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Abstract Metabolomics as one of the most rapidly growing

technologies in the ‘‘-omics’’ field denotes the comprehensive

analysis of low molecular-weight compounds and their

pathways. Cancer-specific alterations of the metabolome can

be detected by high-throughput mass-spectrometric metabo-

lite profiling and serve as a considerable source of new

markers for the early differentiation of malignant diseases as

well as their distinction from benign states. However, a

comprehensive framework for the statistical evaluation of

marker panels in a multi-class setting has not yet been

established. We collected serum samples of 40 pancreatic

carcinoma patients, 40 controls, and 23 pancreatitis patients

according to standard protocols and generated amino acid

profiles by routine mass-spectrometry. In an intrinsic three-

class bioinformatic approach we compared these profiles,

evaluated their selectivity and computed multi-marker panels

combined with the conventional tumor marker CA 19-9.

Additionally, we tested for non-inferiority and superiority to

determine the diagnostic surplus value of our multi-metabo-

lite marker panels. Compared to CA 19-9 alone, the combined

amino acid-based metabolite panel had a superior selectivity

for the discrimination of healthy controls, pancreatitis, and

pancreatic carcinoma patients ½volume under ROC surface

VUSð Þ ¼ 0:891 95 % CI 0:794� 0:968ð Þ�: We combined

highly standardized samples, a three-class study design, aAlexander Benedikt Leichtle and Uta Ceglarek have contributed
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high-throughput mass-spectrometric technique, and a com-

prehensive bioinformatic framework to identify metabolite

panels selective for all three groups in a single approach. Our

results suggest that metabolomic profiling necessitates

appropriate evaluation strategies and—despite all its current

limitations—can deliver marker panels with high selectivity

even in multi-class settings.

Keywords Pancreatic cancer � Metabolomics � Amino

acids � Modeling � Marker panels

Abbreviations
1H NMR Proton nuclear magnetic resonance

(spectrometry)

2D NMR 2-Dimensional nuclear magnetic

resonance (spectrometry)

AU(RO)C Area under the (receiver operator

characteristics) curve

mlogitBMA Bayesian multinomial logit model

averaging

CA 19-9 Carbohydrate antigen 19-9

CAR scores ‘Correlation-adjusted (marginal)

correlation’ scores

CEA Carcinoembryonic antigen

GC–MS Gas chromatography mass

spectrometry

GC/TOF–MS Gas chromatography/time of flight

mass spectrometry

ICAM-1 Intracellular adhesion molecule 1

LC/ESI-MS Liquid chromatography/electrospray

ionization mass spectrometry

LC/LTQ-Orbitrap Liquid chromatography/linear ion trap

combined with an orbitrap (mass

spectrometry)

OPG Osteoprotegerin

PC(A) Principal component (analysis)

TIMP-1 TIMP metallopeptidase inhibitor 1

VUS Volume under (ROC) surface

1 Introduction

Pancreatic cancer is the fourth leading cause of cancer death

in the United States, and most patients diagnosed with pan-

creatic cancer develop clinical symptoms usually late in the

course of the disease (Lowenfels and Maisonneuve 2006).

Therefore, only 20 % of patients can be treated with a

potentially curative therapy and only about 3–5 % survive at

least 5 years (Michl et al. 2006). For these patients, time,

especially the so called ‘biomarker lead time’ between the

onset of asymptomatic cancer still localized to the organ of

origin and clinical diagnosis (Konforte and Diamandis 2012),

is crucially important (Hazelton and Luebeck 2011).

Although recent modeling studies have illustrated that blood-

based biomarkers might provide a successful tool for the early

detection and differentiation of premalignant lesions, sub-

stantial methodological enhancements of unanticipated

extent (Burgess 2012) are still required. Yachida et al. (2010)

demonstrated a latency of about 17 years from the initiating

mutation to pancreatic cancer death. Similarly, Hori and

Gambhir (2011) stated ‘‘that shedding rates of current clinical

blood biomarkers are likely 104-fold too low to enable

detection of a developing tumor within the first decade of

tumor growth’’ and suggested to increase sensitivity and

specificity by introducing multi-marker panels of up to 10

biomarkers. In a proof-of-principle study for evaluating the

utility of multiplexed circulating biomarkers, Brand et al.

(2011) investigated the selectivity of 83 proteins and their

combinations. Two panels consisting of CA 19-9, ICAM-1,

and OPG, as well as CA 19-9, CEA, and TIMP-1 were found

to discriminate pancreatic cancer patients from healthy con-

trol subjects and from patients with benign pancreatic con-

ditions, respectively. Since the cohorts in this study were

compared separately, an integral model encompassing all

three disease states was not obtained. Whereas Brand et al.

