ϕ ∈ �, the linear form u �→ b(u, ϕ) is continuous in H.
2. There exists α > 0 such that

|b(ϕ, ϕ)| ≥ α ‖ϕ‖2
H for all ϕ ∈ � . (146)

Then for each continuous linear form l ∈ H′, there exists u0 ∈ H such that

b(u0, ϕ) = 〈l , ϕ〉H ∀ ϕ ∈ � and ‖u0‖H ≤ 1
α

‖l‖H′ . (147)

Proof We transcript the proof given in [11]. From assumption (1) and the
Riesz representation theorem it follows that for every ϕ ∈ � there exists
B ϕ ∈ H with

(u , B ϕ)H = b(u, ϕ) ∀ u ∈ H. (148)

This defines a linear (generally unbounded) operator B : � → � := B(�) ⊆
H. By assumption (2), the operator B is injective and has an inverse L : � → �.
Again from assumption (2), one has for p ∈ �

‖L p‖2
H ≤ 1

α
b(L p, L p) = 1

α
(L p , B L p)H ≤ 1

α
‖L p‖H ‖p‖H , (149)

from where ‖L p‖H ≤ α−1 ‖p‖H . Hence, L can be extended by continuity to
the closure � of � in the H-norm. Let us denote this extension by L satisfying
L : � → � where now � is a closed subspace of H and thus also Hilbert with
norm ‖·‖H . Using the Riesz representation theorem on � one obtains a ξl ∈ �

with

l(ϕ) = (ξl , ϕ) ∀ ϕ ∈ �. (150)

Finally, let P : H → � be the orthogonal projection onto �, then u0 := P∗ L
∗
ξl,

where asterisk denote adjoints, satisfies the stated conditions as

b(u0, ϕ) = (u0 , B ϕ)H =
(

P∗ L
∗
ξl , B ϕ

)

H
=

(

L
∗
ξl , B ϕ

)

�

= (ξl , ϕ)� = 〈l , ϕ〉H ,

(151)

for all ϕ ∈ �, and

‖u0‖H ≤ ∥

∥P∗∥
∥

H→H′

∥

∥

∥L
∗
ξl

∥

∥

∥

H
≤

∥

∥

∥L
∥

∥

∥

H→H
‖ξl‖H ≤ α−1 ‖l‖H′ . (152)

as stated. ��

Remark 11 ([31], Chapter III, Remark 1.1) In general, the above result does
not guarantee uniqueness of the solution. The necessary and sufficient con-
dition for this to hold is that � is dense in H. Moreover, notice that the
solution(s) belong to H and not necessarily to �.



72 R. Hiptmair, C. Jerez-Hanckes

Lemma 10 Let H be a Hilbert space and � a subspace of H (not necessarily
closed). Moreover, let :H × � → R and t : H × H → R be bilinear forms
satisfying the following properties:

1. For every ϕ ∈ �, the linear form u �→ m(u, ϕ) is continuous in H.
2. The linear operator T : H → H associated to the bilinear form t(·, ·) is

compact and continuous.
3. There exists α > 0 such that

Re {m(ϕ, ϕ) + t(ϕ, ϕ)} ≥ α ‖ϕ‖2
H , ∀ ϕ ∈ �. (153)

4. The form u �→ m(u, ϕ) is injective, i.e. m(u, ϕ) = 0 for all ϕ ∈ �, implies
u = 0.

Then, for l ∈ H′ there exists u0 ∈ H solution of

m(u, ϕ) = 〈l , ϕ〉 , ∀ ϕ ∈ �, (154)

satisfying the stability estimate

‖u0‖H ≤ βm

α
‖l‖H′ . (155)

where βm is independent of l.

