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Abstract

In this paper, we will introduce composite finite elements for solving elliptic boundary value problems
with discontinuous coefficients. The focus is on problems where the geometry of the interfaces between
the smooth regions of the coefficients is very complicated.

On the other hand, efficient numerical methods such as, e. g., multigrid methods, wavelets, extrapola-
tion, are based on a multi-scale discretization of the problem. In standard finite element methods, the
grids have to resolve the structure of the discontinuous coefficients. Thus, straightforward coarse scale
discretizations of problems with complicated coefficient jumps are not obvious.

In this paper, we define composite finite elements for problems with discontinuous coefficients. These
finite elements allow the coarsening of finite element spaces independently of the structure of the dis-
continuous coefficients. Thus, the multigrid method can be applied to solve the linear system on the fine
scale.

We focus on the construction of the composite finite elements and the efficient, hierarchical realization
of the intergrid transfer operators. Finally, we present some numerical results for the multigrid method
based on the composite finite elements (CFE–MG).

AMS Subject Classifications: 35J20, 65N15, 65N30.

Keywords: Composite finite elements, boundary values problems, discontinuous coefficients, multigrid
methods.

1. Introduction

In many practical applications, partial differential equations with discontinuous
coefficients have to be solved numerically. These coefficients represent the proper-
ties of the materials which may change discontinuously, e.g., in composite materials,
by orders of magnitude.

Such problems are usually discretized via the finite element method. In standard
finite element methods, the grid has to resolve the structure of the discontinuous
coefficients. This condition links the minimal dimension of the finite element spaces
directly to the number of discontinuities in the coefficients. On the other hand, the
efficiency of many fast solution techniques as, e.g., multigrid methods, extrapolation,
wavelets etc. depends on a multi-scale discretization of the problem.

In [10], [11], [12] and [19], composite finite elements are developed for the approxi-
mation of PDEs on complicated domains (see also [20] and [7]). These finite elements
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allow coarse scale discretizations with the minimal number of unknowns not
depending on the shape of the domain.

In this paper, we generalize the concept of composite finite elements to problems
with discontinuous coefficients. As before, these finite elements can be used for coars-
ening finite element spaces and the coarse space dimension is independent of the
structure of the discontinuous coefficients. In the context of the multigrid method,
the coarse scale discretizations are employed to solve the linear system on the fine
scale.

We compose the shape functions of a finite element on the coarse grids locally of
piecewise polynomials on the elements of the finest grid. They are determined by
solving locally the homogeneous PDE with suitable boundary conditions.

The concept of adapting the finite elements or, more generally, the ansatz func-
tions to a given PDE is the basis for many discretization techniques (see, e. g., [2],
[15], [13]). In [16], a multigrid algorithm is developed for periodic coefficients using
homogenization techniques.

Our goal is to construct finite elements for unstructured discontinuous coefficients.
This construction will be hierarchical. Thus, it can efficiently be used in a multigrid
algorithm. Since the finite element functions on the coarser grids are combinations
of the ones on the finer grids we call these finite elements composite finite elements.
In the following, we denote the multigrid method based on these composite finite
elements by CFE–MG.

In this paper, we concentrate on the construction of the composite finite elements
and the efficient realization of the CFE–MG. In [21], we prove an approximation
result for these finite elements in one dimension and, based on that, the convergence
of the CFE–MG. The convergence rate is independent of the discontinuous coeffi-
cient. Thus, the total complexity of the multigrid method is linear in the degrees of
freedom on the finest grid.

The paper is organized as followed. In Sect. 2, we formulate the model problem and
its discretization, followed by a brief review to the multigrid method in Sect. 3. In
Sect. 4, we define the composite finite elements for the one-dimensional problem
and discuss its hierarchical realization. Section 5 is devoted to the two-dimensional
problem. There, we will present a hierarchical construction of the composite finite
elements. Additionally, we describe the efficient computation of these finite elements
in the context of the multigrid method. Finally, in Sect. 6, we show some numerical
results.

2. Model Problem and Discretization

Throughout this paper, we consider the problem

− div(a grad u) = f in �

u = 0 on ∂�
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as a model problem for elliptic boundary value problems. We assume that the coeffi-
cient a is discontinuous. The precise meaning of this problem with a discontinuous
coefficient is given later in this section. We consider this problem on a bounded
domain � ⊂ R

d with a polygonal Lipschitz boundary ∂� for d ∈ {1, 2}. However,
the definitions and algorithms for the two-dimensional problem can be transferred
to three dimensions in a straightforward manner.

We presume that the coefficient a is piecewise constant. More precisely, let q ∈ N

and P = {ωi ⊂ � : 1 ≤ i ≤ q} be a finite set of disjoint subdomains with polygonal
Lipschitz boundaries ∂ωi such that

⋃

ω∈P
ω = � .

Let a ∈ L∞(�) such that there is a family of real numbers {aω}ω∈P with a|ω = aω
for all ω ∈ P and amin := min{aω : ω ∈ P} > 0. Therewith, we define the bilinear
form

b : H 1
0 (�)×H 1

0 (�) → R; (u, v) �→
∫

�

a 〈grad u, grad v〉 dx. (1)

Obviously, b is symmetric, bounded and coercive by the Friedrichs inequality since
we assume amin > 0. The variational formulation of the model problem reads as
follows:

Problem 2.1: Let f ∈ H 1
0 (�)

′ be given. Find u ∈ H 1
0 (�) such that

b(u, v) = f (v)

holds for all v ∈ H 1
0 (�).

The existence and uniqueness of Problem 2.1 is ensured by the Lax-Milgram theo-
rem.

We denote the internal boundary, the so called interfaces, by

γ := � ∩
⋃

ω∈P
∂ω (2)

and the jump of a function u in x ∈ γ by [u](x).

In [3], sufficient conditions on the regularity of the interfaces γ are given such that
the variational Problem 2.1 is equivalent to a strong formulation with interface
conditions.

We approximate the solution of Problem 2.1 by the solution of a discrete, finite
dimensional problem which is obtained by Galerkin discretization. Therefore, we

replace the infinite dimensional spaceH 1
0 (�) in Problem 2.1 by a finite dimensional

subspace S ⊂ H 1
0 (�). This subspace is given by finite elements. Then, the discrete

problem reads as follows.
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Problem 2.2: Let f ∈ H 1
0 (�)

′ be given. Find uS ∈ S such that

b(uS , v) = f (v)

holds for all v ∈ S.

3. Multigrid Method

Let {ϕx}x∈� be a basis of S for some index set�. Then, we define the system matrix
Axy := b(ϕy, ϕx) and the right-hand side Fx := f (ϕx) for all x, y ∈ �. Thus,
Problem 2.2 is equivalent to: Find U ∈ R

� such that

AU = F. (3)

The solution U of (3) and uS of Problem 2.2 are linked via

uS =
∑

y∈�
Uy ϕy.