(2011) focused on known tumor markers, tumor-associated

peptides, etc., other studies have employed several of the

emerging ‘‘-omics’’ subspecialties, such as proteomics (Fie-

dler et al. 2009), transcriptomics (Zhang et al. 2010), and—as

the probably closest to the ‘‘bedside’’ (Van and Veenstra

2009)—metabolomics (Bathe et al. 2011; Ceglarek et al.

2009; Nishiumi et al. 2010; OuYang et al. 2011; Urayama

et al. 2010; Zhang et al. 2011). The latter bears the chance to

learn from the intricacies that have plagued ‘‘-omics’’

researchers over the last years, standardization (Van and

Veenstra 2009), data processing (Blekherman et al. 2011) and

data interpretation (Kholodenko et al. 2012), amongst others.

In this study, we addressed these challenges by using a

three-class study design. We collected highly standardized

samples of pancreatic cancer patients, subjects with pan-

creatitis, and healthy controls. Following tandem mass

spectrometric metabolite profiling, we evaluated the dif-

ferences between groups and applied Bayesian methodol-

ogy to identify multi-metabolite models as ‘‘meta-

markers’’, which are selective for each of the three study

groups and provide improved diagnostic performance

compared to CA 19-9, the conventional tumor marker.

2 Materials and methods

2.1 Patients and samples

We recruited patients suffering from pancreatic cancer

(n ¼ 40), healthy controls (n ¼ 40), and patients
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hospitalized due to acute pancreatitis (n ¼ 26) at the Uni-

versity Hospital of Leipzig in the context of previously

published studies (Fiedler et al. 2009; Leichtle et al. 2012).

We collected cubital vein fasting samples of cancer

patients and healthy controls in two independent sets.

Additionally, we collected fasting serum samples of 26

patients with pancreatitis as inflammatory control group

(A, C, and D, ntotal ¼ 106; Table 1). We adjusted subjects

according to age and gender and performed blood sampling

from patients before the initiation of specific therapy.

Diagnosis of pancreatic cancer was confirmed by histologic

examination in all cases. Healthy controls showed no evi-

dence of actual disease in physical examination and routine

laboratory testing [alkaline phosphatase, bilirubin, C-reac-

tive protein, CA 19-9, CEA, creatinine, c-glutamyltrans-

ferase, transaminases (Roche Modular, Germany)].

Pancreatitis patients were diagnosed clinically without

proof of pancreatic carcinoma during the study period.

Serum samples were collected and stored (at -80 �C)

using standardized techniques and protocols (Baumann

et al. 2005).

2.2 Chemicals, standards and consumables

Methanol and isopropanol (gradient grade) were purchased

from Merck (Darmstadt, Germany). The amino acid iso-

tope labelled standard kit (NSK-A, Cambridge Isotope

Laboratories, Andover, USA) was used as internal stan-

dard. Water (HPLC grade) was obtained from J. T. Baker

(Deventer, Netherlands). The derivatization reagent

3n butanolic HCl was made in-house by mixing 4:1 v/v of

1-butanol (for spectroscopy) from Merck (Darmstadt,

Germany) and acetyl chloride (p.a.) from Sigma-Aldrich

(Steinheim, Germany). 96-well polypropylene microtiter

plates were purchased from Greiner Bio-One (Fricken-

hausen, Germany). Sampling material was obtained from

Sarstedt (Nümbrecht, Germany). For sample storage

450 lL CryoTubesTM were purchased from Sarstedt.

2.3 Sample pretreatment

Sample derivatization was performed according to our

previously described protocols (Brauer et al. 2011).

Shortly, serum samples were diluted 1:10 with methanol

for protein precipitation. After centrifugation we placed

10 lL of the supernatant into 96-well polypropylene

microtiter plates and diluted it with 100 lL of the internal

standard solution. Following evaporation at 70 �C for

40 min, we added 60 lL of 3n butanolic-HCl for deriva-

tization at 65 �C for 18 min. The residual solution was

again evaporated at 70 �C for 40 min and then reconsti-

tuted with 150 lL of the mobile phase (1/1 v/v isopropa-

nol/water). After 15 min of gentle shaking of the microtiter

plate at room temperature, we analyzed the samples by

flow injection analysis (FIA)-tandem mass spectrometry

(MS/MS).