Proof By assumptions (1) and (2), the Riesz theorem applies and there exist
an unbounded and a compact operator, M and T, respectively, such that for
every ϕ ∈ �, it holds

(u , M ϕ)H = m(u, ϕ), (u , T ϕ)H = t(u, ϕ), ∀ u ∈ H, (156)

with M : � → H and T : H → H such that the sesquilinear form induced
B := M + T satisfies hypothesis (146) of Lemma 9. Then this lemma applies and
there exists a bounded inverse operator B−1 : H → H with continuity constant
α−1. On the other hand, hypothesis (4) implies that M is injective and it can be
expressed as

M = B − T =
(

Id − T B−1
)

B (157)

where the operator T B−1 is compact and Id − T B−1 is injective. Thus, the
Fredholm alternative follows and the operator Id − T B−1 : H → H has a
bounded inverse with continuity constant βm. Consequently, by the Riesz
representation for all l ∈ �′, there is a ξl ∈ �, such that for u0 := M−1 ξl, it holds

‖u0‖H =
∥

∥

∥M−1 ξl

∥

∥

∥

H
≤
∥

∥

∥

∥

B−1
(

Id − T B−1
)−1

∥

∥

∥

∥

H→H
‖ξl‖H

≤
∥

∥

∥B−1
∥

∥

∥

H→H

∥

∥

∥

∥

(

Id − T B−1
)−1

∥

∥

∥

∥

H→H
‖ξl‖H

≤ βm

α
‖l‖H′ (158)

as stated. ��
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Theorem 11 There exists a unique solution λ ∈ VN for the multiple traces
formulation (115) satisfying

‖λ‖VN
≤ βMN

αMN

∥

∥g
∥

∥

V0
. (159)

with positive constants βMN and αMN .

Proof It follows directly by compliance with the assumptions of Lemma 10. In

particular, let H ≡ VN and � ≡ ≈

VN . Our bilinear forms are

mN : ϕ �→ (MN λ , ϕ)× : � → H and tN : ϕ �→ (

TMN λ , ϕ
)

× : H → H,

both continuous and such that hypothesis (2) and (3) are satisfied (Theorem 10)
with αMN given by (142). Moreover, Theorem 9 ensures hypothesis (4) as the

operator acting on g ∈ V0 in (115) defines a linear form for all ϕ ∈≈

VN when
written as

lg(ϕ) = 1
2

〈

QN

⎛

⎜

⎜

⎜

⎝

X0 g
− R†

10 R01 g
...

− R†
N0 R0N g

⎞

⎟

⎟

⎟

⎠

, ϕ

〉

Thus, there is a positive constant βMN independent from lg. ��

3.2.9 Mapping properties of M−1
N

Along the lines of the proof of Theorem 6 for N = 1, we conclude that the
compact operator TMN is in fact smoothing for all N.

Theorem 12 The operator TMN is regularizing, i.e. TMN : VN −→ V1/2
0 × · · · ×

V1/2
N .

For N = 1, in Theorem 7 we could show that the inverse operator M−1
N

preserves regularity of data. This was done by establishing a relationship
between MTF and STF. For N > 1 this reduction encounters formidable
technical difficulties. The following consideration may give a hint: if gi ∈ Vi,
one exchanges test functions ϕ ∈ ˜VN by those lying in H1/2(	) × H−1/2(	) in
the formulation (115). This yields the following expression:

N
∑

i=0

(

Ci λ
i , ϕi)

×,i =
N
∑

i=0

(

gi , ϕi)

×,i , (160)

which resembles the formulation of Problem 7 when considering ϕi as the
oriented restriction of ϕ on ∂�i. However, then one has to link traces λ across
�ij, which destroys the structure. Therefore, so far we can only conjecture
minimal preservation of regularity by the MTF solution operator.
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Conjecture 1 (Continuity of M−1
N in spaces of higher regularity) The inverse

MTF operator M−1
N maps V1/2

0 × · · · × V1/2
N into itself continuously.

3.2.10 Symmetric multiple trace formulation (sMTF)

In view of the numerical implementation of the proposed method, a variational
formulation MTF for which trial and test spaces coincide seems more suitable:

Corollary 2 If the unique solution λ ∈ VN of Problem 6 belongs to ˜VN, then it
solves the MTF variational problem

mN(λ, ϕ) = 1
2

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

X0 g
− R†

10 R01 g
...

− R†
N0 R0N g

⎞

⎟

⎟

⎟

⎠

, ϕ

⎞

⎟

⎟

⎟

⎠

×

, for all ϕ ∈ ˜VN , (161)

with g ∈ V0 and mN def ined as in (115).