Using, e. g., the linear hat functions as the basis {ϕx}x∈� on a grid G with the set of
interior nodes� yields a sparse system matrix A of, typically, very large dimension.
Thus, iterative solvers have to be employed for solving the linear system. In this
paper, we use the multigrid method as an efficient iterative method to solve large
sparse systems as in (3).

Under mild conditions, each iteration step of the multigrid method has a complexity
which is linear in the number of unknowns. If, additionally, the convergence rate is
bounded below away from 1, the system can be solved with linear complexity up to
a given precision.

The key ingredients of the multigrid method are:

– a hierarchy of discretizations (given, e. g., by finite elements on a hierarchy of
grids),

– prolongation and restriction operators P l+1
l , Rl

l+1 which interfere between the
discretizations, and

– smoothing operators Sl for the discretizations.

Typically, the hierarchy of discretizations is obtained via a nested hierarchy of grids

{Gl}Ll=0 and the finite element basis functions
{
ϕlx

}
x∈�l on the grids Gl . The prolon-

gation and restriction operators are defined by

P l+1
l : R

�l → R
�l+1;

(4)(
P l+1
l U

)
x

:= ∑
y∈�l ϕ

l
y(x)Uy for all x ∈ �l+1

and

Rl
l+1 := (

P l+1
l

)T : R
�l+1 → R

�l ;
(5)(

Rl
l+1U

)
x

:= ∑
y∈�l+1

ϕlx(y)Uy for all x ∈ �l.
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We simply replace the hat basis {ϕx}x∈� by the composite finite element basis for
the definition of the prolongation and restriction operators in the CFE–MG.

Finally, the multigrid method requires smoothing operators

Sl : R
�l → R

�l , 0 ≤ l ≤ L,

on the grid hierarchy. For simplicity, we consider here only classical iteration meth-
ods as the damped Jacobi iteration or the (symmetric) Gauß-Seidel iteration.

Multigrid algorithm 3.1: Let ν1, ν2 ∈ N0 be the number of pre- respectively post-

smoothing steps, let µ ∈ {1, 2} and 0 ≤ l ≤ L. Let U0 ∈ R
�l be a starting guess,

e. g., U0 = 0 or determined by a nested iteration.

Let i ∈ N and assume that Ui−1 is given. If l = 0 set Ui := A−1
0 F . Otherwise,

compute Ui by an iteration of the multigrid method, i. e.,

(1) perform ν1 pre-smoothing steps W := S
ν1
l U

i−1,
(2) compute the restriction of the residuum D := Rl−1

l

(
AlW − F

)
,

(3) perform µ iterations of this algorithm with l−1 instead of l,D instead of F and

the initial vector V 0 = 0. The result is denoted by V µ,
(4) set W := Ui−1 − P l

l−1V
µ and

(5) perform ν2 post-smoothing steps Ui := S
ν2
l W .

Since the system matrix Al is sparse, the complexity of a multiplication with Al is
of orderO(#�l). Thus, the complexity of the damped Jacobi iteration or the (sym-
metric) Gauß-Seidel iteration is of orderO(#�l) as well. Typically, in particular for
the prolongation and restriction in (4) respectively (5), the complexity of Algorithm
3.1 (2) and (4) is of order O(#�l) each.

If max
{ #�l

#�l+1
: 0 ≤ l < L

}
< 1 andA−1

0 F is solved with constant complexity, then,

the complexity of one iteration of Algorithm 3.1 is of order O
(
(ν1 + ν2)#�l

)
. For

a proof, see [8].

4. Composite Finite Elements in One Dimension

Due to the lack of regularity, standard finite elements are not suited for the approx-
imation of Problem 2.1, see [4]. Our goal is to adapt the shape of the finite elements
to the solution of Problem 2.1.

More precisely, we solve the homogeneous problem, i. e., Problem 2.1 with f = 0,
on local neighbourhoods about the elements T of the grid G and compose these
solutions with suitable boundary conditions to globally continuous finite elements.
These finite elements are a generalization of the linear finite elements in the sense
that they reduce to linear elements for constant coefficients. For related approaches
we refer to [2], [13], [15].
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Let G be a grid for � = (α, β) ⊂ R and let � be the set of nodes of G. We empha-
size that the interface γ may not be resolved by the nodes �. We assume, that the

elements T ∈ G are open such that � ∩ T consists of the endpoints of T and γ ∩ T
of the inner interfaces with respect to T .

Throughout the paper, we use the following notation. For a grid G with nodes �,
{ϕx}x∈� denotes the standard “hat” functions while the basis of the composite finite
elements will be denoted by {ψx}x∈�.

The finite element function ψx , x ∈ �, restricted to T ∈ G, will be the unique
solution of the local and homogeneous PDE

−ai ψ ′′
x = 0 in ω ∩ T for all ω ∈ P with ω ∩ T �= ∅,

[
a ψ ′

x

] = [ψx ] = 0 on γ ∩ T , (6)

ψx(y) = δxy for all y ∈ � ∩ T .

It turns out that, for the generalization of this definition to the two-dimensional
case, it is preferable to reformulate (6) in a variational way.

Definition 4.1: For all x ∈ � and all T ∈ G, let ux,T ∈ H 1
0 (T ) be the solution of

b(ux,T , v) = −b(ϕx, v) (7)

for all v ∈ H 1
0 (T ). Then, the basis functions are given by

ψx |T := ux,T + ϕx |T

and the space of composite finite elements by

SCFE := span{ψx : x ∈ �} ⊂ H 1(�).

We call this finite elements composite finite elements as they are a linear combination
of linear finite elements on the mesh which is induced by the set of nodes�∪γ . In the
hierarchical representation of these finite elements, the elements on the coarser grids
are a linear combination of elements on the finer grids. Thus, they are hierarchically
composed of elements with respect to the set of nodes � ∪ γ .

In Fig. 1, a basis function ψx2 is depicted for a characteristic example.

Lemma 4.2: For all x ∈ � and all T ∈ G, ψx |T solves (6) uniquely.
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α
T1

x1 T2
x2 T3

x3 xn−1 Tn
β

ψx2

α

aω1

ω1

aω2

ω2

aω3

ω3

aωq

ωq β

Fig. 1. Illustration of a basis function ψx2 . The grid G = {T1, . . . , Tn} does not resolve the interfacial

points of the coefficient a

Remark 4.3:

(1) For all x ∈ �, it holds

suppψx = suppϕx =
⋃ {

T : T ∈ G with x ∈ T }
.

(2) For all x ∈ � and all T ∈ G, the product
(
a ψ ′

x |T
)

is constant.
(3) In the case of a constant coefficient a, it holds ψx = ϕx for all x ∈ �.
(4) {ψx}x∈� is a partition of unity on �.