2.4 Tandem mass spectrometry

An API 3000 MS/MS (Applied Biosystems, Germany)

equipped with a Turbo Ion Spray Source (TIS) in combi-

nation with an HTC Pal autosampler and a PE 200 mi-

crogradient pump was used for flow injection analysis

(FIA). 25 lL of the sample were directly injected at a flow

rate of 80 lL/min in an analysis time of 1.5 min. We

detected amino acids by a neutral loss scan of 102 in the

mass range of 130–280 or multiple reaction monitoring

(MRM). Quantitative analysis using internal standards for

26 amino acids was performed using ChemoViewTM 1.4.2

(Applied Biosystems, Germany). A comprehensive over-

view of mass transitions, internal standards, and perfor-

mance data for the different amino acids is summarized in

Brauer et al. (2011).

2.5 Bioinformatic analysis

Statistical analyses were conducted (unless otherwise sta-

ted) using R for Windows (Version 2.14.2) and its related

CRAN packages (http://cran.r-project.org/). We tested data

for normality by the Anderson–Darling test (nortest) and

the gender distribution in the subgroups by the binomial

test (stats). The homogeneity of variances of the quantita-

tive routine laboratory data was evaluated with the

approximative Fligner–Killeen test (stats), whereas the

paired differences were investigated by Games–Howell

testing (script source: http://aoki2.si.gunma-u.ac.jp/R/src/

tukey.R). Three missing CA 19-9 values were imputed by

multiple imputation (MI) with 3 chains of imputation

(which were averaged thereafter), a R̂ value of 1.1, and

bootstrap as random imputation method until conversion

(after 7111 iterations). Three pancreatitis samples with

non-random missing data as a consequence of insufficient

sample volume were excluded from further analysis. The

selectivity of single amino acid concentrations was asses-

sed in all disease states simultaneously via the volume

under ROC surface (VUS), which is the three-dimensional

analogue of AUROC analysis (Nakas and Yiannoutsos

2004). The VUS’ and their associated confidence intervals

were calculated nonparametrically using B ¼ 2; 000 boot-

straps and 50 k subdivisions on the amino acid concen-

trations (DiagTest3Grp). As we assumed a high degree of

collinearity in the amino acid concentrations, we computed

Kendall’s s as well as its Hochberg-adjusted significance

(ltm, corrplot) and plotted the correlation matrix (Fig. 1).

Based on our previous results indicating that marker
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models comprising combinations of different amino acids

and/or CA 19-9 might be superior to single amino acids

and/or CA 19-9 with respect to their selectivity (Leichtle

et al. 2012), we also evaluated combined models. These

models consisted on the one hand of the conventional

tumor marker CA 19-9 combined with different principal

components (PC1, PC2, …) of the different amino acid

concentrations to control for multicollinearity, which is a

significant constraint on variable selection (Leigh 1988).

On the other hand we also combined CA 19-9 with mere

amino acid concentrations to avoid potentially unnecessary

transformation steps prior to modeling. After Yeo–Johnson

transformation (car) of the amino acid concentrations, we

generated PCs (princomp and factoMineR), from which the

first six PCs had eigenvalues [1.0 and cumulatively cov-

ered 78.7 % of the variance. For the modeling in a three-

state design, we merged sample set A with C and obtained

one tumor group, one control group and one pancreatitis

group (set D). In the second step we used CA 19-9 alone

and combined with the PCs of the amino acid concentra-

tions as well as with mere concentrations for Bayes-aver-

aged multinomial logit modeling [mlogitBMA,

bic.mlogit(mlogitBMA)] using Begg and Gray approxi-

mation. We validated the latter model by CAR [‘Correla-

tion-Adjusted (marginal) coRrelation’] scores (care)

assuming empirical values of 1.0, 0.3, and 0.1 as responses

of the pancreatic carcinoma, the healthy control, and the

pancreatitis groups, respectively, in a CAR model trun-

cated to a number of variables comparable to the penalized

multinomial logit model. We computed the VUS for the

four predictors, namely CA 19-9, the PCA-based mlo-

gitBMA-predictor (PCA), the amino acid concentration-

based mlogitBMA-predictor (AA), and the amino acid

concentration-based CAR-model-predictor (CAR) analo-

gously to the VUS values of the amino acid concentrations.

The ROC surface plots (Fig. 2) were drawn using MAT-

LAB (The MathWorks, Natick, MA, USA). Since signifi-

cant differences of the VUS between predictors and

CA 19-9 do not imply inferiority or superiority, we per-

formed non-inferiority and superiority testing applying

bootstrap techniques on DVUS (Bouter ¼ 1; 000, boot,

Binner ¼ 1; 000, DiagTest3Grp, UBELIX Cluster of the

University of Bern). We constructed the corresponding CIs

and tested for the overlap of D0 and the DVUS’ CI according

to the methods proposed by Liu et al. (2006), Tunes da

Silva et al. (2009), and Lesaffre (2008) at a predefined d
level of 5 % which was considered to be medically rea-

sonable designing this and a previous study (Leichtle et al.