Proof The proof is solely based on the density of
≈

VN in ˜VN and of ˜VN in VN ,
see Remark 3, while preserving the dual products. ��

4 Discrete formulation

4.1 Preliminaries

We rely on a quasi-uniform family of meshes {	h, h > 0} of the skeleton 	.
The meshes have to be compatible with the subdomains in the sense that their
restrictions 	h |�ij

to any interface �ij provide a valid family of meshes for �ij.
For any interface � emdowed with a mesh �h, we write S−1,0(�h) for the

space of �h-piecewise constants, and S0,1(�h) for the space of �h-piecewise lin-
ear, globally continuous functions, respectively. Moreover, S0,1

0 (�h) ⊂ S0,1(�h)

stands for the space of piecewise linear continuous functions that vanish on the
boundary ∂�.

We obtain families of finite dimensional spaces Vh
i = Vh

i,D × Vh
i,N, where

Vh
i,D ≡ S0,1(∂�h

i ) and Vh
i,N ≡ S−1,0(∂�h

i ). They will serve as approximation
spaces for the unknown traces associated with a subdomain �i. These spaces
are combined into

V
h
N := Vh

0 × . . . × Vh
N , (162)

which will serve as discrete trial and test space for a Galerkin discretization of
the MTF variational problem (161).

Note that V
h
N is a subspace of both VN and ˜VN . Hence, in terms of

boundary element approximation we can ignore the special trace spaces ˜VN

needed for a meaningful variational formulation in Problem 6. Consequently,
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implementation can rely on standard boundary element spaces and assembly
routines from existing codes.

4.1.1 Well-posedness in 2-D

In the following, we establish existence and stability results for discrete so-
lutions in two dimensions as the three-dimensional case is more technically
involved. In 2-D the meshes 	h boil down to partitionings of 	 into line
segments. All triple points, see Fig. 1, have to be mesh points. The index h
will also denote the meshwidth.

So-called dual meshes will be instrumental in the proofs: for an open or
closed polygon � equipped with a mesh �h the associated dual mesh �̂h is
the partitioning of � defined by the midpoints of the line segments of �h,
and, possibly, the endpoints of �. Piecewise constants on �h and continuous
piecewise linear functions on �̂h that vanish at the endpoints of � enjoy L2-
duality in the following sense [35, Section 4]:

sup
0 �=vh∈S0,1

0 (�̂h)

|〈ψh , vh〉|
‖vh‖L2(�)

≥ CST ‖ψh‖L2(�) , ∀ h > 0, (163)

for all ψh ∈ S−1,0(�h). Of course, here and below the duality pairing could be
replaced with the inner product (· , ·)L2(�). As an immediate consequence of
(163) we have the dual estimate

sup
ψh∈S−1,0(�h)

ψh �=0

|〈ψh , vh〉|
‖ψh‖L2(�)

≥ CST ‖vh‖L2(�) ∀vh ∈ S0,1
0 (�̂h) , ∀h > 0. (164)

This will used to establish inverse inequalities between ˜H−1/2(�ij) and
H−1/2(�ij).

Lemma 11 Given a quasi-uniform family of meshes {�h}h>0 for a polygon �,
the following inverse estimate

‖ϕh‖˜H−1/2(�) ≤ C1(1 + |log h|) ‖ϕh‖H−1/2(�) (165)

holds true for all piecewise constants ϕh ∈ S−1,0(�h) and with C1 independent of
the meshwidth h > 0.

