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Abstract The melting behaviour of three carbonated

pelites containing 0–1 wt% water was studied at 8 and

13 GPa, 900–1,850�C to define conditions of melting, melt

compositions and melting reactions. At 8 GPa, the fluid-

absent and dry carbonated pelite solidi locate at 950 and

1,075�C, respectively; [100�C lower than in carbonated

basalts and 150–300�C lower than the mantle adiabat. From

8 to 13 GPa, the fluid-present and dry solidi temperatures

then increase to 1,150 and 1,325�C for the 1.1 wt% H2O and

the dry composition, respectively. The melting behaviour in

the 1.1 wt% H2O composition changes from fluid-absent at

8 GPa to fluid-present at 13 GPa with the pressure break-

down of phengite and the absence of other hydrous minerals.

Melting reactions are controlled by carbonates, and the

potassium and hydrous phases present in the subsolidus. The

first melts, which composition has been determined by

reverse sandwich experiments, are potassium-rich Ca–Fe–

Mg-carbonatites, with extreme K2O/Na2O wt ratios of up to

42 at 8 GPa. Na is compatible in clinopyroxene with

D
cpx=carbonatite
Na ¼ 10�18 at the solidus at 8 GPa. The melt

K2O/Na2O slightly decreases with increasing temperature

and degree of melting but strongly decreases from 8 to

13 GPa when K-hollandite extends its stability field to

200�C above the solidus. The compositional array of the

sediment-derived carbonatites is congruent with alkali- and

CO2-rich melt or fluid inclusions found in diamonds. The

fluid-absent melting of carbonated pelites at 8 GPa contrasts

that at B5 GPa where silicate melts form at lower temper-

atures than carbonatites. Comparison of our melting tem-

peratures with typical subduction and mantle geotherms

shows that melting of carbonated pelites to 400-km depth is

only feasible for extremely hot subduction. Nevertheless,

melting may occur when subduction slows down or stops

and thermal relaxation sets in. Our experiments show

that CO2-metasomatism originating from subducted crust

is intimately linked with K-metasomatism at depth

of[200 km. As long as the mantle remains adiabatic, low-

viscosity carbonatites will rise into the mantle and percolate

upwards. In cold subcontinental lithospheric mantle keels,

the potassic Ca–Fe–Mg-carbonatites may freeze when

reacting with the surrounding mantle leading to potassium-,

carbonate/diamond- and incompatible element enriched

metasomatized zones, which are most likely at the origin of

ultrapotassic magmas such as group II kimberlites.

Keywords Carbonated pelites � Potassium-rich

carbonatites � Subduction recycling �
Mantle metasomatism � Potassic magmatism

Introduction

Recycling of crustal materials into the mantle occurs

through two different subduction-related processes: first,

the subducting oceanic crust devolatilizes at least partly
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and produces a mobile phase (which could be a fluid, melt

or supercritical liquid, Schmidt et al. 2004; Kessel et al.

2005a, b) thus loosing part of its main and trace element

inventory to the mantle wedge. Whatever has been spared

and left behind by this fore- and sub-arc process will then

be recycled to large depths and ultimately mixed into the

mantle. While H2O is the dominant volatile component in

the fore- and sub-arc (Nichols et al. 1994), this is not the

case at greater depths. Beyond ca. 9 GPa, after dehydration

of lawsonite and phengite (Schmidt and Poli 1998; Ono

1998), only few hydrous phases remain stable, for example,

topaz-OH and phase egg in peraluminous sediments (Ono

1998) and hydrous alphabet phases in peridotite (Koma-

bayashi et al. 2004). With depth, these hydrous phases

become minor in abundance, and most of the H2O in the

subducting slab becomes stored in nominally anhydrous

phases (Hirschmann et al. 2005). In contrast, carbonates,

which are refractory at subarc depth (Molina and Poli 2000;

Dasgupta et al. 2004; Thomsen and Schmidt 2008a, b),

maintain their stability beyond subarc depth conserving

most of the CO2 stored in the subducting lithosphere

(Kerrick and Connolly 2001; Connolly 2005).

The strategy to study a carbonated water-poor or dry

pelite results from the fact that after the reaction of phengite

to K-hollandite near 9 GPa (Domanik and Holloway 1998;

Ono 1998) hydrous minerals are limited or absent and flush

melting (Poli and Schmidt 2002) of sediments assisted by

fluids derived from underlying oceanic basalts or serpenti-

nized peridotites is limited to 9 and 6–7 GPa, respectively

(Kawamoto et al. 1996; Schmidt and Poli 1998). Further-

more, sodium becomes compatible in clinopyroxene at

C3.5 GPa (Schmidt et al. 2004), leaving potassium that

strongly depresses the solidus temperature of subducted

sediments. Thus, the most fertile composition within

the subducting oceanic lithosphere should be CO2- and

K2O-rich, and melting reactions are expected to be con-

trolled by carbonates and potassic phases.

Although there are a large number of studies on

carbonated mafic eclogites (Yaxley and Green 1994;

Hammouda 2003; Yaxley and Brey 2004; Dasgupta et al.

2004, 2005, 2006; Litasov and Ohtani 2009; Keshav and

Gudfinnsson 2010), there are only three studies on carbon-

ated pelites at upper mantle conditions (Domanik and

Holloway 1998; Thomsen and Schmidt 2008a, b). As has

been pointed out (Dasgupta et al. 2005; Thomsen and

Schmidt 2008b), the melting systematics of peridotites and

carbonated K-poor mafic eclogites at 2–7 GPa is similar to

the melting relations in the simple CaCO3–MgCO3 ±

FeCO3 system (Irving and Wyllie 1975; Buob et al. 2006).

This is because Na2O partitions into clinopyroxene at

C3.5 GPa, and somewhat simplifying, the silicate compo-

nents are refractory at C3.5 GPa, thus leading to carbonatite

initial melts with a few wt% SiO2 (Dasgupta et al. 2004).

The relation of carbonate and silicate melting is differ-

ent in K2O-rich, phengite bearing lithologies (Thomsen and

Schmidt 2008b): the addition of H2O and K2O lowers the

temperature of the fluid-absent silicate solidus to

900–1,150�C (2.5–5 GPa) such that at the solidus silicate

melt coexists with high-Mg calcite. The latter then melts

out in an almost isothermal reaction at 1,050–1,100�C

(2.5–5 GPa) leading to a narrow, B50�C temperature

interval of coexisting silicate and carbonatite melt. We

expect the fluid-absent silicate solidus with its positive

Clapeyron slope of *70�C/GPa to intersect with the

almost isothermal carbonate melting reaction at 5–5.5 GPa.

Above this pressure, the melting relations of carbonated

pelites should be similar to carbonated MORB or perido-

tite, in that carbonatites form at the solidus.

The scope of this study is to address the mineralogical

and geochemical development of carbonated pelites after

major dehydration at depths of 250–400 km and to deter-

mine the composition of melts derived from carbonated

pelites. These carbonatite melts will migrate into the over-

lying mantle to create strongly enriched metasomatic zones

possibly leading to the formation of most diverse geo-

chemical anomalies in the mantle. Furthermore, K2O- and

CO2-rich metasomatism, as would be produced by car-

bonated metapelite melts is probably at the origin of group

II kimberlites (Wyllie and Sekine 1982; Wyllie 1988;

Mitchell 1995; Mitchell 2005) and other ultra-potassic

strongly Si-undersaturated magmas. For these reasons, we

investigate the melting of three carbonate-saturated pelites

at 8 and 13 GPa, H2O-free, and with small water contents

experimentally determine melting conditions and reverse

initial melt compositions.