2012). We visualized the performance data in a forest plot

[Fig. 3, forestplot(rmeta), R version 2.15.0, cf. Mascha

(2010)].

2.6 Ethics

The study was approved by the Ethics Committee of the

Medical Faculty of the University of Leipzig (Reg.

No. 013-2005) and it fulfills the requirements of the Hel-

sinki declaration. All study subjects gave written informed

consent to participate in the study.

3 Results and discussion

3.1 Descriptives

We collected serum samples of 40 (20 males/20 females)

pancreatic carcinoma patients, 26 (22 males/4 females,

Pbinomial ¼ 0:0005) pancreatitis patients, and 40 (20 males/

20 females) healthy controls. Table 1 displays the distri-

butions of age, BMI, UICC cancer staging of the patients,

the CA 19-9, bilirubin, and HbA1c concentrations in the

three different sample sets. Of 26 amino acid concentra-

tions, we found only four (arginine, glutamic acid, phen-

ylalanine, and tryptophan) unaltered between the study

groups (Table 2). Several amino acid concentrations were

non-normally distributed. In order to detect sample set-

specific alterations in the values, we also compared the

amino acid concentrations of the tumor patients and the

healthy control group between the two sample sets and

found no significant differences (Table 2).
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Fig. 1 Correlation matrix of the amino acid concentrations (see
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lower left part the corresponding (1 - P) values are limned to

illustrate the significance of the correlation (cf. legend at the bottom).

For compound abbreviations, see Table 2
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3.2 Correlations

We evaluated the multicollinearity of the amino acid

concentrations by generating their correlation matrix

(Kendall’s s and its Hochberg-adjusted significance).

Kendall’s s values ranged between -0.516 (aspartic acid

with glutamine) and 0.709 (threonine with glutamine), the

P values between 0.001 and 0.97 (Fig. 1).

3.3 Modeling

We hypothesized that combinatory markers including

several amino acids and/or CA19-9 might have additive or

even multiplicative effects and thus be superior to single

amino acids and/or CA 19-9 in diagnostics of pancreatic

cancer (Brand et al. 2011). Therefore, in addition to eval-

uating the single VUS of the amino acid concentrations, we

also generated models based on CA 19-9 combined with

PCs and Bayesian multinomial logit model averaging

(mlogitBMA) as well as on CA 19-9 conjoined with amino

acid concentrations. Furthermore, we used models based on

CAR scores to evaluate their three-class selectivity in

comparison with that of single amino acid concentrations

and CA 19-9 as a validation method for the mlogitBMA

Fig. 2 Three-dimensional ROC surfaces depicting true class rates of

CA 19-9 alone (a), the mlogitBMA predictor model based on PCAs

and CA 19-9 (b), the mlogitBMA predictor model based on amino

acid (AA) concentrations and CA 19-9 (c), and the CAR-score based

predictor model (d, See Section 2) when the three classes/states are

assessed simultaneously. The axes represent true class rates for

healthy controls (H), pancreatitis patients (P), and pancreatic carci-

noma patients (C)

Predictor
CA19-9

s PCA
s AA
s CAR

 Mean
0%
13.72%
69.29%
65.12%

 or 's 90%CI
(-5% – +5%)
(-16.36% – 46.14%)
(49.02% – 86.88%)
(45.83% – 83.74%)

-20 0 20 40 60 80 100

% VUS

Fig. 3 Forest plot of the DVUS based on CA 19-9s VUS (D0, 0.528) as

reference with the predefined ±5 % d as horizontal bars (a).

Additionally, the DVUS values of the predictors PCA, AA, and CAR

are displayed with their (100 - 2 d) % bootstrap CIs (b, See

Section 2)
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models. The best PC-based mlogitBMA-model comprised

CA 19-9 and PC2. The best amino acid concentration-

based mlogitBMA-model contained CA 19-9 and aspartic

acid, which both were also contained in the truncated

amino acid concentration-based CAR score-model. To

evaluate the selectivity of both, amino acid concentrations

and modeled predictors, we computed their volume under

the ROC surface (VUS) (Table 3). The VUS of the amino

acid concentrations spanned from 0.180 (arginine, 95 % CI

0.106–0.270) to 0.850 (glutamine, 95 % CI 0.761–0.929).