Proof Denote by �̂h the dual mesh of �h as introduced above. From Mclean
and Steinbach [35, Sect. 4, proof of Thm. 4.1], it is known that the following
inverse inequality holds true

‖uh‖˜H1/2(�) ≤ CMS(1 + |log h|) ‖uh‖H1/2(�) , ∀h > 0, (166)

for all uh ∈ S0,1
0 (�̂h). Appealing to (163), we define a linear projection J1

h :
L2(�) → S0,1

0 (�̂h) through
〈

ϕh , J1
h u

〉

= 〈ϕh , u〉 , ∀ ϕh ∈ S−1,0(�h) , (167)
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which satisfies
∥

∥

∥J1
h u

∥

∥

∥

L2(�)
≤ C−1

ST ‖u‖L2(�) , ∀ h > 0 . (168)

Indeed, from (164) and setting vh := J1
h u ∈ S0,1

0 (�̂h) in (164), we get

CST

∥

∥

∥J1
h u

∥

∥

∥

L2(�)
≤ sup

0 �=ψh∈S−1,0(�h)

∣

∣

∣

〈

ψh , J1
h u

〉∣

∣

∣

‖ψh‖L2(�)

≤ sup
0 �=ψh∈S−1,0(�h)

|〈ψh , u〉|
‖ψh‖L2(�)

≤ ‖u‖L2(�) , (169)

from which we infer (168). We also make use of the L2(�)-orthogonal projec-
tor Ph : L2(�) �→ S0,1

0 (�̂h), defined by

〈Ph f , vh〉 = 〈 f , vh〉 , ∀ vh ∈ S0,1
0 (�̂h) (170)

In [46, Section 10.2] we find the projection error estimate

‖ f − Ph f‖L2(�) ≤ C2 ‖ f‖H1(�) ∀ f ∈ H1(�) , ∀h > 0 . (171)

From [35, Theorem 4.2] we learn that this projector is also continuous in
H1(�):

‖Ph f‖H1(�) ≤ CP ‖ f‖H1(�) ∀ f ∈ H1(�) , ∀ h > 0 . (172)

Hence, for all h > 0 and u ∈ H1(�), we find
∥

∥

∥J1
h u

∥

∥

∥

H1(�)
≤
∥

∥

∥J1
h u − Ph u

∥

∥

∥

H1(�)
+ ‖Ph u‖H1(�)

(172) & [43, Thm. 4.4.3] ≤ C1h−1
∥

∥

∥J1
h u − Ph u

∥

∥

∥

L2(�)
+ CP ‖u‖H1(�)

≤ C1h−1
∥

∥

∥J1
h(Id − Ph)u

∥

∥

∥

L2(�)
+ CP ‖u‖H1(�)

(168) ≤ C1h−1C−1
ST ‖(Id − Ph)u‖L2(�) + CP ‖u‖H1(�)

≤ C1h−1C−1
STC2h ‖u‖H1(�) + CP ‖u‖H1(�)

≤ ˜C1 ‖u‖H1(�)

with ˜C1 := C1C−1
STC2 + CP. Then, in light of (168) the interpolation between

H1(�) and L2(�) yields, with C3 = C−1/2
ST

˜C1/2
1 ,

∥

∥

∥J1
h u

∥

∥

∥

H1/2(�)
≤ C3 ‖u‖H1/2(�) ∀ u ∈ H1/2(�), ∀h > 0. (173)
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Finally, we obtain the desired bound as follows. Let ϕh ∈ S−1,0(�h), then by
definition of the dual norm in (13)

‖ϕh‖˜H−1/2(�) = sup
0 �=v∈H1/2(�)

|〈ϕh , v〉|
‖v‖H1/2(�)

(173), (167) ≤ C3 sup
0 �=v∈H1/2(�)

∣

∣

∣

〈

ϕh , J1
h v

〉∣

∣

∣

∥

∥

∥J1
h v

∥

∥

∥

H1/2(�)

= C3 sup
0 �=vh∈S0,1

0 (�̂h)

|〈ϕh , vh〉|
‖vh‖H1/2(�)

(166) ≤ C3CMS(1 + |log h|) sup
0 �=vh∈S0,1

0 (�̂h)

|〈ϕh , vh〉|
‖vh‖˜H1/2(�)

≤ C3CMS(1 + |log h|) sup
0 �=v∈˜H1/2(�)

|〈ϕh , v〉|
‖v‖

˜H1/2(�)

(174)

and the result follows from the definition of the norm of H−1/2(�), see (13).
��

Corollary 3 In two dimensions we have the h-uniform inverse estimate

‖ϕh‖˜VN
≤ CN(1 + |log h|) ‖ϕh‖VN

∀ϕh ∈ ˜V
h
N , ∀h > 0 . (175)