Experimental procedure and analytical technique

Starting material

The hydrous composition (AM) used in this study is the

same as that in Thomsen and Schmidt (2008b) and corre-

sponds to a Fe-rich calcareous clay from the Antilles

(Plank and Langmuir 1996) simplified in the K2O–Na2O–

CaO–FeO–MgO–Al2O3–SiO2–H2O–CO2 (KNCFMASH–

CO2) system. The other two compositions DG1 and DG2

are synthetic carbonated pelites in the TiKNCFMASH–

CO2 system saturated in coesite/stishovite, kyanite/corun-

dum and carbonates. The starting materials (Table 1) are

made of powders of SiO2, Al2O3, TiO2, MgO, Na2SiO3,

fayalite, K-feldspar, wollastonite, Al(OH)3, CaCO3 and

MgCO3 (pure natural magnesite from Obersdorf; Buob

et al. 2006); the latter three components are to introduce the

right amounts of H2O and CO2. The powders were mixed

employing automatical mills and ground to \5 lm.
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The starting materials were then kept in a desiccator and

dried at 110�C before each use (DG1 and AM), but DG1

turned out to contain a small amount of water absorbed

from air, producing some minor phengite. Thus, DG2 was

mixed, permanently stored in a vacuum oven at 110�C, and

did not yield any indication for the presence of H2O.

Experimental apparatus and sample preparation

Experiments were conducted in a 600-ton Walker-type

rocking multi-anvil at 8 and 13 GPa. To improve the

attainment of equilibrium and to reduce chemical zonation

in the capsules, the whole multi-anvil apparatus was rotated

by 180�C during the experiments (Schmidt and Ulmer

2004). The experiments were rotated continuously during

the first 30 min and then every 10 min during the

remainder of the experiments lasting up to 5 days.

Tungsten carbide cubes with truncation edge lengths of

8 and 11 mm in combination with prefabricated MgO-oc-

taedra of 14 or 18 mm edge length (14/8 and 18/11

assemblies for 13 and 8 GPa, respectively) were used for

the experiments. Natural pyrophyllite gaskets were

employed. The furnace assemblies consist of a ZrO2 sleeve,

a stepped LaCrO3 heater with inner MgO pieces, and a

molybdenum disc or ring between the furnace and the WC

cubes. Pressure was calibrated based on the coesite/stish-

ovite (Yagi and Akimoto 1976; Zhang et al. 1996) and

forsterite/wadsleyite (Morishima et al. 1994) transitions for

the 14/8 assembly, and on the coesite/stishovite and

CaGeO3-garnet–perovskite (Susaki et al. 1985) transitions

for the 18/11 assembly. Temperature was controlled by a

B-type (Pt94Rh6/Pt70Rh30) thermocouple, and no correction

for the effect of pressure on the emf was applied. One or

two capsules made of Au, Au80Pd20, or Au50Pd50 with 1.6

or 2 mm outer diameter (at 13 and 8 GPa, respectively) and

lengths of approximately 1.5 mm were used in each

experiment. Quenching was achieved by turning off the

heating power and was followed by pressure unloading of

about 15–20 h.

To avoid any loss of the alkali-rich quench phases of the

carbonatite melts, capsules were mounted longitudinally in

epoxy resin and polished to the centre using a dry polish

technique. The open capsules were repeatedly impregnated

with low-viscosity resin to avoid the loss of fragments from

the quenched carbonatites. After being prepared for ana-

lysis, all run charges were kept in a desiccator under vac-

uum conditions to avoid the formation of whiskers growing

on the quenched carbonatites, the former resulting in the

destruction of the sample. Equilibrium in the experiments

is indicated by well-crystallized grains, 120� triple junc-

tions between phases, and a homogenous composition of

the different crystalline phases throughout a particular

capsule. Trends of mineral composition as a function of

pressure and temperature and mass balance calculations

suggest that complete equilibrium was generally reached,

at least for the experiments above the solidus.

Analytical methods

All experimental charges were analysed with a JEOL

JXA8200 electron microprobe at ETH-Zürich with 15 kV

acceleration voltages, 20 nA beam current for silicate

minerals and 5 nA for carbonates and carbonatite liquids.

Acquisition times were 10 s for Na and K and 20 s for all

other elements. Na and K were measured first to avoid

diffusional losses. Beam diameters of 1–2 lm were used

for all silicate and carbonate phases. Quenched melts were

analysed with the most defocused beam possible

(3–30 lm). Secondary and back-scattered electron images

from the microprobe or from a JEOL JSM6300 field

emission SEM were used for textural analysis. Micro-

Raman spectroscopy was necessary to identify CaCO3

polymorphs (aragonite), Ti-oxides (TiO2 with a-PbO2

structure) and K-hollandite.

Reverse ‘‘sandwich experiment’’ melt composition

determination

Carbonatite melts are unquenchable and at low melt frac-

tions form, interstitial melt pools or thin films along capsule

Table 1 Bulk starting composition (wt%)

DG1 DG2 AMa

SiO2 (wt%) 55.32 54.63 47.60

TiO2 0.67 0.63 –

Al2O3 21.39 20.23 22.80

FeOtot 5.50 4.86 9.20

MgO 4.15 2.92 2.00

CaO 4.66 5.88 6.80

Na2O 3.36 3.20 2.40

K2O 2.36 2.21 3.60

H2O Tracesb 0.00 1.10

CO2 2.60 4.50 4.80

Tot 100.00 99.07 100.30

XCO2
(molar) \1.00 1.00 0.64

K2O/Na2O (wt%) 0.70 0.69 1.50

Mg# 57.2 52.4 28.1

XMg (Fetot) (molar) 0.39 0.30 0.17

XCa (molar) 0.32 0.43 0.41

Al/(Na ? K ? 2Ca) (molar) 1.29 1.10 1.13

Al/(Na ? K) (molar) 2.65 2.64 2.91

a Thomsen and Schmidt (2008a, b)
b Subsolidus experiment at 8 GPa includes small amount of

phengites
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walls (Fig. 1), which are almost impossible to properly