The VUS of CA19-9 was 0.528 (95 % CI 0.400–0.654),

and the predictors PCA, AA, and CAR had VUSs of 0.604

(95 % CI 0.446–0.745), 0.891 (95 % CI 0.794–0.968), and

0.871 (95 % CI 0.776–0.952), respectively. For a random

classifier, the VUS could be geometrically determined

(Landgrebe and Duin 2007) with a value of 1:�6: To illus-

trate the selectivity of CA 19-9 and the predictors, we

generated true class rate-plots depicting the ROC surface

(Fig. 2).

3.4 Non-inferiority and superiority testing

Since it is generally accepted that significant difference

alone might not be an adequate measure of non-inferiority

or superiority, we sequentially tested for both with an a

priori-defined acceptance criterion (equivalence limit) of

d ¼ 5 % DVUS. We computed the lower and upper limits of

the (100 - 2d) % bootstrap confidence interval of the

estimated DVUS as proposed by Liu et al. (2006). The

results are shown in Fig. 3. Following the criteria by

Table 2 Inter-group significance (P values) of the differences in CA 19-9 and amino acid concentrations as evaluated by Games–Howell testing

and the homogeneity of variances as determined by Fligner–Killeen testing (column P)

Compound Ap:Ac Ap:Cpa Ap:Cc Ap:D Ac:Cp Ac:Cca Ac:D Cp:Cc Cp:D Cc:D P

CA19-9b 0.003 0.692 0.003 0.006 0.030 0.753 0.058 0.032 0.069 0.107 0.000

Glutamine (Gln); (CID 5961) 0.000 0.239 0.000 0.000 0.007 0.962 0.000 0.012 0.000 0.000 0.000

Lysine (Lys) (CID 5962)b 0.791 0.876 0.971 0.029 0.319 0.972 0.005 0.523 0.259 0.004 0.865

Hydroxyproline (OH.Prol) (CID 5810) 0.050 0.932 0.102 0.996 0.271 1.000 0.015 0.371 0.755 0.043 0.706

Pipecolic acid (PiPA) (CID 849) 0.001 0.245 0.000 0.020 0.605 0.982 0.000 0.360 0.002 0.000 0.371

Abscisic acid (Aba) (CID 5280896) 0.440 0.999 0.545 0.000 0.530 0.999 0.000 0.646 0.000 0.000 0.000

Alanine (Ala) (CID 5950) 0.067 1.000 0.383 0.998 0.019 0.917 0.118 0.212 0.989 0.547 0.447

Arginine (Arg) (CID 6322) 0.999 0.998 0.950 0.932 1.000 0.991 0.980 0.994 0.984 1.000 0.759

Aspartic acid (Asp) (CID 5960) 0.121 0.982 0.120 0.000 0.138 1.000 0.000 0.136 0.000 0.000 0.000

Carnosin (CID 439224)b 0.411 0.377 0.216 0.000 1.000 1.000 0.000 0.997 0.000 0.000 0.000

Citrulline (Cit) (CID 9750) 0.095 0.994 0.679 1.000 0.160 0.330 0.037 0.884 0.989 0.523 0.481

Glutamic acid (Glu) (CID 33032) 0.881 0.266 0.757 0.602 0.101 0.998 0.224 0.075 0.897 0.168 0.000

Glycine (Gly) (CID 750) 0.890 1.000 0.984 0.113 0.831 0.993 0.011 0.966 0.079 0.019 0.879

Histidine (His) (CID 6274)b 0.995 1.000 0.999 0.068 0.987 0.971 0.087 1.000 0.009 0.057 0.000

Leucine/Isoleucine (Leu.Ile)

(CID 6106/CID 6306)

0.033 0.999 0.040 0.134 0.046 1.000 0.971 0.056 0.183 0.954 0.883

Methylhistidine (MeHis) (CID 64969) 0.049 0.907 0.289 0.000 0.623 0.877 0.000 0.956 0.000 0.000 0.001

Methionine (Met) (CID 6137)b 1.000 0.999 1.000 0.604 0.978 1.000 0.188 0.996 0.021 0.314 0.050

Ornithine (Orn) (CID 6262) 0.199 0.531 0.708 0.015 0.953 0.846 0.000 0.998 0.001 0.002 0.722

Phenylalanine (Phe) (CID 994)b 0.962 0.995 0.967 1.000 1.000 1.000 0.975 1.000 0.993 0.972 0.069

Proline (Pro) (CID 8988) 0.051 0.957 0.049 0.022 0.163 1.000 0.971 0.153 0.187 0.957 0.009

Sarcosine (Sarc) (CID 1088)b 0.272 0.507 0.953 0.786 0.002 0.681 0.999 0.119 0.173 0.967 0.212

Serine (Ser) (CID 5951) 0.091 0.380 0.011 0.018 0.931 0.816 0.998 0.382 0.746 0.891 0.446