Proof The norms in VN (resp. in ˜VN) are given as the sum of norms for each
component ϕi

h in Vh
i (resp. in ˜Vh

i ), i = 0, . . . , N. Thus, we need to prove
∥

∥ϕi
h

∥

∥

˜Vi
≤ Ci(1 + |log h|) ∥∥ϕi

h

∥

∥

Vi
, Ci > 0, i = 0, . . . , N. (176)

Recall that Vh
i and ˜Vh

i themselves are cartesian products of finite-dimensional
conforming Dirichlet and Neumann trace spaces: Vh

i ⊂ Vi := H1/2(∂�i) ×
H−1/2(∂�i) and ˜Vh

i ⊂ ˜Vi := H1/2(∂�i) × ˜H−1/2
pw (∂�i). Since the only difference

between spaces occurs on their Neumann components, showing (176) is equiv-
alent to prove

∥

∥ϕi
h,N

∥

∥

˜H−1/2
pw (∂�h

i )
≤ Ci(1 + |log h|) ∥∥ϕi

h,N

∥

∥

H−1/2(∂�h
i )

(177)

Now, by definition of ˜H−1/2
pw (∂�h

i ), the norm is obtained as a sum of individual
norms on each interface �h

ij, j ∈ �i. By Lemma 11, it holds

∥

∥ϕi
h,N

∥

∥

˜H−1/2
pw (∂�h

i )
=

∑

j∈�i

∥

∥

∥RN,h
ij ϕi

h,N

∥

∥

∥

˜H−1/2(�h
ij)

≤ (1 + |log h|)
∑

j∈�i

Cij

∥

∥

∥RN,h
ij ϕi

h,N

∥

∥

∥

H−1/2(�h
ij)

≤ Ci(1 + |log h|) ∥∥ϕi
h,N

∥

∥

H−1/2(∂�h
i )

(178)
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where RN,h
ij denotes the restriction operator over �h

ij for Neumann data and
Ci = max j∈�i{Cij}. ��

Theorem 13 Under Conjecture 1, in two dimensions and for quasi-uniform
families of skeleton meshes as introduced above, we can f ind h0 > 0 such that
the following discrete inf-sup condition holds

sup
ϕh∈V

h
N

|mN(λh, ϕh)|
‖ϕh‖VN

≥ αMN ‖λh‖VN
, ∀ λh ∈ V

h
N , ∀h < h0 . (179)

Proof We reuse the notations from the proof of Theorem 11. Denote by Ph :
˜VN → V

h
N the orthogonal projector onto the discrete space that realizes best

approximation in the ˜VN-norm. Fix any λh ∈ V
h
N . Using that MN is bounded

and invertible on VN , we can define ϕh := Ph
(

Id + M−1
N TMN

)

λh in V
h
N .

Then,

mN(λh, ϕh) = mN(λh, Ph
(

Id + M−1
N TMN

)

λh)

= mN(λh, λh) + mN(λh, M−1
N TMN λh)

+ mN(λh, (Ph − Id) M−1
N TMN λh)

= mN(λh, λh) + tN(λh, λh) + mN(λh, (Ph − Id) M−1
N TMN λh)

= bN(λh, λh) + mN(λh, (Ph − Id) M−1
N TMN λh)

By coercivity of bN(·, ·) := mN(·, ·) + tN(·, ·), we obtain by Theorems 10 and 8,

|mN(λh, ϕh)| ≥ |bN(λh, λh)| − ∣

∣mN(λh, (Ph − Id) M−1
N TMN λh)

∣

∣

≥ αMN ‖λh‖2
VN

− CmN ‖λh‖˜VN

∥

∥(Ph − Id) M−1
N TMN λh)

∥

∥

˜VN

where CmN is the continuity constant of the bilinear form mN . Thus, we
must show that the the last term tends to zero as h → 0. The operator TMN :
VN → VN is compact and smoothing acording to Theorem 12, while M−1