The construction of the composite finite elements allows to define a hierarchy of
discretizations for Problem 2.1. The dimension of the coarsest one is very small and
independent of the number and structure of the interfaces γ . In order to use them in
a multigrid algorithm it is essential to define, in addition, local intergrid operators
which will be done next.

Let L ∈ N and let {Gl}Ll=0 be a hierarchy of grids on �. The index L corresponds to
the finest and the index 0 to the coarsest grid. Let �l be the set of nodes of grid Gl .
We assume that this hierarchy of grids is nested, i. e., for 0 ≤ l < L, it holds

�l ⊂ �l+1. (8)

The set of successors of an element T l ∈ Gl is given by

sons(T l) := {
T l+1 ∈ Gl+1 : T l+1 ⊂ T l

} ⊂ Gl+1.

By Lemma 4.2, the basis functions
{
ψlx

}
x∈�l (cf. Definition 4.1) satisfy (6) for all

T l ∈ Gl . The basis functions ψl+1
y on the next finer grid satisfy (6) with T = T l+1 ∈

sons(T l) for all y ∈ �l+1 ∩ T l . This leads to the hierarchical ansatz
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ψlx =
∑

y∈�l+1∩T l
αxy ψ

l+1
y . (9)

Relation (9) is a local hierarchical ansatz and it remains to determine the coefficients

αxy such that ψlx satisfies (6) at the nodes y ∈ �l+1 ∩ T l as well.

This leads to uniquely solvable linear systems with dimension #
(
�l+1 ∩T l). In par-

ticular, the dimension is very small and independent of the coefficient a (cf. (12)).

Definition 4.1 is equivalent to the following recursion.

Lemma 4.4: Let 0 ≤ l < L. Then, for all x ∈ �l and all T ∈ Gl , it holds

ψlx |T = ulx,T + ψl+1
x |T (10)

where ulx,T ∈ SCFE
l+1 ∩H 1

0 (T ) is the solution of

b(ulx,T , ψ
l+1
y ) = −b(ψl+1

x , ψl+1
y ) (11)

for all y ∈ �l+1 ∩ T .

Proof: We denote the function defined by (10) and (11) by ξ lx |T := ulx,T + ψl+1
x |T

and show ξ lx |T = ψlx |T , i.e., ξ lx satisfies (7). The interpolation onto the space SCFE

is defined by

ICFE : H 1(�) → SCFE; u �→
∑

x∈�
u(x)ψx

which is well defined onH 1(�) in one dimension by Sobolev’s theorem. Let x ∈ �l ,
T ∈ Gl and vT ∈ H 1

0 (T ). For all t ∈ sons(T ) ⊂ Gl+1, set

ut := (vT − ICFE
l+1 vT )|t ∈ H 1

0 (t).

We extend the functions vT and ut by 0 to �. It follows

vT = ICFE
l+1 vT +

∑

t∈sons(T )

ut

and consequently

b(ξ lx, vT ) =
∑

y∈�l+1∩T
vT (y) b(ξ

l
x, ψ

l+1
y )+

∑

t∈sons(T )

b(ξ lx, ut ).

Equation (11) implies b(ξ lx, ψ
l+1
y ) = 0 for all y ∈ �l+1 ∩ T and the first sum van-

ishes. Furthermore, it holds ξ lx ∈ SCFE
l+1 and we can represent ξ lx by the functionsψl+1

y

which satisfy Definition 4.1. Choosing v in Definition 4.1 as ut leads to b(ξ lx, ut ) = 0
for all t ∈ sons(T ) and also the second sum vanishes. ��
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The essential difference of Lemma 4.4 and Definition 4.1 is that the ansatz and test

spaces in (11) are not H 1
0 (T ) but only SCFE

l+1 |T ∩H 1
0 (T ). Thus, (11) is equivalent to

a system of linear equations with a dimension that does not depend on a.

The coefficientsαxy in (9) can be computed as follows. In the end points x, y of an ele-
ment T = (x, y) ∈ Gl it holds αxx = 1 and αxy = 0. For an inner point z ∈ �l+1 ∩T ,

αxz is determined by the linear system in (11). The coefficients b(ψl+1
x , ψl+1

y ) =
(Al+1)yx of these equations are given by the elements of the system matrix Al+1
corresponding to the grid Gl+1.

Usually, the one-dimensional grid hierarchy for the multigrid method arises from
recursive bisections of the elements. Thus, the linear system in (11) has dimension
one and the solution is given by

αxy = ψlx(y) = −b(ψ
l+1
x , ψl+1

y )

b(ψl+1
y , ψl+1

y )
. (12)

Since we have ψlx |T = ulx,T + ψl+1
x |T ∈ SCFE

l+1 the composite finite element spaces
are nested, i. e.,

SCFE
l ⊂ SCFE

l+1 . (13)

5. Composite Finite Elements in Two Dimensions

Analogously to the one-dimensional problem, we solve the homogeneous PDE lo-
cally for the construction of the composite finite element basis functions in two
dimensions. In contrast to the one-dimensional problems, these local problems along
with the Lagrange property for the nodal basis do not define the functions uniquely
since no boundary values are prescribed in the open interior of the boundary edges
of the elements.

Therefore, we impose artificial boundary conditions on the boundary of an element
neighborhood which we call “security zone”. Similarly to PUFEM (partition of
unity finite element method), see [17], we localize the solutions of these boundary
value problems and utilize them for the finite elements. This gives us a hierarchi-
cal construction of the finite elements which can efficiently be combined with the
multigrid method.

In Subsect. 5.1, the construction of a hierarchy of finite elements is presented,
followed by some basic properties for these finite elements in Subsect. 5.2. In Subsect.
5.4, the efficient realization of the CFE–MG will be described.

5.1. Construction of Composite Finite Elements

Let L ∈ N and let {Gl}Ll=0 be a hierarchy of grids on � (see Sect. 2) such that GL
is the finest and G0 the coarsest grid. Let �l be the set of nodes of grid Gl . We use
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the notation
{
ϕlx

}
x∈�l for the basis of the linear finite elements on the grid Gl and{

ψlx
}
x∈�l for the composite finite element basis.

Assumption 5.1: The finest grid GL resolves the geometry of the internal boundary γ ,
i. e.,

γ ⊂
⋃

T ∈GL
∂T .

The grid hierarchy is nested, i. e., for all 0 ≤ l < L and all T ∈ Gl , there exists a set
sons(T ) ⊂ Gl+1 such that

T =
⋃

t∈sons(T )

t . (14)

By (14), the sets of nodes �l are nested, i. e.,

�l−1 ⊂ �l.