polish. In addition, quench phases cross the entire melt

pools or films, thus measurements could not be performed

with a sufficiently defocused electron beam, and contami-

nation by residual mineral phases during the measurement

could not be excluded. A focused or only slightly defocused

electron beam leads to beam damage in the quench and to

alkali loss during measurement. Furthermore, the softness,

heterogeneity, small size and reactivity with ambient

humidity of the high-alkali carbonate quench material do

simply not allow a satisfactory preparation and quantitative

analysis of small melt pools. The preferential dissolution

and mechanical loss of potassium- and sodium-rich quench

during sample preparation leads to a further underestima-

tion of the alkali concentrations which then results in arti-

ficially increased concentrations of bivalent cations

(especially Ca). Melt compositions obtained under such

conditions do not mass balance with the minerals, typically

yielding bulks that are alkali deficient with respect to the

starting material. Thus, liquid compositions at low degrees

of partial melting of the two starting materials DG2 and AM

were determined using a reverse ‘‘sandwich’’ procedure

(Falloon et al. 1997; Hirschmann and Dasgupta 2007) in

which the estimated melt composition from the forward

experiments is mixed with the original starting material in

order to obtain larger melt pools of a melt saturated in the

same phases of the same composition as in the original

forward experiment. These large homogeneous areas of

melt (Fig. 1e, f) then allow for analysis using a defocused

beam (EMPA) or an area scan analysis (SEM). The true

melt composition at near solidus conditions is achieved

after an iterative process in which the analysed melt com-

position is employed as an additive to the original starting

material in a cascade of consecutive experiments until

mineral assemblage (garnet, clinopyroxene, coesite/stish-

ovite, kyanite/corundum ± K-hollandite and carbonates),

and mineral compositions in the final sandwich experiment

are identical with those in the original melting experiment

(forward experiment). Before being mixed with the original

starting material, the analysed melts of the original forward

experiments and of the different iterations were slightly

modified according to both mass balance and partitioning

coefficients between solid phases and melt. Secondly, the

compositions of the coexisting solid solutions garnet,

clinopyroxene, carbonates and K-hollandite in the iterative

experiments were compared to the mineral compositions of

the original forward experiments to slightly adjust the melt

composition such that mineral compositions in the iterative

experiments converge with those of the forward experi-

ments. Na2O concentrations in the carbonatite melt are

limited through the saturation with jadeitic clinopyroxene.

Log D
cpx=carbonatite
Na

� �
varies linearly with 1/T, and the

obtained Na2O concentrations of the carbonatite of the final

iterative sandwich experiments are in perfect agreement

with the log D
cpx=carbonatite
Na

� �
vs. 1/T relation determined

experimentally at higher temperatures (where larger melt

pools allow for direct measurement of the melts in the

forward experiments). The potassium content of the car-

bonatite at 13 GPa is buffered by the presence of K-hol-

landite as SiO2 and Al2O3 saturation leads to the potassium

concentration as the only variable in the solution product of

K-hollandite at a given pressure and temperature. At 8 GPa,

the K2O concentration is not strictly buffered, but excessive

K2O contents led to the crystallization of a K2Ca(CO3)2

carbonate. The absence of phengite and K-feldspar above

the solidus at 8 GPa could have led to a slight overesti-

mation of the total K2O concentration and K2O/Na2O ratio

of the melts. Nevertheless, the low amount of melt present

in the forward experiments (ca. 10 wt%), in combination

with the absence of any major potassium bearing crystalline

phase and a low K2O concentration B0.5 wt% in both garnet

and clinopyroxene, suggests a K2O content in the carbonatite

higher than 20 wt%. Furthermore, resulting D
cpx=carbonatite
K

are roughly constant for temperatures to ca. 200�C above the

solidus, indicating, if any, rather an underestimation of K2O

concentrations in the carbonatite liquid.

The iterative procedure was stopped, when the mineral

saturations and mineral compositions became identical with

those in the forward experiments and the mineral and melt

compositions allowed for mass balancing the original bulk

composition with deviations B2 relative % of each oxide

component. Table 2 and Supplementary Table 1 compare

the composition of the initially measured melts at a tem-

perature just above the solidus for the two pelites AM and

DG2 at 8 GPa (for 13 GPa, see online material) with those

obtained after four and five iterative steps, respectively. In

these tables, we also give the mass balanced optimized

compositions, i.e. after adjusting the K2O and Na2O contents

of the originally measured melt for an optimal fit. In Fig. 2,

we plot the forward experiment melt composition as the 0th

iteration step. As can be easily seen, neither the direct initial

measurements nor the mass balance-corrected compositions

are close to the true equilibrium composition as obtained by

the iterative sandwich method. Differences amount to as

much as 12 wt% K2O, 7.5 wt% CaO and 6.5 wt% FeO

(Fig. 2), which catastrophically propagate into e.g. K2O/

Na2O ratios and mass balance in the original forward

experiment. For the final melt composition, uncertainties for

the alkali concentrations remain relatively high, as the het-

erogeneous quench of the alkali-rich carbonatite melts

causes individual large area analyses to vary considerably.

The results from the reversals on the DG2 and AM melt

compositions together with mass balance calculations have

then been adopted to adjust the DG1 melt composition.
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Particularly useful are the partition coefficients (especially

D
cpx=carbonatite
Na ) and the K2O/Na2O wt ratio for the potassium

and sodium concentrations. The correlation of X�Ca (bulk)

vs. X�Ca (melt) and X�Mg (bulk) vs. X�Mg (melt) is also useful

to assess the consistency of analysed and corrected melt

compositions.

Results

Thirty experiments were performed on three different bulk

compositions (Table 1) at 8 and 13 GPa, and at tempera-

tures between 900 and 1,850�C. Run conditions with

calculated phase proportions are listed in Table 3 and

represented in Fig. 3. Subsolidus assemblages consist of

garnet, jadeitic clinopyroxene, coesite/stishovite, kyanite or

corundum, phengite and/or K-feldspar (at 8 GPa) or

K-hollandite (at 13 GPa), a Ti-phase and arago-

nite ? Fe-rich magnesite (Fig. 1). Throughout the inves-

tigated P–T-range, the three bulk compositions are all

coesite/stishovite-, kyanite/corundum-, garnet- and clino-

pyroxene-saturated (Fig. 3). The crystallization of a small

amount of K-feldspar coexisting with phengite at 8 GPa is

taken as proof that the subsolidus experiments and the

melting reaction were fluid-absent. The absence of graph-

ite/diamond in the run products suggests an oxygen

Fig. 1 BSE images of run products. a 8 GPa, 900�C, bulk DG1;

subsolidus experiment crystallizing a small amount of phengite

coexisting with kfsp, grt, cpx, coe, ky, mgs, arag and a Ti-oxide.

b 8 GPa, 1,000�C, bulk AM; initial melting with the characteristic

heterogeneous and small melt pockets which in this case concentrate

at the top of the capsule. c 13 GPa, 1,400�C, bulk AM; ca. 200�C

above the solidus with K-hollandite still stable and coexisting with

grt, cpx, st, ky and melt; most of the melt is concentrated along the

capsule wall not visible in this image. d 13 GPa, 1,600�C, bulk AM;

Experiment ca. 400�C above the solidus which still yields a

carbonatite melt (SiO2 \ 10 wt%) coexisting with grt, cpx, st and

ky. e,f 13 GPa, 1,350�C, bulk DG2; sandwich experiment to reverse

melt composition, large amounts of carbonatite melt coexist with grt,

cpx, st, ky and K-holl. Phase abbreviations in the figures, text and

tables are as follows: arag aragonite, coe coesite, cor corundum, cpx
clinopyroxene, dol dolomite, grt garnet, kfsp potassium feldspar,

K-holl K-hollandite, ky kyanite, mgs magnesite, pheng phengite,

stish/st stishovite
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fugacity above the graphite–CO–CO2 (CCO) buffer. In the

following, compositions are discussed in terms of

Ca:Fe:Mg ratio which we denote as molar ratio X�
M2þ ¼

M2þ=ðCaþMgþ Fe2þÞ. To avoid confusion, we use

Mg# = 100 9 Mg/(Mg ? Fe2?), also on a molar basis, to

describe Mg-Fe2? variations.