N is
the solution operator for the continuous variational problem conjectured to
possess the mapping properties detailed in Conjecture 1. Thus, M−1

N TMN λh

belongs to V1/2
0 × · · · × V1/2

N . By this extra regularity, for some 0 < ε < 1
2 and

λ in V1/2
0 × · · · × V1/2

N , it holds

inf
ϕh∈V

h
N

‖λ − ϕh‖˜VN
≤ C(ε) inf

ϕh∈V
h
N

∥

∥λ − ϕh

∥

∥
∏N

i=0 H1/2(∂�i)×H−1/2+ε (∂�i)
(180)

for C(ε) > 0, due to the continuous embedding ˜H−1/2+ε(�ij) = H−1/2+ε(�ij) ⊂
˜H−1/2(�ij). Appealing to best approximation estimates from [46, Section 10.2]
we arrive at

∥

∥(Ph − Id) M−1
N TMN λh

∥

∥

˜VN
= CP(ε)h1/2−ε ‖λh‖VN

, (181)
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Fig. 3 Test geometries for
N = 1 and N = 2 scatterers.
Circle radius equals to one

for CP(ε) > 0 that does neither depend on h nor on λh. Now, using the inverse
estimate from Lemma 3 valid for 2-D, we finally obtain

|mN(λh, ϕh)| ≥ αMN ‖λh‖2
VN

− CmN CP(ε)CNh1/2−ε(1 + |log h|) ‖λh‖2
VN

(182)

so that the factor in front of the second norm tends to zero when h does.
Therefore, it can be pushed below 1

2αMN by making h sufficiently small. ��

By standard arguments, Theorem 13 implies asymptotic quasioptimality of
Galerkin boundary element solutions in the VN trace norm.
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of a single scatterer (a circle of radius one) for different values of κ1 with κ0 = 1 and for an
impinging plane wave with angle θ = 0. Exact far-field solution is obtained via Mie series
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Fig. 5 Error convergence rates in different norms for the exterior Dirichlet and Neumann traces
(λ0

D, λ0
N) on a single circular scatterer of radius one with κ1 = 2 with κ0 = 1 for an impinging plane

wave with angle θ = 0. Errors are obtained with respect to the linear interpolation of the exact
Mie series solution

Remark 12 A similar result in R
3 will hold, provided there exists an equivalent

of the inverse inequality (Lemma 3) on surfaces.

5 Numerical results

We now present numerical simulations for two-dimensional canonic scatterers
(N = 1 and N = 2) for which analytic solutions are available in the form of
Mie series [50, Section 3.1.5]. The case of two subdomains already contains all
the difficulties pertaining Lipschitz domains with sharp corners.1

1Experiments were performed on Matlab 2009b, 32-bit, running on a MacBook Pro with
2.93 GHz, 4 GB RAM, and based on the 2-D boundary element MEX-Fortran library developed
by A. Bendali.
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5.1 Single subdomain (N = 1)

We analyze one penetrable obstacle consisting of a circle of radius one (see
Fig. 3) with varying interior wavenumber κ1, cf. Section 3.1. In the exterior do-
main we set a wavenumber κ0 = 1 and the exact solution for the configuration
is provided by means of Mie series. In Fig. 4, we present L∞-error convergence
rates for the far-field obtained and conditioning numbers for the MTF and
STF. We observe a convergence rate of O(h2) independently of the values of
κ1 for uniformly refined meshes, where h is inversely dependent on the number
of unknowns. This is due to the smoothing properties of the far-field operator.
The numerical computation of integral operators requires h to be smaller
than a value dependent on κ1 and which must decrease as the wavenumber
κ1 increases.
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Fig. 6 MTF and STF local errors in different norms for the exterior Dirichlet and Neumann
traces (λ0

D, λ0
N) on a single circular scatterer (N = 1) of radius one with κ1 = 2 with κ0 = 1 for

an impinging plane wave with angle θ = 0. A total of 200 degrees of freedom is used and errors
are obtained with respect to the linear interpolation of the exact Mie series solution
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More interesting is the comparison between both MTF and STF on their
convergence rates for Dirichlet and Neumann traces on ∂�. Figure 5 depicts
convergence rates in different norms taken with respect to the piecewise linear
interpolation of the exact solution over the mesh. Since we obtain similar
convergence rates for all norms this points towards the interpolation error
itself as the largest contribution. Specifically, one should observe a decay as
in O(h) for the H1-norm but instead we obtain O(h2) due to the regularity of
the right-hand side.