We say, a grid G “almost resolves” the polygonal interfaces γ if the elements T ∈ G
can be subdivided intoO(1) successors sons(T ) such that the refined grid resolves γ
(see Fig. 2). A grid hierarchy satisfying Assumption 5.1 can, for instance, be obtained
by the following algorithm. A starting grid G0 is refined by congruent refinement
(connecting midpoints of edges) until it almost resolves γ yielding the grid GL−1.
Finally, GL is the subdivision of GL−1 such that γ is resolved.

The construction of the composite finite element basis functions is hierarchical and
starts from the finest grid of the hierarchy. By Assumption 5.1, GL resolves γ . Thus,
we set

SCFE
L := SL = {

v ∈ C(�) : ∀T ∈ GL : v|T ∈ P1
}
.

γ

T

Fig. 2. An element T for which the two connectivity components of T \γ can be subdivided into 5

successors such that γ ∩ T is resolved
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If we assume that SCFE
l+1 is already defined we can, analogously to (9), make the

ansatz for the coarser basis functions for each element T l ∈ Gl :

ψlx |T l =
∑

y∈�l+1∩T l
αxy ψ

l+1
y |T l . (15)

We will construct these finite elements such that the following properties hold:

(a) On the elements T ∈ Gl , they solve the local homogeneous equation related to
the bilinear form b(·, ·) as in (1).

(b) They form a Lagrange basis.
(c) They have local support suppψlx ⊂ ⋃ {

T : T ∈ Gl with x ∈ T }
.

The coefficients αxy are determined in three steps:

(1) Setting up local problems (security zones and boundary condition),
(2) Solving these local problems,
(3) Composing the local solutions to globally continuous basis functions.

5.1.1. Setting Up Local Problems (Step 1)

In one dimension, the boundary values (values at the interval endpoints) of the local
problems on the elements are canonically given by the Lagrange property of the finite
elements. In the two-dimensional case, we have to impose artificial boundary values
at the interior of the element edges. Since these artificial boundary conditions, in
general, do not reflect the possibly oscillating behaviour of the solutions, we reduce
their influence by imposing them at the boundary of the security zones, which are
sufficiently far from T . Numerical experiments show (cf. Sect. 6) that, at most, three
layers of triangles about T are sufficient to define the security zone for T . The con-
cept of security zones for the construction of generalized finite elements is employed
in [2], [13], [15] as well.

For ω ⊂ �, let

Gω,0l := {ω}

and, for all k ∈ N, we define “triangle layers” about ω by (see Fig. 3)

Gω,kl :=
{
T ∈ Gl : ∃S ∈ Gω,k−1

l : T ∩ S �= ∅
}

⊂ Gl .

Finally, we denote the domain of Gω,kl by

dom(Gω,kl ) := int
( ⋃ {

T : T ∈ Gω,kl

})
.
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GT ,1
l

GT ,2
l

T

Fig. 3. The subgrids GT ,1
l

and GT ,2
l

for T ∈ Gl

The construction of the finite elements is recursive starting on the finest grid. We

assume that the basis
{
ψl+1
x

}
x∈�l+1

is defined. In the following, we will construct

the basis
{
ψlx

}
x∈�l . The interpolation ICFE

l+1 onto SCFE
l+1 is given by

ICFE
l+1 : C(�) → SCFE

l+1 ; u �→
∑

x∈�l+1

u(x)ψl+1
x . (16)

Let k ∈ N0. For the security zone of the element T ∈ Gl , we use

UT := dom(GT ,kl ). (17)

In order to obtain three linearly independent shape functions on each element T ,
we choose three linearly independent functions on ∂UT . For a vertex x of T , let
plx,T ∈ P1 be the (unique) affine extension of the standard shape function ϕlx |T to a
function on R

2 and

glx,T := (ICFE
l+1 p

l
x,T

)∣∣
UT

(18)

the interpolation in SCFE
l+1 |UT . In particular, glx,T interpolates plx,T in the vertices

of T .

This leads to the following local boundary value problem. For each vertex x of T ,

find ulx,T ∈ SCFE
l+1 ∩H 1

0 (UT ) such that

b(ulx,T , v) = −b(glx,T , v) (19)

holds for all v ∈ SCFE
l+1 ∩H 1

0 (UT ).
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5.1.2. Solving (Step 2)

Let θT denote the set of vertices of a triangle T . The problem (19) has a unique

solution ulx,T ∈ SCFE
l+1 ∩H 1

0 (UT ) for all x ∈ θT . Therefore, the functions

ξ lx,T := ulx,T + glx,T ∈ SCFE
l+1 |UT (20)

solve the homogeneous equations associated with the bilinear form b and have the

boundary values ξ lx,T = glx,T on ∂UT .

However, these solutions, in general, are not a Lagrange basis on T , i. e., they do
not interpolate (δxy)y∈θT with the Kronecker delta δxy . Because the boundary values

glx,T |∂UT are linearly independent, the Lagrange property can be satisfied by a simple
normalization: There exist coefficients βlxy ∈ R for the vertices x, y ∈ θT such that
the functions

ζ lx,T :=
∑

y∈θT
βlxy ξ

l
y,T ∈ SCFE

l+1 |UT (21)

fulfil the equations ζ lx,T (y) = δxy for all x, y ∈ θT . Thus,
(
ζ lx,T |T

)
x∈θT is a local

Lagrange basis on T .

5.1.3. Composing (Step 3)

In this last step, we restrict the functions ζ lx,T to the elements T and compose the
global basis functions. In general, however, the functions on neighbouring elements
do not coincide along common edges such that

∑

T ∈Gx,1l

ζ lx,T |T

does not give a continuous basis function for x ∈ �l . In order to obtain conforming
finite element functions we average the functions on the element edges. More pre-

cisely, the values of the coarsened finite element function ψlx , at the fine grid nodes

y will be a weighted average of the (discontinuous) values of the functions ζ lx,T in
these nodes and we employ the general ansatz

ψlx (y) =
∑

T ∈Gy,1l

αlx,T ,yζ
l
x,T (y) .

Once, the coefficientsψlx (y) have been fixed, the composite finite element basis func-

tions are determined by formula (15) with the choice αxy := ψlx (y). In the following,
we will define the averaging coefficients αlx,T ,y .

The internal boundary γ is part of the Lipschitz boundaries of the inclusions �i ,
i ∈ N , and, by Assumption 5.1, part of the edges of GL. Hence, there exists a
piecewise constant, oriented normal vector field

ν : γ → S
1 ⊂ R

2
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almost everywhere on γ . For all T ∈ Gl and its vertices x, we define the weights[
αlx,T

]
by the jumps which are averaged over a triangle according

[
αlx,T

]
:=

∣∣∣
∫

γ∩T
[a]

[
∂νζ

l
x,T

]
dσ

∣∣∣. (22)

At the end of this section, we motivate the choice of the weights in the case of lami-
nar interfaces. The factor [a] excludes “artificial” interfaces where the coefficient a
crosses continuously.