Table 2 Near solidus melt composition at 8 GPa for the hydrous (AM) and anhydrous (DG2) pelite

AM (8 GPa/1,000�C) DG2 (8 GPa/1,100�C)

Synthesis

experiment

Mass balance

correction

Reverse sandwich

after 4 iterative

processes

Synthesis

experiment

Mass balance

correction

Reverse sandwich

after 5 iterative

processes

Analysis # 7 13 12 15

SiO2 (wt%) 1.30 (0.9) 0.43 0.30 (0.1) 1.10 (0.6) 0.62 0.26 (0.1)

TiO2 – – – 0.03 (0.1) 0.02 2.37 (0.4)

Al2O3 1.17 (0.4) 0.68 1.85 (0.3) 1.27 (0.2) 0.73 1.55 (0.3)

FeO(tot) 5.45 (2.1) 4.10 12.1 (0.9) 6.67 (1.5) 3.97 7.55 (0.6)

MgO 3.60 (1.2) 5.61 2.10 (0.2) 4.22 (2.1) 4.77 2.95 (0.3)

CaO 20.59 (6.2) 10.39 16.5 (0.8) 23.90 (8.5) 15.67 16.3 (1.5)

Na2O 0.45 (0.1) 0.20 0.65 (0.2) 0.61 (0.5) 0.18 0.95 (0.6)

K2O 14.94 (5.1) 30.75 26.8 (1.7) 13.04 (9.2) 31.30 24.4 (2.8)

Tot 47.50 52.15 60.30 50.84 57.25 56.33

Si(apfu)a 0.05 0.01 0.01 0.04 0.02 0.01

Ti – – – 0.00 0.00 0.05

Altot 0.05 0.02 0.06 0.05 0.02 0.06

Fetot 0.17 0.11 0.29 0.19 0.10 0.19

Mg 0.20 0.26 0.09 0.22 0.21 0.14

Ca 0.81 0.35 0.51 0.88 0.49 0.54

Na 0.03 0.01 0.04 0.04 0.01 0.06

K 0.70 1.23 0.99 0.57 1.16 0.96

K2O/Na2O (wt%) 32.92 151.81 41.31 21.26 174.88 25.68

Mg# 54 70 23 54 68 42

X�Mg (Fetot) (molar) 0.17 0.36 0.10 0.17 0.26 0.16

X�Ca (molar) 0.69 0.49 0.57 0.68 0.62 0.62

Errors show the variability in the different analysis
a Cations calculated on the basis of 6 oxygens
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carbonatites produced in

iterative sandwich experiments

in the AM (a) and DG2

(b) composition at 8 GPa

plotted versus iteration number.

The composition plotted for the

0th iteration is the one measured

in the normal synthesis

experiment, corrected for mass

balance and then added to the

bulk for the first iteration. Note

the large errors in particular for

K and Ca which are mostly due

to the heterogeneity of the

quenched carbonatite melts. For

details of the iterative sandwich

technique, see text
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Solidus location and melt composition

The AM composition, which has 1.1 wt% H2O and the

highest bulk X�Fe of 0.42, has the lowest solidus tempera-

tures of 950 and 1,150�C at 8 and 13 GPa, respectively.

The composition DG1 with minor absorbed H2O has

intermediate solidus temperatures of 1,000 and 1,200�C at

8 and 13 GPa, and as to be expected, the dry DG2 com-

position has the highest solidus temperatures of 1,075 and

1,325�C at 8 and 13 GPa, respectively (Fig. 4). The tem-

perature differences between the three bulk compositions

are mainly due to the different amounts of water present,

but are also influenced by their different bulk X�Mg, X�Ca and

X�Fe. While all three bulk compositions have magne-

site ? aragonite at subsolidus conditions, melting con-

sumes magnesite in AM, which has a low X�Mg of 0.17 and

high X�Ca of 0.41, consumes aragonite in DG1, which has

the highest X�Mg of 0.39 and the lowest X�Ca of 0.32, leads to

dolomite formation in DG2 at 8 GPa, and to exhaustion of

both carbonates at the solidus at 13 GPa, a consequence of

an intermediate X�Mg of 0.30 and high X�Ca of 0.43.

Carbonatites formed from the three carbonated pelites are

Ca-rich magnesio- (DG1 and DG2) and ferro-carbonatites

(AM). They contain 24.4–26.8 wt% K2O but only

0.65–0.95 wt% Na2O at the solidus at 8 GPa and

9.4–13.8 wt% K2O and 4.8–6.2 wt% Na2O at the solidus at

13 GPa (Table 4; Fig. 5). At 8 GPa, the presence of a

small amount of carbonatite melt is enough to immediately

dissociate the potassic mineral present, causing the

observed extreme K2O concentrations. In contrast, at

13 GPa, K2O concentrations are more moderate due to an

up to 200�C wide field of coexistence of K-hollan-

dite ? carbonatite melt in the H2O-bearing compositions,

and a comparatively high melt productivity exhausting

both K-hollandite and carbonates in the dry composition.

At 8 GPa, cpx plays a minor role in the melting reaction,

whereas at 13 GPa Na2O contents indicate a strong

involvement of cpx in the melting reaction. All solidus melts

are poor in SiO2 (0.2–1.3 wt%) and Al2O3 (1.2–2.3 wt%),

and contain considerable TiO2 (0.45–2.37 wt%). The most

distinguishing feature in comparison with basalt or perido-

tite-derived carbonatites are the potassium content and the

K2O/Na2O wt ratios at the solidus, the latter being as high as

26–42 at 8 GPa, decreasing to 2–2.2 at 13 GPa. This is due to

the different K-phases present at 8 and 13 GPa and to the
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Fig. 3 Calculated modes in weight fractions of the observed phases

for coesite/stishovite ? kyanite/corundum-saturated, fertile-carbon-

ated metapelites at 8 and 13 GPa. The AM bulk has 1.1 wt% H2O and

a trace of kfsp (not shown) at 8 GPa and 900�C, DG1 has traces of

H2O and minor phengite (not shown) at 8 GPa, 900�C, DG2 is dry.

First melts are carbonatites which become silica-rich (see Fig. 4) only

at temperatures [400�C above the solidus. At 8 GPa the K-phase

completely dissolves into the melt at the solidus while at 13 GPa,

K-hollandite may coexist with carbonatite melt up to 200�C above the

solidus. To 300�C above the solidus, the melt fraction is just slightly

higher than the carbonate fraction in the sediment, larger melt

quantities are only produced once melting of the silicate components

becomes significant (at 13 GPa for DG1 between 1,700 and 1,850�C)
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partitioning of Na between clinopyroxene and carbonatite

melt (Fig. 6a, b). At 8 GPa, the potassic subsolidus phases

phengite and K-feldspar are exhausted at the solidus, and the

carbonatite melt becomes the major K-bearing phase.