Taurine (Tau) (CID 1123) 0.003 0.053 0.016 0.001 0.595 1.000 0.000 0.784 0.000 0.000 0.091

Threonine (Thr) (CID 6288) 0.008 0.886 0.051 0.000 0.086 1.000 0.000 0.246 0.000 0.000 0.000

Tryptophan (Trp) (CID 6305)b 0.589 0.705 0.151 0.058 0.999 1.000 0.945 0.985 0.798 0.931 0.189

Tyrosine (Tyr) (CID 6057) 0.041 0.818 0.056 1.000 0.421 1.000 0.050 0.510 0.840 0.068 0.855

Valine (Val) (CID 6287) 0.000 0.331 0.016 0.475 0.116 0.999 0.000 0.316 0.029 0.002 0.084

Sets A, C, and D (only pancreatitis) with pancreatic carcinoma patients (p) and controls (c). P values\0.05 are shown as bold numbers. Amino

acids with no significant difference in any group comparison are displayed in italics. Metabolites are identified by their PubChem Compound ID

(CID)
a Comparisons of subjects of the same class in different sets
b Signifies deviation from normal distribution in at least one subgroup as evaluated by Anderson–Darling testing
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Mascha (2010) we deduced non-inferiority for predictors

AA and CAR compared to CA 19-9. Furthermore, superi-

ority of the AA and CAR predictors over CA 19-9 alone

was derived in a second step, since the lower CI of DVUS

was positive.

‘‘The ideal biological marker(s) for cancer risk assess-

ment and early detection must have high sensitivity and

specificity, be found in a biosample obtained using mini-

mally invasive procedures, and be analyzed using a high-

throughput, cost-effective assay.’’ These requirements

stated by Van and Veenstra (2009) are challenging to ful-

fill. Particularly, in the case of pancreatic cancer diagnos-

tics this challenge is even bigger due to the number of

differential diagnoses, which are difficult to discern from

malignant disease even for experienced clinicians (Gong

et al. 2012). Furthermore, chronic pancreatitis patients also

have a 15-fold higher risk than the general population to

develop pancreatic cancer (Huggett and Pereira 2011). In

order to identify biomarkers capable of discriminating

different disease states, we designed a study including

pancreatic cancer patients and healthy controls of two

independently collected sample sets as well as an addi-

tional group of pancreatitis patients, since the principal

feasibility of the metabolomic approach to pancreatic

cancer was recently shown (Bathe et al. 2011; Tesiram

et al. 2012; Zhang et al. 2012). Samples were processed

following highly standardized preanalytical protocols and

applying a routinely used tandem mass spectrometric

technique. By comparing the sample groups, we found 22

of 26 amino acids altered in at least one out of ten possible

comparisons. The number of different metabolites is

comparable to that given by Bathe et al. (2011) who found

22 of 58 metabolites significantly different between

malignant and benign pancreatic disease applying 1H NMR

and 2D NMR spectroscopy, with OuYang et al.’s (2011)
1H NMR spectroscopy results showing significant altera-

tions of at least 8 metabolites between only 17 pancreatic

carcinoma patients and 25 healthy controls. It is consistent

with Urajama et al.’s (2010) combined GC/TOF-MS, LC/

ESI-MS, and LC/LTQ-Orbitrap study revealing 26 signif-

icantly different metabolites in a comparison of 5 pancre-

atic cancer samples and 5 mixed pancreatitis/healthy

controls, and with Nishiumi et al.’s (2010) GC–MS

investigations based on 21 pancreatic cancer patients and 9

healthy volunteers identifying 18 of 60 metabolites as

significantly different. In addition to the inter-class com-

parisons of the different sample sets, we also evaluated the

inter-sample set differences in the respective classes (can-

cerA - cancerC and controlA - controlC) and found no

significant differences. Since the sample groups were

homogeneous, we preferred a joint analysis in the modeling

approach over a split-half design to keep the degree of

random error as low as possible (Knottnerus and Muris

2003; Ransohoff and Gourlay 2010). Although the previ-

ously published metabolome profiling studies of pancreatic

carcinoma are heterogeneous regarding the used mass-

spectrometric techniques and the studied metabolites, they

all share canonical variance-based evaluation strategies

with two-class comparisons. Additionally, only one of the

studies (Bathe et al. 2011) assessed the selectivity (e.g.