For all 0 ≤ l < L and all x ∈ �l , set (see Fig. 4)

θxl+1 := {x} ∪ (
(�l+1 \�l) ∩ dom(Gx,1l )

)
.

We define the basis functions ψlx at y ∈ θx
l+1 by the weighted averages of the func-

tions ζ lx,T of the elements T ∈ Gy,1l . In case of
[
αlx,T

] = 0 (which happens, e. g., for
a constant coefficient a), we return to unweighted averages which is reflected in the
definition

αlx,T ,y :=
{

1 for
∣∣∣
∑
T ∈Gy,1l

[
αlx,T

]∣∣∣ < tol,
[
αlx,T

]
otherwise,

for x ∈ �l , y ∈ θx
l+1 and some tolerance tol > 0 to avoid numerical instabilities.

With this, we set the coefficients

ψlx(y) :=




∑

T ∈Gy,1l

αlx,T ,y





−1

∑

T ∈Gy,1l

αlx,T ,y ζx,T (y). (23)

γ

x

dom(Gx,1
l−1)

: nodes in θx
l

Fig. 4. The set θx
l
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This determines the coefficients in (15) and, finally, we arrive at (with the coefficients
ψlx(y) as in (23))

ψlx :=
∑

y∈θx
l+1

ψlx(y)ψ
l+1
y . (24)

5.2. Properties of Composite Finite Elements

The construction of the previous sections lead to the definition of the composite
finite element spaces for problems with jumping coefficients.

Definition 5.2: Let Assumption 5.1 be satisfied.

– l = L: On the finest grid GL, the linear finite element Lagrange basis is given by
{
ψLx

}
x∈�L and the corresponding composite finite element space equals the stan-

dard one

SCFE
L := SL ⊂ H 1(�).

– l = L− 1, L− 2, . . .
The basis functions

{
ψlx

}
x∈�l are given as in (23), (24) and the space of composite

finite elements SCFE
l is given by

SCFE
l := span{ψlx : x ∈ �l} ⊂ H 1(�).

Next, we rewrite the steps for computing the finite element basis functions
{
ψlx

}
x∈�l

for 0 ≤ l ≤ L in an algorithmic way.

Algorithm 5.3: Let Assumption 5.1 be satisfied and let
{
ψLx

}
x∈�L := {

ϕLx
}
x∈�L

and SCFE
L := SL. Let k ∈ N0. For l = L− 1, . . . , 0 do

(1) for all T ∈ Gl with vertices θT compute for all x ∈ θT
(a) (i) the boundary values glx,T by (18),

(ii) the solutions ulx,T ∈ SCFE
l+1 ∩H 1

0 (UT ) of (19) and

(iii) the functions ξ lx,T := ulx,T + glx,T in UT ,

(b) the functions ζ lx,T by (21) and

(c) the weights
[
αlx,T

]
by (22),

(2) for all x ∈ �l , compute ψlx by (24).

Remark 5.4: For the assembling of the linear system, step (2) in Algorithm 5.3 is

not required but only the weights
[
αlx,T

]
have to be computed. Such constructions

via “mask coefficients” are quite common in wavelet methods.
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With (24), it holds ψlx ∈ SCFE
l+1 for all x ∈ �l leading to the nestedness of the spaces:

SCFE
l ⊂ SCFE

l+1 .

Lemma 5.5: Let Assumption 5.1 be satisfied and let 0 ≤ l ≤ L.

(1)
{
ψlx

}
x∈�l forms a Lagrange basis.

(2) For all x ∈ �l , it holds suppψlx ⊂ suppϕlx .

Proof: Both assertions hold for linear finite elements, thus, for the composite finite

elements
{
ψLx

}
x∈�L on the finest grid GL. Let 0 ≤ l < L and assume that the asser-

tions hold for l + 1. Let x ∈ �l .
1. Inductively, we know that

{
ψl+1
x

}
x∈�l+1

is a Lagrange basis and concludeψl+1
z (y) =

0 for all y ∈ �l and for all z ∈ �l+1\�l . Therefore, from

θxl+1 ⊂ {x} ∪ (
�l+1\�l

)

and (24), it follows for the coefficient ψlx(y) that

ψlx(y) =
∑

z∈θx
l+1

ψlx(z) ψ
l+1
z (y) = ψlx(x)ψ

l+1
x (y) = 0

for all x �= y ∈ �l . Since ζx,T (x) = 1, we obtain

ψlx(x) =
∑

y∈θx
l+1




∑

T ∈Gy,1l

αlx,T ,y





−1

∑

T ∈Gy,1l

αlx,T ,y ζx,T (y) ψ
l+1
y (x)

=




∑

T ∈Gx,1l

αlx,T ,x





−1

∑

T ∈Gx,1l

αlx,T ,x ζx,T (x) = 1.

2. The induction assumption and Assumption 5.1 imply

suppψl+1
y ⊂ suppϕl+1

y ⊂ suppϕlx
for all y ∈ θx

l+1 and, consequently,

suppψlx ⊂
⋃

y∈θx
l+1

suppψl+1
y ⊂ suppϕlx.

��

Lemma 5.6: Let Assumption 5.1 be satisfied and let the coefficient a be constant, i. e.,
a(x) = a0 ∈ R>0 for all x ∈ �.

Then, it holds ψlx = ϕlx for 0 ≤ l ≤ L and x ∈ �l .

The proof is elementary and, hence, skipped.
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5.3. Laminar Interfaces

For laminar interfaces, e. g., a(η1, η2) = ã(η1), tensorized finite elements which con-
sist of linear elements tangential to the internal boundary γ and one-dimensional
composite finite elements (as in Sect. 4) in normal direction to γ are well suited for
discretizations. To be specific, let � := (0, 1)2 and let x1 := (0, 0), x2 := (1, 0),
x3 := (0, 1), x4 := (1, 1) denote the nodes of � (see Fig. 5). For a0 ∈ R>0 and for
x = (η1, η2) ∈ R

2, we consider the discontinuous coefficient

a(x) :=
{

1 for η1 ≤ 1
2 ,

a0 for η1 >
1
2 .