Instead, at 13 GPa, K-hollandite remains stable to as much as

200�C above the solidus. While clinopyroxene is stable in all

experiments, the partitioning of Na changes dramatically

with pressure: D
cpx=carbonatite
Na (wt%-concentration of Na2O in

cpx divided by the wt%-concentration of Na2O in the car-

bonatite) is 10.0–16.1 at the solidus and decreases with

temperature at 8 GPa. At 13 GPa, D
cpx=carbonatite
Na varies only

between 2.1 and 2.7 (Fig. 6a). The decrease in K2O/Na2O

with pressure is also accompanied by a decrease in the total

amount of alkalis in the near solidus melt from 26–28 to

15–20 wt% at 8–13 GPa, respectively, and consequently by

increasing CaO and partly MgO.

The effect of temperature on SiO2 and Al2O3 concen-

trations in the carbonatites is relatively small, and up to

400�C above the solidus SiO2 remains at\10 wt%, Al2O3

at\5 wt%. It is only from 1,700 to 1,850�C (13 GPa), i.e.

600�C above the solidus, that a silicate melt resembling

alkali basalt forms, and that a silicate phase, i.e. garnet,

exhausts (Fig. 3). For the investigated pressure and

temperature range a continuum from carbonatite towards

more silica-rich melts has been observed. No indication of

a miscibility gap has been found (Fig. 7), similar to the

C6 GPa melting of carbonated peridotite (Brey et al.

2008). Other effects of temperature on melt composition

are the decrease in CO2 and K2O through dilution with

increasing melt fraction, and a twofold increase in Na2O

content at 8 GPa, leading to a decrease in K2O/Na2O with

temperature. At 13 GPa, the K2O/Na2O ratio varies only

between 2.1 and 4.1 with temperature due to the different

behaviour of K-hollandite and clinopyroxene at this

pressure.

Textures and mineral compositions

Clinopyroxene (cpx) is stable in all experiments and forms

relatively small \15-lm-long prismatic crystals. In all

isobaric sections, clinopyroxenes have the highest jadeite

content at the lowest temperature (Fig. 8; Supplementary

Table 3). They then follow various trends leading to a

decrease in jadeite and an increase in the diopside, cli-

noenstatite and Ca-eskolaite endmembers. Ca-Tschermaks

component is B3 mol% in all experiments, generally
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Fig. 4 Pressure–temperature diagram of experimental results for

carbonated pelites at 8 and 13 GPa in the system TiKNCFMASH-

CO2. Blue ellipsoids (AM), red squares (DG2) and green triangles

(DG1) are individual experiments. The solidus is controlled by the

hydrous, alkali and carbonate phases. The AM composition, with

1.1 wt% H2O is the one with the lowest solidus temperature, followed

by the DG1 bulk with traces of water and by the dry DG2 bulk. To

define the solidus for AM and DG1, middle points of run bracket

temperatures (1,100–1,200 = 1,150�C; 1,150–1,250 = 1,200�C) are

chosen; for DG2 at 8 GPa (1,075�C), the solidus is defined by the

middle point between the first experiments containing melt (1,100�C)

and a reverse experiments at 1,050�C which did not show any sign of

melt. Similarly, at 13 GPa, the middle point between the subsolidus

experiment at 1,300�C and the reverse experiment at 1,350�C was

chosen (for reverse experiments, see Supplementary Table 2). The

change of the slope of the different solidi is drawn according to

Schreinemaker rules at the intersections with coesite/stishovite

reaction (Zhang et al. 1996), the decomposition reaction of kyanite

to corundum ? stishovite (Schmidt et al. 1997; this study), the

phengite to K-hollandite reaction (Schmidt et al. 2004), and the kfsp

to K-hollandite reaction. Note that the slope and the exact position of

the kfsp to K-hollandite reaction are unknown as in the simple

K2O–Al2O3–SiO2-system K-hollandite replaces wadeite at 9 GPa

(at 1,000�C, Yong et al. 2006). Above 8 GPa, the temperature

stability of K-hollandite is strongly bulk composition dependent. At

13 GPa, the AM composition with the highest K2O content has

K-hollandite coexisting with the melt to 1,400�C, i.e. 200�C above the

solidus; DG1 and DG2 have no K-hollandite above 1,350�C. Numbers
at symbols refer to SiO2 contents in the melts (in wt%, for the AM

bulk at 8 GPa and for DG1 at 13 GPa)
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Table 4 Carbonatite melt compositions

Run no. am-5B am-3 am-2d am-4 am-9 am-11d am-8d am-7

P (GPa)/T (�C) 8/1,000 8/1,100 8/1,250 8/1,400 13/1,200 13/1,300 13/1,400 13/1,600

SiO2 (wt%) 0.30 (0.1) 0.55 (0.3) 1.04 3.01 (0.2) 0.48 (0.2) 0.88 1.84 5.45 (0.6)

TiO2 – – – – – – – –

Al2O3 1.85 (0.3) 2.15 (0.4) 2.23 2.33 (0.3) 1.35 (0.2) 1.94 2.75 3.25 (0.2)

FeO(tot) 12.1 (0.9) 9.9 (0.6) 9.10 8.44 (0.4) 9.50 (0.8) 9.99 9.76 9.8 (0.5)

MgO 2.10 (0.2) 2.35 (0.3) 2.37 2.42 (0.2) 2.32 (0.3) 2.86 3.82 4.19 (0.2)

CaO 16.5 (0.8) 19.2 (1.5) 20.28 20.9 (0.9) 25.5 (1.4) 23.36 21.20 17.4 (1.1)

Na2O 0.65 (0.2) 1.05 (0.4) 1.20 1.36 (0.5) 4.8 (0.6) 4.76 4.72 4.05 (0.4)

K2O 26.8 (1.7) 22.5 (1.5) 20.03 17.9 (1.6) 10.2 (1.7) 12.44 15.20 16.8 (1.6)