AUROC or VUS analyses) of the marker metabolites. Our

aim was to perform a comprehensive data analysis that also

allows a clear interpretation of the diagnostic value of the

markers (Leichtle et al. 2012). To this end, we imple-

mented four unexampled features in our bioinformatic

pipeline: (1) The computation of three-class VUS values of

the single amino acid concentrations as an integral selec-

tivity measure, (2) a Bayesian multinomial logit model

Table 3 Volume under receiver operator characteristics curve (VUS)

and 95 % confidence intervals of the amino acid and CA 19-9 con-

centrations as well as of a random classifier [cf. Landgrebe and Duin

(2007)] with respect to the discriminatory power between pancreatic

cancer patients, healthy controls, and pancreatitis patients

Compound VUS Low 95 %CI High 95 %CI

Gln 0.8500 0.7606 0.9288

Thr 0.7531 0.6431 0.8581

Asp 0.7156 0.6006 0.8225

PiPA 0.6961 0.5934 0.7976

Aba 0.6305 0.5097 0.7461

Tau 0.6128 0.4869 0.7296

MeHis 0.5946 0.4647 0.7224

His 0.5636 0.4328 0.6915

Carnosin 0.5509 0.4233 0.6695

CA19-9 0.5282 0.3996 0.6536

Val 0.5246 0.405 0.6493

Met 0.4966 0.3685 0.6231

Orn 0.4663 0.3528 0.5928

Lys 0.4375 0.3299 0.5561

Gly 0.4096 0.2969 0.5313

Tyr 0.3457 0.2353 0.4749

OH-Prol 0.3397 0.233 0.4562

Ser 0.3239 0.2228 0.4349

Leu/Ile 0.3157 0.217 0.4305

Cit 0.2845 0.1789 0.4022

Trp 0.2791 0.1789 0.3922

Pro 0.2758 0.1705 0.3957

Sarc 0.2607 0.1547 0.3822

Ala 0.2591 0.1677 0.3607

Phe 0.232 0.145 0.3395

Glu 0.2273 0.1419 0.3164

Arg 0.1801 0.1063 0.2698

Random 1:�6 (1=6)

For compound abbreviations, see Table 2
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averaging procedure to extend the previously used bino-

mial logistic regression modeling (Leichtle et al. 2012) on

the three-class study design to generate multi-marker

panels (including CA 19-9), (3) the VUS-based analysis of

the panel predictors, and, finally, (4) their non-inferiority

and superiority determination. The VUS values of the

single amino acid concentrations ranged from 0.18 slightly

above a random classifier to 0.85 (glutamine), which is

close to the best panel predictors. As none of the previous

metabolite profiling studies on pancreatic cancer performed

VUS analysis, we can only rely on the utterly inconsistent

P values they present, in Urayama et al.’s (2010) case

0.000021, or in Nishiumi et al.’s (2010) 0.97 for glutamine.

CA 19-9 alone reached the 10th rank, which is probably

attributable to its low selectivity between benign and

malign pancreatic diseases (Fig. 2a). Since our previous

investigations (Leichtle et al. 2012) indicated a high degree

of multicollinearity in the amino acid concentrations,

which is known to impede many feature selection tech-

niques (Jesneck et al. 2009; Leigh 1988), we set up a

Kendall’s correlation matrix to visualize the multicolline-

arity and its significance. As expected, the full range of

correlation spanned from -0.516 to 0.709, which sup-

ported the inclusion of the frequently recommended PC-

based analysis approach, albeit it has been shown that

variance-based techniques might not always yield optimal

predictors (Leichtle et al. 2012). To compute robust pre-

dictive multi-metabolite marker panels, we combined

CA 19-9 and the PCs as well as CA 19-9 and the mere

amino acid concentrations and used a Bayesian multi-

nomial logit model averaging procedure for our categorical

three-class study design (Robin et al. 2009). The first

model consisted of CA 19-9 and PC2 providing a two-

marker ‘‘panel’’ predictor (PCA) with a VUS of 0.604. The

omission of PC1 and preference of PC2 with less contri-

bution to explained variance during the mlogitBMA pro-

cedure is an astounding finding possibly reflecting a

predilection of variables sharing covariance with CA 19-9.