Tensorized (bilinear) finite elements on � are given as the span of the four basis
functions

b1 (η1, η2) = λ1 (η1) λ2 (η2) , b2 (η1, η2) = (1 − λ1 (η1)) λ2 (η2) ,

b3 (η1, η2) = λ1 (η1) (1 − λ2 (η2)) , b4 (η1, η2) = (1 − λ1 (η1)) (1 − λ2 (η2)) ,

where

λ1 (η1) =
{

− 2a0
1+a0

η1 + 1 for η1 ∈ [0, 1
2 ],

− 2
1+a0

η1 + 2
1+a0

for η1 ∈ ( 1
2 , 1]

and λ2 (η2) = 1 − λ2. (25)

Let u ∈ H 1(�) with a ∂1u, ∂2u ∈ H 1(�) such that u(x1) = u(x3) = 1 and u(x2) =
u(x4) = 0. The interpolation of u by these tensorized finite elements is given by

ICFE
⊗ u(x) := ICFE

⊗ u(η1, η2) := λ1 (η1)

x1 x2

x3 x4

y

γ

T1

T2

a = 1 a = a0

Fig. 5. The domain � with the interface γ and the elements T1 and T2
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which, for y = ( 1
2 ,

1
2 ), implies

ICFE
⊗ u(y) = 1

1 + a0
−→ 0 for a0 → ∞. (26)

The construction of tensorized finite elements requires that the interface is aligned
with (rectangular) mesh cells which is typically not the case for practical applications.
However, the weights

[
αlx,T

]
in (22) will be chosen such that, for laminar interfaces,

the composite finite element functions approximate these tensorized finite elements.

Let T1 be the element with vertices x1, x2, x3 and T2 the one with x2, x4, x3. The func-
tions ζx3,Ti , 1 ≤ i ≤ 2, as in (21) are discontinuous across x2x3. Easy calculations
yield

ζx3,T1(x) = η2

for x = (η1, η2) ∈ T 1, and, for x = (η1, η2) ∈ T 2,

ζx3,T2(x) = λ1 (η1)

with λ1 as in (25). A basis function ψ̃x3 , which would be computed by an average

of these two functions in y with weights 1/2 from both sides satisfies

ψ̃x3(y) = 1
2

(1
2

+ 1
1 + a0

)
−→ 1

4
for a0 → ∞.

This differs from the limit in (26). Thus, we require a weighted average that puts
more weight on ζx3,T2 than on ζx3,T1 . Since [∂νζx3,T1 ] = [∂1ζx3,T1 ] = 0, it follows:

[
αx3,T1

] =
∣∣∣
∫

γ∩T1

[a]
[
∂νζx3,T1

]
dσ

∣∣∣ = 0,

and
[
αx3,T2

] �= 0. Let ICFE be the interpolation as in (16). Then, the weights
[
αx,T

]

preserve the requested limiting behaviour. The weighted average in (23) gives

ICFEu(y) = ψx3(y) = [
αx3,T2

]−1[
αx3,T2

] 1
1 + a0

= ICFE
⊗ u(y).

5.4. Efficient Realization

Analogously to (4), we define the prolongation via the composite finite elements. The
restriction is given by the transposed of the prolongation. Although the composite
finite elements have a complicated structure on the coarser grids, the prolongation
is a local operation and can be realized by local, purely algebraic transformations.
Thus, one multigrid iteration has a complexity of order O(#�L).

We compute these matrices in an initialization step before the multigrid algorithm
is performed. The complexity of this initialization step is of order O(#�L) as well.
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For all 0 ≤ l ≤ L, we introduce the set of inner grid points

�0
l := �l ∩�

which are associated to the degrees of freedom. Then,
{
ψlx

}
x∈�0

l
is a basis of SCFE

l ∩
H 1

0 (�). We identify this space with the space R
�0
l via this basis.

In analogy to (4) respectively (5), we define the prolongation P l+1
l by

P l+1
l : R

�0
l → R

�0
l+1;

(27)(
P l+1
l U

)
x

:= ∑
y∈�0

l
ψly(x)Uy for all x ∈ �0

l+1

and the restriction Rl
l+1 by

Rll+1 := (
P l+1
l

)T : R
�0
l+1 → R

�0
l ;

(28)(
Rll+1U

)
x

:=
∑

y∈�0
l+1

ψlx(y)Uy for all x ∈ �0
l .

Let b be the bilinear form as in (1). Then, the system matrices Al , 0 ≤ l ≤ L, are
given by

(Al)x,y := b(ψly, ψ
l
x) (29)

for all x, y ∈ �0
l . Equivalently, the matrices on the coarser grids Gl , 0 ≤ l < L, can

be represented by the Galerkin products

Al := Rll+1Al+1 P
l+1
l (30)

which is more appropriate for the actual computation of these matrices than (29).

The matrixAl+1 can conveniently be used for the computation of the finite elements
{
ψlx

}
x∈�0

l
, i. e., the computation of the prolongation P l+1

l . Therefore, we link the

computation of the prolongation with the products from (30).

The following integrals are used for the computation of the weights
[
αlx,T

]
. For

x ∈ �l and the edges e of the grids Gl , set

I lx,e :=
∫

e

[a]
[
∂νψ

l
x

]
dσ (31)

and, for T ∈ Gl , set

I lx,T :=
∫

γ∩T
[a]

[
∂νψ

l
x

]
dσ. (32)

Let Assumption 5.1 be satisfied. Then, the composite finite elements
{
ψLx

}
x∈�0

L
on

the finest grid GL are linear finite elements. Thus, the system matrix AL as well as
the integrals in (31) and (32) can easily be computed.
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Let 0 ≤ l < L and assume that the system matrix Al+1 and the integrals I l+1
x,e and

I l+1
x,T for x ∈ �l+1, T ∈ Gl+1 and the edges e of the grid Gl+1 are given. Furthermore,

we require the values (Al+1)x,y = b(ψl+1
y , ψl+1

x ) for all x, y ∈ �l+1 because these

additional values in the nodes �l+1\�0
l+1 on the boundary ∂� are needed for the

computation of the functions ξ lx,T in (20).

Let T ∈ Gl , x ∈ �l ∩ T and let ET be the set of (open) edges of Gl+1 that lie in T .
Then, the initialization consists of the following steps:

(1) Let glx,T be as in (18). Then,

{
ξ lx,T (y)

}
y∈�l+1∩UT (33)

is the solution of a system of linear equations with coefficientsAl+1,zy = b(ψl+1
y ,

ψl+1
z ) with z ∈ �l+1 ∩UT . Note that, for all y ∈ �l+1 ∩ ∂UT , the values ξ lx,T (y)

are prescribed by glx,T (y).

(2) The weights
[
αlx,T

]
are given by

[
αlx,T

]
=

∣∣∣∣∣∣

∑

y∈�l+1∩T
ζ lx,T (y)




∑

S∈sons(T )

I l+1
y,S +

∑

e∈ET
I l+1
y,e





∣∣∣∣∣∣
. (34)

(3) Let e be an edge of the grid Gl and let Ee be the set of edges of Gl+1 such that
⋃

e′∈Ee
e′ = e.