In Fig. 6, one can observe the distribution of local trace errors for both
formulations. Observe the difference in order of magnitude (104) between the
local error for Dirichlet data in MTF and STF. On the other hand, Neumann
local errors are only slightly better in the MTF. This will serve as comparison
for the case of multiple subdomains.
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Fig. 7 Far-field error convergence as O(h2) for two scatterers (defining a circle of radius one) for
different values of κ1 = κ2 with κ0 = 1 and for an impinging plane wave with angle θ = 0. Exact
far-field solution is obtained via Mie series
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5.2 Two subdomains (N = 2)

We now consider the second geometric configuration in Fig. 3, i.e. two half-
circles of radius one joined at the polar diameter. Left and right hand sides are
described by wavenumbers κ1 and κ2, respectively. As before, κ0 is all along set
to one.

In this case, one can compare with the Mie series exact solution to validate
the model. Figure 7 shows far-field L∞-error convergence rates and condi-
tioning numbers for the solutions obtained via the MTF and STF. Uniform
mesh refinement yields once more expected convergence rate of O(h2) inde-
pendently from values of κ1. For different mesh refinements, Figs. 8, 9 and 10
depict MTF and STF L2-, H1/2- and H1-error norms for Dirichlet traces and
in L2- and H−1/2-norms for Neumann traces for a fixed κ1 = κ2. Again, errors
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Fig. 8 Error convergence rates in different norms for the Dirichlet and Neumann traces (λ0
D, λ0

N)

on ∂�0 for a split circle of radius one (N = 2) as described in Fig. 3 for an impinging plane wave
with angle θ = 0. Parameters κ1 = κ2 = 2 and κ0 = 1. Errors are obtained with respect to the linear
interpolation of the exact Mie series solution
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Fig. 9 Error convergence rates in different norms for the Dirichlet and Neumann traces (λ1
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on ∂�1 for a split circle of radius one (N = 2) as described in Fig. 3 for an impinging plane wave
with angle θ = 0. Parameters κ1 = κ2 = 2 and κ0 = 1. Errors are obtained with respect to the linear
interpolation of the exact Mie series solution

are taken in absolute terms with respect to the far-field and traces derived from
Mie series.

Figure 11 reveals the loss in H1-regularity at triple points—angles 90◦ and
−90◦—when compared to the local L2-norm. This is explained by the stronger
measure of regularity which cannot be achieved by the discretization bases,
in particular at triple points. Notice that this also occurs for the single trace
formulation.

5.3 Preconditioning

As observed, an increase in the number of unknowns rapidly degrades the
conditioning number of the associated matrix and, consequently, the GMRES
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Fig. 10 Error convergence rates in different norms for the Dirichlet and Neumann traces (λ2
D, λ2

N)

on ∂�2 for a split circle of radius one (N = 2) as described in Fig. 3 for an impinging plane wave
with angle θ = 0. Parameters κ1 = κ2 = 2 and κ0 = 1. Errors are obtained with respect to the linear
interpolation of the exact Mie series solution

algorithm requires more iterations to converge [41]. As a preconditioner, we
use of the block diagonal operator:

Z :=

⎛

⎜

⎜

⎜

⎝

A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...