H2Ob 9.40 8.89 8.41 7.97 9.88 8.98 7.21 5.41

CO2
b 38.45 37.81 36.12 34.77 43.12 40.12 36.20 23.59

Tot 60.35 57.72 56.25 56.45 54.13 56.23 59.29 60.93

Si (apfu)a 0.01 0.02 0.05 0.14 0.02 0.04 0.08 0.23

Ti – – – – – – – –

Al 0.09 0.11 0.12 0.13 0.08 0.10 0.14 0.16

Fetot 0.44 0.38 0.35 0.33 0.38 0.38 0.35 0.34

Mg 0.14 0.16 0.16 0.17 0.16 0.19 0.24 0.26

Ca 0.77 0.93 1.01 1.04 1.30 1.14 0.97 0.78

Na 0.05 0.09 0.11 0.12 0.44 0.42 0.39 0.33

K 1.49 1.30 1.19 1.07 0.62 0.72 0.83 0.90

K2O/Na2O (wt%) 41.31 21.43 16.69 13.21 2.13 2.61 3.22 4.15

Mg# 24 30 32 34 30 34 41 43

X�Mg (Fetot) (molar) 0.10 0.11 0.11 0.11 0.09 0.11 0.16 0.19

X�Ca (molar) 0.57 0.64 0.66 0.68 0.71 0.66 0.62 0.56

Compositions of coexisting mineral phases

Jd (mol%) 71 66 61 55 87 86 84 76

Xpyrope 0.12 0.13 0.13 0.14 0.16 0.15 0.16 0.15

Xgrssular 0.36 0.39 0.41 0.41 0.42 0.40 0.41 0.41

DNa (cpx/carb.) (wt%) 16.06 9.38 7.43 5.97 2.71 2.71 2.59 2.63

Run no. DG1-9 DG1-11 DG1-19 DG1-13 DG1-7 DG1-15 DG1-1 DG1-6 DG1-17c

P (GPa)/T (�C) 8/1,100 8/1,200 8/1,300 8/1,400 13/1,250 13/1,400 13/1,600 13/1,700 13/1,850

SiO2 (wt%) 0.26 2.28 6.84 13.20 1.32 1.77 5.63 10.04 47.82

TiO2 0.45 1.96 1.88 2.68 1.54 2.79 2.53 2.38 1.01

Al2O3 2.03 3.02 3.19 4.81 2.32 1.89 3.64 5.59 16.14

FeO(tot) 7.44 7.95 8.04 7.93 5.17 7.18 6.97 8.15 3.75

MgO 6.78 8.44 8.33 7.87 4.68 5.82 6.19 7.26 5.18

CaO 15.70 17.95 16.21 13.47 20.72 16.10 13.97 13.76 5.68

Na2O 0.80 1.30 2.06 2.34 6.24 5.95 5.30 5.50 4.01

K2O 25.13 20.42 16.55 14.20 13.84 14.99 12.74 12.09 3.23

H2O n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

CO2
b 41.41 36.68 36.90 33.50 44.17 43.51 43.03 35.23 13.18

Tot 58.59 63.32 63.10 66.50 55.83 56.49 56.97 64.77 86.82

Si (apfu)a 0.01 0.09 0.28 0.52 0.06 0.08 0.25 0.39 1.49

Ti 0.01 0.06 0.06 0.08 0.05 0.09 0.08 0.07 0.02

Al 0.10 0.14 0.15 0.22 0.12 0.10 0.19 0.26 0.59

Fetot 0.27 0.27 0.27 0.26 0.19 0.26 0.26 0.27 0.10

Mg 0.43 0.51 0.51 0.46 0.31 0.38 0.40 0.42 0.24

Ca 0.72 0.78 0.71 0.57 0.97 0.75 0.66 0.58 0.19

Na 0.07 0.10 0.16 0.18 0.53 0.50 0.45 0.42 0.24

K 1.38 1.05 0.86 0.71 0.77 0.84 0.71 0.60 0.13
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increasing with temperature. For all three compositions,

subsolidus jadeite contents are 68–76 and 80–92 mol% at 8

and 13 GPa. Upon melting at 8 GPa, jadeite contents

decrease at most by 5–15 mol% to about 100–200�C above

the solidus. Then, cpx becomes omphacitic at 300–400�C

above the solidus. Upon melting at 13 GPa, jadeite

Table 4 continued

Run no. DG1-9 DG1-11 DG1-19 DG1-13 DG1-7 DG1-15 DG1-1 DG1-6 DG1-17c

P (GPa)/T (�C) 8/1,100 8/1,200 8/1,300 8/1,400 13/1,250 13/1,400 13/1,600 13/1,700 13/1,850

K2O/Na2O (wt%) 31.41 15.71 8.03 6.07 2.22 2.52 2.40 2.20 0.81

Mg# 62 65 65 64 62 59 61 61 71

X�Mg (Fetot) (molar) 0.30 0.33 0.34 0.36 0.21 0.27 0.31 0.33 0.46

X�Ca (molar) 0.51 0.50 0.48 0.44 0.66 0.54 0.50 0.46 0.36

Compositions of coexisting mineral phases

Jd (mol%) 68 63 63 49 89 84 83 80 65

Xpyrope 0.27 0.39 0.45 0.39 0.32 0.39 0.39 0.39 0.51

Xgrssular 0.25 0.17 0.15 0.12 0.26 0.17 0.18 0.17 0.12

DNa (cpx/carb.) (wt%) 12.26 7.21 4.43 2.96 2.06 2.09 2.28 2.05 2.37

Run no. DG2-3 DG2-2d DG2-4 Reverse DG2-8 DG2-7

P (GPa)/T (�C) 8/1,100 8/1,250 8/1,400 13/1,350 13/1,400 13/1,600

SiO2 (wt%) 0.26 (0.1) 1.48 1.88 (0.7) 0.22 (0.1) 0.88 (0.4) 2.81 (0.5)

TiO2 2.37 (0.4) 2.51 3.34 (0.4) 1.83 (0.3) 1.69 (0.3) 2.18 (0.3)

Al2O3 1.55 (0.3) 2.05 2.50 (0.3) 1.18 (0.3) 2.06 (0.2) 2.67 (0.2)

FeO(tot) 7.55 (0.6) 6.9 6.27 (0.4) 7.08 (0.6) 8.37 (0.5) 8.8 (0.8)

MgO 2.95 (0.3) 3.89 4.8 (0.5) 5.35 (0.3) 6.06 (0.4) 6.04 (0.3)

CaO 16.3 (1.5) 18.88 20.9 (1.7) 26.4 (1.2) 23.3 (0.9) 21.0 (0.9)

Na2O 0.95 (0.6) 1.21 1.50 (0.3) 4.71 (0.6) 5.28 (0.8) 4.66 (0.5)

K2O 24.4 (2.8) 21.68 18.6 (2.1) 9.43 (1.1) 12.6 (1.9) 10.8 (1.8)

H2Ob 0.00 0.00 0.00 0.00 0.00 0.00

CO2
b 43.67 42.88 40.21 43.80 39.76 41.04

Tot 100.00 100.00 100.00 100.00 100.00 100.00

Si (apfu)a 0.01 0.07 0.08 0.01 0.04 0.12

Ti 0.08 0.08 0.11 0.06 0.05 0.07

Al 0.08 0.11 0.13 0.06 0.10 0.14

Fetot 0.29 0.26 0.23 0.27 0.29 0.32

Mg 0.20 0.26 0.31 0.36 0.38 0.39

Ca 0.81 0.90 0.98 1.28 1.04 0.97

Na 0.08 0.10 0.13 0.41 0.43 0.39

K 1.44 1.23 1.04 0.54 0.67 0.60

K2O/Na2O (wt%) 25.68 17.92 12.41 2.00 2.38 2.31

Mg# 41 50 58 57 56 55

X�Mg (Fetot) (molar) 0.16 0.18 0.21 0.19 0.22 0.23

X�Ca (molar) 0.62 0.64 0.64 0.67 0.61 0.58

Compositions of coexisting mineral phases

Jd mol% 65 58 55 79 78 78

Xpyrope 0.21 0.28 0.30 0.32 0.32 0.33

Xgrssular 0.29 0.26 0.21 0.20 0.20 0.22

DNa (cpx/carb.) (wt%) 10.00 7.11 5.33 2.37 2.32 2.43

n.a. Data not available
a Cations calculated on the basis of 6 oxygens
b H2O and CO2 content calculated from bulk and melt fraction (if no H2O present CO2 content calculated by difference to 100 analytical total)
c Cations calculated on the basis of 8 oxygens
d Melt compositions derived through interpolation of melt compositions at higher and lower temperature and adjusted through mass balance calculations
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contents decrease by 2–3 mol% across the solidus, and

by further 2–12 mol% 300–400�C above the solidus. The

Ca-eskolaite component increases strongly with tempera-

ture from 15–20 to 30–32 mol% at 900–1,200 to

1,250–1,400�C (8 GPa). At 13 GPa, only the DG1 exper-

iment at 1,850�C yielded strongly increased Ca-eskolaite of

almost 40 mol%, and in the other two isobaric sections at

13 GPa experimental temperatures were not high enough

to achieve such an increase. Generally, Ca-eskolaite

decreases with pressure, i.e. from 15–32 to 10–20 mol%

from 8 to 13 GPa. K2O concentrations in cpx vary from

0.20 to 1.03 wt% with the highest values found at 8 GPa at

subsolidus conditions.