Then, it holds

I lx,e =
∑

z∈�l+1∩dom(Gx,1l )

ψlx(z)
∑

el+1∈Ee
I l+1
z,el+1

(35)

as well as

I lx,T =
∑

z∈�l+1∩dom(Gx,1l )

ψlx(z)




∑

S∈sons(T )

I l+1
z,S +

∑

e∈ET
I l+1
z,e



 . (36)

The different steps of this initialization are summarized below.

Algorithm 5.7: Let Assumption 5.1 be satisfied.

(1) Compute AL as in (29).
(2) For x ∈ �L and the edges e of the grid GL, compute the integrals ILx,e as in (31)

and set ILx,T = 0 for all T ∈ GL.
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(3) For l = L− 1, . . . , 0, compute
(a) for x ∈ �l and y ∈ �l+1 the values ψlx(y) (cf. (24)) (with the auxiliary func-

tions ξ lx,T from (20) and ζ lx,T from (21) and with the weights
[
αlx,T

]
from

(22)),
(b) the prolongation P l+1

l and the restriction Rl
l+1 (cf. (27)), respectively (28)

including their local versions,
(c) the system matrix Al = Rl

l+1Al+1 P
l+1
l , and

(d) the integrals I lx,e and I lx,T as in (35), respectively (36) for x ∈ �l , the edges e
of the grid Gl and T ∈ Gl .

(e) restrict all matrices to �0
l ⊂ �l .

Note that all steps in Algorithm 5.7(3) can be realized by local operators and all
arising matrices are sparse.

In order to estimate the computational work of this initialization, we have to restrict
the number of successor and neighbours of the elements.

Assumption 5.8: There exists a number δ ∈ N such that, for all 0 ≤ l < L and all
T ∈ Gl , it holds

# sons(T ) < δ.

For all 0 ≤ l ≤ L and all x ∈ �l , it holds

#Gx,1l ≤ δ. (37)

There exists a constant η ∈ (0, 1) such that, for all 0 ≤ l < L,

#�l ≤ η #�l+1.

This assumption guarantees that the number of elements in the zonesUT is bounded
independently of the refinement level l of Gl . Of course, the complexity depends
strongly on the number of “layers” k which are employed for determining the size

of the security zones. More precisely, it holds #GT ,kl = O(δk) by Assumption 5.8
with δ from (37). This implies that the dimension of the linear systems in (33) is also
bounded independently of l. In general, it is not very large as we choose k ∈ {1, 2, 3}.
Therefore, these systems can be solved by LU-factorization or, in the case of our
symmetric model problem, by the Cholesky factorization.

The product Rl
l+1Al+1 P

l+1
l can be computed efficiently by the multiplication with

unit vectors. In an implementation of this algorithm, we require therefore “local”
versions of the matrix-vector-multiplications for the three matrices.

Lemma 5.9: Let Assumptions 5.1 and 5.8 be satisfied and let k ∈ N0 be the number
of “layers” in the security zones (cf. (17)).

Then, the complexity of the initialization in Algorithm 5.7 is of orderO
(
δ3k+3 η

1−η#�L
)
.
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Proof: The following numbering corresponds to the numbering of Algorithm 5.7.
1. and 2. The computation of AL and the integrals ILx,e has a complexity of order
O(δ #�L). 3. Let 0 ≤ l < L. a) There are three linear systems to solve for each
element T ∈ Gl to obtain the values ξ lx,T (y) in (33). The dimension of these systems
is of order O(δk+1). Using LU- or Cholesky factorization, this has a complexity of

order O
(
δ3k+3

)
. Summarizing, the complexity is of order O

(
δ3k+3 #�l

)
. The com-

plexity to compute the sums in (34) is of order O(δ2 #�l). Finally, the coefficients
ψlx(y) are computed by (24) which sums up to a complexity of order O(δk+1 #�l).

c) We compute the columns of Al by evaluating the product Rl
l+1Al+1 P

l+1
l for all

unit vectors �lx . By (27), there are O(δ2) components of the vector P l+1
l �lx that do

not vanish. In each row of Al+1, there are at most δ + 1 components not vanishing
and in each row of Rl

l+1, there are three by (28) and by Lemma 5.5 (2). Thus, the
complexity to compute Al is of order O(δ2 #�l). d) The computation of the inte-

grals I lx,e and I lx,T in (35) respectively (36) has a complexity of orderO(δ2 #�l). For

fixed l, the complexity of Step 3 is of order O
(
δ3k+3 #�l

)
. Since #�l ≤ η #�l+1, it

follows #�l ≤ ηL−l #�L. This implies

L−1∑

l=0

#�l ≤ #�L
L−1∑

l=0

ηL−l ≤ #�L
∞∑

l=1

ηl = #�L
η

1 − η
.

Typically, we choose k ∈ {1, 2, 3}. If #G0 is of orderO(1) and congruent refinement
is used recursively for the refinement of the grids then δ is of order O(1) and η is
about 1/4. Hence, the complexity of the initialization is of order O(#�L).

6. Numerical Results

We have implemented the CFE–MG from Sect. 5 for Problem 2.1 in two dimensions.
This implementation allows us to study the dependence of the multigrid method on
the coefficient a. We consider an example with periodic coefficients which allows
to perform various parameter tests. However, the periodic structure is not at all
required for the composite finite elements and is just for the purpose of systematic
parameter studies.

In this section, we consider the domain � := (0, 1)2 and the right-hand side
f = 1. We employ the following hierarchy of grids on this domain. The coars-
est grid G0 consists of the two triangles with vertices (0, 0), (1, 0), (0, 1), respectively
(1, 0), (1, 1), (0, 1) (see Fig. 6). For l ∈ N, the grids Gl are given by recursive con-

gruent refinement of the grid G0. Then, it holds hl = 21/2−l .

We set

ω := int
(

conv
{
( 1

4 ,
3
4 ), (

1
4 ,

1
2 ), (

1
2 ,

1
4 ), (

3
4 ,

1
4 ), (

3
4 ,

1
2 ), (

1
2 ,

3
4 )

})
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(0, 0) (1, 0)

(0, 1) (1, 1)

�

Fig. 6. The grids G0 and G1 on the domain � = (0, 1)2

(see Fig. 7). For a0 > 0 and x ∈ [0, 1]2, set

a(x) :=
{
a0 for x ∈ ω,
1 otherwise

and extend a(·) periodically with period 1 onto R
2. For ε ∈ (0, 1] and for x ∈ R

2,
set

aε(x) := a(x/ε).

We always use the security zones UT = dom(GT ,2l ), i. e., two “layers” of elements.

Let uεl ∈ SCFE
l ∩ H 1

0 (�) be the solution of the discrete Problem 2.2 corresponding

(0, 0) (1, 0)

(0, 1) (1, 1)

ω1

Fig. 7. The unit cell with the domain ω
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to the coefficient aε. For i ∈ N0, let εi := 2−i . Then, the coefficient aεi is resolved
by the grid Gl for l ≥ i + 2.