0 0 · · · AN

⎞

⎟

⎟

⎟

⎠

(183)

whose discrete form is denoted by ZN,h.
For a scatterer composed of two semicircles of radius one, Figs. 12 and 13

show relative residual convergence rates up to a tolerance of tol=1e-10 for
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Fig. 11 MTF and STF local errors in different norms for the exterior Dirichlet and Neumann
traces on a split circular scatterer of radius one (N = 2) with κ1 = κ2 = 2 and κ0 = 1 for an
impinging plane wave with angle θ = 0. Observe the irregularity at triple points. Errors are
obtained with respect to the linear interpolation of the exact Mie series solution

different boundary mesh refinements for both unconditioned and diagonally
preconditioned GMRES. One can observe the large reduction in number of
iterations almost independent on the number of variables and the compar-
ison with STF in Fig. 12b. For example, in the case κ1 = 2 and κ2 = 8, the
preconditioned MTF attains residual error tolerance at 44 and 47 iterations
for NM = 940 and NM = 4,188, whereas the number of iterations for the non-
preconditioned system increases from 369 to 1,077. A slight increase in number
of iterations is observed for different wavenumbers κ1 and κ2. However, large-
contrasting values were not modeled due to memory requirements.

Unfortunately, diagonal preconditioning requires the inversion of ZN,h

which increases computation time. Hence, Calderón preconditioning is
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Fig. 12 Residual errors against number of iterations for GMRES using MTF (a) and STF (b), and
diagonally preconditioned GMRES using MTF (a) (P-GMRES), for different numbers of degrees
of freedom NM. Geometry considered is a circle of radius one divided in two halves with κ0 = 1
and equal values κ1 = κ2 = 2

expected to deliver better results as it yields compactly perturbed block
identities.

5.3.1 Matrix eigenvalues distribution

Eigenvalue distributions for the previous test geometries are presented in
Fig. 14a and b. One observes that after diagonal preconditioning eigenvalues
spread strongly with respect to the non-preconditioned system. These eigen-
values correspond to propagative modes. Also, an increase in the number of
degrees of freedom translates into denser clusters. This is due to the resolution
of higher frequencies. Still, the most interesting features of the MTF are to be
found when applying Calderón preconditioning.



88 R. Hiptmair, C. Jerez-Hanckes

10
1

10
2

10
3

10−10

10−8

10−6

10−4

10−2

100

102

Number of iterations

R
es

id
ua

l e
rr

or

 

 
GMRES NM=212
P−GMRES NM=212
GMRES NM=940
P−GMRES NM=940
GMRES NM=4188
P−GMRES NM=4188

Fig. 13 Residual errors against number of iterations for GMRES and preconditioned GMRES
(P-GMRES) when solving the multitrace formulation for two semicircles of radius one with
wavenumbers κ0 = 1, κ1 = 2 and κ2 = 8

−1 0 1 2 3
−3

−2

−1

0

1

2

3
NM=108

Real axis
−1 0 1 2 3

Real axis

Im
ag

in
ar

y 
ax

is

−3

−2

−1

0

1

2

3

Im
ag

in
ar

y 
ax

is

−1 0 1 2 3
Real axis

−3

−2

−1

0

1

2

3

Im
ag

in
ar

y 
ax

is

−1 0 1 2 3
Real axis

−4

−3

−2

−1

0

1

2

3

4

Im
ag

in
ar

y 
ax

is

−1 0 1 2 3
Real axis

−4

−3

−2

−1

0

1

2

3

4

Im
ag

in
ar

y 
ax

is

−1 0 1 2 3
Real axis

−4

−3

−2

−1

0

1

2

3

4

Im
ag

in
ar

y 
ax

is

NM=664 NM=4188

no precond
precond

no precond
precond

no precond
precond

(a) κ0 = 1 and κ1 = κ

κ κ κ

2 = 2.

NM=212 NM=940 NM=4188

no precond
precond

no precond
precond

no precond
cond

(b) 0 = 1, 1 = 2 and 2 = 8.
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6 Conclusions and future work

We have introduced a stable formulation for the Helmholtz transmission prob-
lem over multiple domains. It ensures uniqueness of the solution so that the
spurious mode problem is completely set aside. Moreover, its implementation
is straightforward as it only requires standard discretization bases. Also, we
have shown a great reduction in the number of iterations when block-diagonal
preconditioning is used. However, inverting this matrix is quite consuming
and therefore Calderón type preconditioning is currently explored to solve
this issue. Future work includes extension to HTP with Dirichlet conditions
or screens, to operators of div-grad form and, to vectorial electromagnetic
scattering.
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