Carbonates stable in the different experiments are

magnesite, aragonite and dolomite. Aragonite and dolomite

normally form 5 to 15 lm mostly polyhedral grains, clearly

differing from magnesite, which crystallizes as small grains

interstitial between larger minerals. Aragonite is almost

pure containing less than 1 mol% FeCO3 or MgCO3

component in all bulk compositions. The composition of

magnesite (Fig. 9; Supplementary Table 4) reflects the

Mg# of the starting materials, while Ca contents generally

increase with temperature from 2 to 10 mol%. In DG1

(Mg# 57), magnesite occurs in 5 sub- and super-solidus

experiments and contains 16–21 mol% siderite, compara-

ble to what has been found in basaltic eclogites at 4–8 GPa

with an Mg# of 64 (Dasgupta et al. 2004). In DG2 (Mg#

52), magnesite has 38 and 30–32 mol% siderite at 8 and

13 GPa, respectively. Finally, in AM (Mg# 28), the mag-

nesite-siderite solid solution has 53 and 64 mol% siderite

at 8 and 13 GPa, respectively. In DG2, a Fe-rich dolo-

mite containing 19 mol% siderite component leading to an

Mg# of 65.9 is formed at 8 GPa and 1,100�C (DG2). This

places the reaction aragonite ? ferro-magnesite (Mg#

76.5) = ferro-dolomite (Mg# 65.9) between 1,000 and

1,100�C (8 GPa), which compares well with the

1,100–1,150�C bracket of Luth (2001) in the pure

CaMg(CO3)2 system.

Phengite (pheng) is present only at 8 GPa at subsolidus

conditions in the two H2O-bearing bulk compositions DG1

and AM as small (\10 lm) subidiomorphic grains and has,

as to be expected (Thomsen and Schmidt 2008b), a high

celadonite component of 3.68 Si pfu and an Mg# of 61 in

AM (Supplementary Table 5).

K-feldspar (kfsp) which occurs at 8 GPa in all subsoli-

dus experiments forms up to 25 lm large, inclusion rich

idiomorphic grains almost pure in composition with

0.3–0.4 wt% Fe2O3
tot and Na2O- and CaO content close to

the detection limit (Supplementary Table 6).

K-hollandite (K-holl) is the only potassium mineral at

13 GPa and forms small aggregates of prismatic grains,

which contains 0.3–0.7 wt% Fe2O3
tot, 3–6 mol% Na-

hollandite, and 2–6 mol% of a Ca component (Supple-

mentary Table 7). The identity of kfsp and K-holl were
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Fig. 5 a Compositions of carbonatite melts projected into FeCO3–

CaCO3–MgCO3 space. The carbonatites derived from pelites overlap

with the carbonatites generated from carbonated mafic eclogites due

to similar bulk X�Ca and X�Mg (data of Yaxley and Brey 2004; Dasgupta

et al. 2004, 2005). Differences between the three pelites reflect bulk

composition in terms of X�Ca and X�Mg. Note that for each bulk rock

type, the near solidus melts plot within relatively narrow fields which

are thought to stretch along the minimum cotectic line in the FeCO3–

CaCO3–MgCO3 ternary system for pelitic and basaltic bulks, while

the near solidus melts from peridotitic compositions stretch along the

peritectic of the ternary carbonate system (Franzolin et al. 2010).

b Compositions of carbonatite melts projected in the Na2CO3–

K2CO3–(Mg,Ca,Fe)CO3 space. The carbonatite melts of this study

have much higher amounts of K2O and Na2O compared to melts from

carbonated mafic eclogites (3–8 GPa, Hammouda 2003; Yaxley and

Brey 2004; Dasgupta et al. 2004), peridotites (2–10 GPa, Wallace and

Green 1988; Yaxley and Green 1996; Ghosh et al. 2009), and pelites

at p B 5 GPa (Thomsen and Schmidt 2008b). With increasing

pressure, the K2O/Na2O ratio decreases. The most alkali-rich melts

are formed at 8 GPa just above the solidus
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confirmed by Raman spectroscopy, although in retrospect,

the compositional and textural differences between the two

phases as described above would be sufficient for unequi-

vocal identification. In the pure K2O–Al2O3–SiO2 system,

kfsp is replaced by wadeite (K2Si4O9) ? kyanite ? coesite

at 6 GPa, which in turn is replaced by K-hollandite at 9 GPa

(at 1,000�C, Yong et al. 2006). Wadeite has yet not been

found in natural complex systems, and our data indicate a

direct transition from kfsp to K-hollandite. The reason for

this cannot be the presence of sodium, as extensive (K,

Na)2Si4O9 solid solution exists (Yong et al. 2006), we thus

speculate that Fe2O3 stabilizes kfsp over wadeite.

Garnet (grt) forms homogenous, mostly inclusion-free

subidiomorphic 5–30 lm large crystals. Garnets at sub-

solidus conditions have similar Xpyrope (Mg/(Mg ? Ca ?

Fe2?) of 0.10–0.21, and Xgrossular (Ca/(Ca ? Mg ? Fe2?)

of 0.44–0.47 in AM and DG2 and significantly higher

Xpyrope of 0.16–0.40, and lower Xgrossular of 0.33–0.30 in

DG1, mainly reflecting the X�Ca of the bulk compositions

(Fig. 8). In AM, the garnet evolution with temperature is

limited, over 500�C, Xpyrope increases by 0.06 and Xgrossular

by 0.03. In DG2, garnet evolves over 400�C through an

increase in Xpyrope by 0.25 compensated by a decrease in

Xgrossular by 0.20. Finally, in DG1, Xpyrope increases over

500�C by 0.41 and Xgrossular decreases by 0.15. The evo-

lution of Xpyrope and Xgrossular in garnets with increasing

temperature (Fig. 10; Supplementary Table 8) does not

strongly change with pressure. Na2O contents in garnets

are 0.1–0.45 and 0.65–1.1 wt% at 8 and 13 GPa, respec-

tively, with garnet in the AM bulk always having the

lowest concentrations. Si in garnet at 8 GPa remains at

B3.02 apfu, i.e. no majorite component within error, and

amounts to max. 3.08 apfu in garnets from 13 GPa mainly

charge compensating for Na through a coupled substitution

M2?Al = Na Si. These Si contents are in stark contrast to

garnets from basaltic and peridotitic compositions which at

similar conditions typically range from 3.05 to 3.20 Si pfu

(Yasuda et al. 1994; Okamoto and Maruyama 2004).
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Fig. 6 a D
cpx=carbonatite
Na vs. pressure showing an increase in the