The second model based on amino acid concentrations

included CA 19-9 and aspartic acid providing a two-mar-

ker ‘‘panel’’ predictor (AA) with a VUS of 0.891. Our

results indicate that CA 19-9 provides the selectivity

mainly for the discrimination between healthy controls and

pancreatic cancer patients (Table 2), whilst aspartic acid

predominantly contributed to the identification of pancre-

atitis patients. Nishiumi et al. (2010) reported a borderline

significant P value of 0.075 for aspartic acid, whereas

Urayama et al. (2010), OuYang et al. (2011) and Bathe

et al. (2011) did not mention significant differences. Our

results and panel predictors, however, require extremely

cautious interpretation since in a previous study an ana-

lytical variability [25 % was observed for aspartic acid

(Brauer et al. 2011). On the other hand, regarding the

substantial impact of especially pancreatic disease on

nutrition, it was not unexpected to find models different to

those of our previous study on colorectal cancer (Leichtle

et al. 2012). The mechanisms disturbing amino acid

homeostasis and enabling the discrimination of pancreatic

cancer patients from pancreatitis patients on the basis of

metabolite profiles are not entirely elucidated. Schrader

et al. (2009) suggested—apart from malnutrition—mainly

inflammatory effects and pointed at the inverse relationship

between the circulating amino acid concentrations and the

degree of inflammation present e.g. in hemodialysis

patients. Whether increased tumor-associated proteolytic

activity (Findeisen and Neumaier 2012) contributes not

only to the generation of specific peptide decay profiles,

but also to the specificity of the amino acid profiles is still

unknown. To validate our results and the Bayesian mod-

eling approach, we also applied model selection techniques

based on CAR scores (Zuber and Strimmer 2011) as a non-

Bayesian linear alternative. Since our study covered

three—more or less—independent classes, we could nei-

ther rely on a binary (CAT score) nor on a metric (CAR

score) response. Therefore we assumed empirical values of

1.0, 0.3, and 0.1 as ‘‘responses’’ of the respective groups

while acknowledging that such a procedure might be

somewhat artificial and not necessarily justified by the

underlying pathophysiology. To gain a comparable number

of model variables as in the penalized mlogitBMA-model

and thereby an at least limited comparability, we used a

two-predictor CAR model including CA 19-9 and aspartic

acid. The CAR panel predictor had a VUS of 0.871 similar

to the value obtained with the Bayesian modeling

approach. As the final evaluation step, we performed a two-

step non-inferiority and superiority testing based on the

bootstrapped DVUS and on a ± d equivalence range of 5 %

as outlined in a previous study (Leichtle et al. 2012).

CA 19-9’s VUS ± d served as reference we tested the

other predictors’ DVUS against. In the first step, we

observed non-inferiority only for the AA and CAR panel

predictors, but not for the PCA panel predictor, whereas in

the second step, we determined superiority of AA and CAR

panel predictors (Fig. 3). These encouraging results indi-

cate an improved selectivity of the models compared to

CA 19-9 alone. Our study has several limitations to be

considered. First, we merged the sample sets A and C to

keep the degree of random error as low as possible in our

modeling analysis (Knottnerus and Muris 2003). However,

the ‘‘external’’ validity of the results could not thus be

evaluated (Ransohoff and Gourlay 2010). Therefore, sub-

sequent studies are necessary in order to assess the gen-

eralizability of our predictor models. Second, due to high

preanalytical standardization and refinement of our bioin-

formatic methodology, the variability of the analytical

method itself might have become the main source of bias.
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With our study design and evaluation strategy, we probably

have reached an analytical boundary, that still requires

substantial improvements (Hori and Gambhir 2011).

Therefore, new analytical techniques are necessary to reach

both, superior sensitivity and stability at the same time. The

third limitation of the study originates from the strong

penalization of our Bayesian modeling approach: The

predictor panels generated by the mlogitBMA procedure

were both two-component panels consisting of CA 19-9

and another variable. Especially in the case of PC-based

modeling and the selection of the second PC while leaving

out the first, a considerable amount of selectivity might

have been lost. On the other hand, the amino acid con-

centration-based model was superior in selectivity [without

taking misclassification costs into account (Klawonn et al.

2011)], suggesting that PCs might not serve as optimal

modeling variables when Occam’s razor is strictly availed.

Finally, rather than proposing a superior diagnostic

metabolite model or ‘‘meta-marker’’ our results suggest

that our bioinformatic framework combined with a meth-

odology refined to sufficient sensitivity and stability might

provide a valuable diagnostic tool for metabolic profiling

even in the three-class differentiation dilemma of health,

inflammation, and malignancy.

4 Short summary

Multi-marker panels have been suggested to improve the

selectivity of pancreatic cancer diagnostics and its differ-

entiation from various benign lesions. However, a com-

prehensive framework for the statistical evaluation of

marker panels in a multi-class setting has not yet been

established.

Using a disease model encompassing pancreatic cancer,

pancreatitis, and healthy controls, 106 standardized serum

samples, and metabolic profiling, we generated models to

discriminate between the three study groups.

Multi-marker models are superior to the conventional

tumor marker CA 19-9 in simultaneously differentiating

between pancreatic cancer, pancreatitis, and healthy

controls.

Our comprehensive bioinformatic approach provides a

novel framework to address a common diagnostic chal-

lenge, and thus paves the way for biomarker validation in a

clinical three-class setting.
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