In Fig. 8, two basis functions at the node x = ( 1
2 ,

1
2 ) are displayed on different grids.

We have chosen a0 = 50 and ε = 1
8 . The left function is ψ3

x on G6 and the right one
is the function ψ2

x . Figure 9 shows the solution uε6 of the associated problems on the
grid G6. Again, we have chosen ε = 1

8 . The left solution corresponds to a0 = 1
50 and

the right one to a0 = 50.

In the following, we study the dependence of the multigrid convergence rate on the
coefficient a. For the iteration, we use the initial function uεi ,0l = 0. We denote the

Fig. 8. The basis functions ψ3
x and ψ2

x on the grid G6 with a0 = 50 and ε = 1
8

Fig. 9. The solutions uε6 on the grid G6 with a0 = 1
50 respectively a0 = 50, with ε = 1

8 each
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resulting function after n iteration steps by uεi ,nl . Then, the convergence rate ri,l,a0

is given by the mean value of the quotients

‖Aluεi ,nl − f ‖L2(�)

‖Aluεi ,n−1
l − f ‖L2(�)

. (38)

All computations are done with two pre- and two post-smoothing steps with the
symmetric Gauß-Seidel iteration and with the V-cycle. The iteration is stopped if
the L2-norm of the residuum ‖Aluεi ,np,l − f ‖L2(�) is smaller than 10−10.

In Tables 1–4, the convergence rates ri,l,a0 of the multigrid method are given with
l = i + q, 2 ≤ q ≤ 5, for different a0 each. In order to study the dependence on ε,
the tables are ordered by εi respectively 1/εi = 2i . The grid level l can be determined
by

l = i + q = q − log2(εi).

Table 1. Convergence rates for grid levels l = 2 − log2(εi ) = 3, . . . , 9

1/εir1,i,i+2,a0

2 4 8 16 32 64 128

1 0.07 0.09 0.09 0.10 0.10 0.10 0.10
10−3 0.08 0.12 0.14 0.15 0.16 0.16 0.16

a0 10−6 0.08 0.12 0.14 0.15 0.16 0.16 0.16
103 0.18 0.17 0.15 0.13 0.13 0.13 0.13
106 0.19 0.18 0.16 0.13 0.13 0.13 0.13

Table 2. Convergence rates for grid levels l = 3 − log2(εi ) = 4, . . . , 10

1/εir1,i,i+3,a0

2 4 8 16 32 64 128

1 0.09 0.09 0.09 0.10 0.10 0.10 0.10
10−3 0.13 0.16 0.19 0.20 0.21 0.21 0.21

a0 10−6 0.13 0.16 0.19 0.20 0.21 0.21 0.21
103 0.26 0.24 0.21 0.19 0.18 0.17 0.17
106 0.26 0.25 0.23 0.19 0.18 0.17 0.17

Table 3. Convergence rates for grid levels l = 4 − log2(εi ) = 5, . . . , 11

1/εir1,i,i+4,a0

2 4 8 16 32 64 128

1 0.10 0.10 0.10 0.10 0.10 0.10 0.10
10−3 0.16 0.18 0.21 0.22 0.23 0.23 0.23

a0 10−6 0.16 0.18 0.21 0.22 0.23 0.23 0.23
103 0.28 0.26 0.23 0.21 0.19 0.19 0.20
106 0.29 0.28 0.26 0.22 0.20 0.20 0.20
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Table 4. Convergence rates for grid levels l = 5 − log2(εi ) = 6, . . . , 12

1/εir1,i,i+5,a0

2 4 8 16 32 64 128

1 0.10 0.10 0.10 0.10 0.10 0.10 0.10
10−3 0.17 0.19 0.22 0.23 0.23 0.24 0.24

a0 10−6 0.17 0.19 0.22 0.23 0.23 0.24 0.24
103 0.29 0.26 0.24 0.21 0.21 0.21 0.21
106 0.31 0.29 0.25 0.22 0.22 0.22 0.22

Table 5. Run times (in seconds) of the program on different grids Gl

Level l DoFl
DoFl

DoFl−1
T Init
l

/s
T Init
l

T Init
l−1

TMGM
l

/s
T MGM
l

TMGM
l−1

T All
l

/s
T All
l

T All
l−1

4 225 – 1.47 – 0.01 – 1.49 –
5 961 4.27 2.74 1.86 0.04 4.00 2.80 1.88
6 3969 4.13 9.87 3.60 0.16 4.00 10.19 3.64
7 16129 4.06 42.98 4.35 0.92 5.75 44.63 4.38
8 65025 4.03 168.85 3.93 8.67 9.42 180.94 4.05
9 261121 4.02 679.70 4.03 46.03 5.31 740.22 4.09

10 1046529 4.01 2756.36 4.06 219.37 4.77 3033.97 4.10
11 4190209 4.00 11071.75 4.02 866.82 3.95 12172.24 4.01

In Table 1, the values, for instance, correspond to the grid levels l = 3, . . . , 9.

The computations show that the convergence rates are larger than for the Poisson
problem (a0 = 1), but, more importantly, they are still small and show clearly that
they are bounded by approximately 0.3 for all test cases independently of the various
parameters, in particular independent of ε.

The computations are done on a SunFire 6800 with 16 CPUs (UltraSparc III with
900 MHz) and 16 GByte shared memory. The given run times are always “user”
times, i. e., the total run time of all CPUs. The main part of the initialization step
consists of the solution of local problems leading to small linear systems. In order
to solve them, we use the Cholesky factorization of Lapack. The systems are inde-
pendent of each other and can be solved in parallel.

The complexity of both the initialization step (cf. Subsect. 5.4 ) as well as the mul-
tigrid method is linear in the degrees of freedom on the finest grid. The run times
of our program are given in Table 5 (“user” times in seconds) on different grids Gl .
There, T Initl refers to the run time of the initialization step, T MGMl corresponds to
the run time of ten multigrid iterations and T Alll is the total run time of the program.
The computations are done with the parameters l = i + 2 and a0 = 1 which have
no influence on the run times per iteration step.

The quotients of the run times match the quotients of the degrees of freedom very
well. This shows that the complexity of our implementation confirms the theoreti-
cally predicted linear complexity.
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The quite large quotients for the multigrid method for middle-sized grids might
issue from data outgrowing the cache. The quotients for the larger grids are again
consistent with the linear complexity.
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[2] Babuška, I., Andersson, B., Smith, P. J., Levin, K.: Damage analysis of fiber composites. I: Statistical
analysis of fiber scale. Comput. Meth. Appl. Mech. Engng. 172, 27–77 (1999).
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