compatibility of Na2O in cpx with increasing pressure to 8 GPa

reaching a cpx/carbonatite partition coefficient of 16, followed by a

decrease down to a value near 2 at 13 GPa when approaching the

upper pressure stability of cpx (15–20 GPa). Some data sets, not

focused on the carbonatite compositions have inconsistencies prob-

ably due to the analytical problem of measuring small intergranular

volumes of unquenchable carbonatite melts. b Log D
cpx=carbonatite
Na

� �

varies linearly with 1/T. c,d X�Ca (melts) vs. X�Ca (bulk) and

X�Mg (melts) vs. X�Mg (bulk) for carbonatites generated from carbonated

pelites (this work), mafic eclogites from 2.5 to 8.5 GPa (Hammouda

2003, OTBC; Yaxley and Brey 2004, EC; Dasgupta et al. 2004, 2005,

SLEC), and peridotite at 6.6–15 GPa (Dasgupta and Hirschmann

2007; Ghosh et al. 2009). In spite of the strong pressure dependence

of the carbonatite melt composition, in particular in the peridotitic

system, a positive correlation between bulk X�Ca and melt X�Ca and

between bulk X�Mg and melt X�Mg is evident
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Nevertheless, this finding is not surprising, as kyanite or

corundum-saturated compositions will always result in the

minimum majorite content stable at a given pressure and

temperature.

Coesite (coe) and stishovite (stish) form anhedral

grains that are almost pure in composition with up to

0.5 wt% of FeOtot, increasing with temperature. Simi-

larly, the major impurity of kyanite (ky) and corundum

(cor) is iron, which amounts to B1.1 and B5.1 wt%

Fe2O3
tot respectively, increasing with both temperature

and pressure.

Melting reactions

The presence of kfsp coexisting with phengite at 8 GPa

in both hydrous compositions AM and DG1 indicates

H2O-undersaturated, fluid-absent conditions. Similarly,

complete absence of phengite in the nominally anhydrous

pelite DG2 indicates that this composition is truly dry. At

13 GPa instead, H2O previously stored in phengite in the

AM bulk is likely to be present as a fluid-phase. Never-

theless, the large amounts of K-hollandite, jadeitic cpx and

carbonates observed in BSE images of the subsolidus

+ CO2

+ H2O
wt%

K2O + Na2O

CaO+MgO+FeOSiO2+Al2O3+TiO2

chloride-

carbonate

silicate-carbonate

two liquid solvus
3.7-5 GPa 3.7/1100

5/1100

silicate melts:
AM 3.5-3.7 GPa
AM 5.0 GPa

D06

carbonatites:

AM 3.7, 5.0 GPa

D06

YB04

1600

1600

1200

1000

1400

1100

1350

1850

1100

1250
1400

this study

DG2 8 GPa

DG1 8 GPa

AM 8 GPa

AM 13 GPa

DG2 13 GPa

DG1 13 GPa

Fig. 7 Pseudo-ternary projection of carbonatite and silicate melts

after Freestone and Hamilton 1980), defining a silicate–carbonatite

liquid miscibility gap at 1,100�C, 3.7–5 GPa for the AM composition

(Thomsen and Schmidt 2008b) compared to the miscibility gap after

Dasgupta et al. (2006) (dashed line) and the carbonatites of Yaxley

and Brey (2004). At 8–13 GPa, there is a continuum from carbonatite

melts towards more silica-rich melts, and no solvus has been

observed. The pelite-derived carbonatites are extremely alkali-rich

(up to 26 wt%) and SiO2 ? Al2O3-poor (\15 wt%) to 400�C above

the solidus and plot in the same area as carbonate-rich melt/fluid

inclusions found in diamonds (Klein-BenDavid et al. 2007, grey

field), which however are in part also Cl-rich. The different trends

reflect the melting behaviour of the alkali-rich phases at different

pressures and the differences in bulk composition. Coloured lines
connect melt compositions (in a given bulk at a given pressure) with

increasing temperature
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Fig. 8 Clinopyroxene compositions in terms of jadeite (Jd)–

diopside ? hedenbergite (Di ? Hed)–Ca-eskaloite ? clinoenstatite

(Ca-esk ? Cen). With temperature, jadeite contents decrease from

Jd74–77 (900�C) to Jd49–55 (1,400�C) at 8 GPa. The decrease in jadeite

content is compensated first by an increase in the diopside and

clinoenstatite components followed by a strong increase in the

Ca-eskolaite component at higher temperatures. A similar trend is

observed at 13 GPa, but shifted to higher jadeite of Jd80–92 at the

solidus and to lower Ca-eskolaite contents. The Mg# for cpx increases

with temperature and decreases with increasing pressure. CaTs

component is always \3 mol%
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experiments at 13 GPa, which are confirmed by mass

balance calculations, suggest that the presence of a small

amount of fluid does not dissolve major fractions of the

potassium-, sodium- or CO2-bearing phases. Furthermore,

the presence and amount of fluid also depends on the

H-solubility of other nominally anhydrous phases (Keppler

and Smyth 2006) such as stishovite dissolving up to

3,000 ppm H2O (Litasov et al. 2007) and clinopyroxene

(1,200 ppm H2O in Di60Jd40, Wu et al. 2009). The reported

high solubility of H in stishovite and cpx suggest that the

DG1 composition at 13 GPa could be fluid-absent.

The generation of first highly potassic carbonatite melt

at 8 GPa is controlled by a melting out of carbonates and

K-phases. The melting reaction is similar for all three bulk
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Brey 2004; Dasgupta et al.

2004, 2005), peridotites (Brey

et al. 2008, 2009; Ghosh et al.
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and bulk composition, in

particular of the Mg# of
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Fig. 10 Garnet compositions. At subsolidus conditions garnets are

similar in all three compositions with only small differences in X�Ca.

The different trends with increasing temperature are strongly

correlated with bulk composition (especially X�Mg). In all composi-

tions, garnet shows an increase in the pyrope contents and in Mg#

with temperature, this behaviour being more pronounced in the bulk

compositions with higher X�Mg. With increasing pressure similar

trends, slightly shifted towards higher pyrope contents, are observed.

The majorite component of garnets at 8 GPa is below detection limit,

and Si is B3.08 apfu at 13 GPa due to saturation in kyanite/corundum.

Stars denote bulk compositions
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compositions with small differences in the amount of each

phase involved in the reaction:

AMð900�1; 000�C):

0:46 mgsþ 0:45 aragþ 2:10 phengþ 0:08 cpx

¼ 1 meltþ 0:87 grtþ 0:50 kyþ 0:72 coe ð1aÞ

DG1ð900�1; 100�C):

0:52 mgsþ 0:35 aragþ 1:73 kfspþ 0:11 cpx

¼ 1 meltþ 0:47 grtþ 0:27 kyþ 0:97 coe ð1bÞ

DG2ð1; 000�1; 100�C):

0:95 dolþ 1:71 kfspþ 0:13 cpx

¼ 1 meltþ 0:68 grtþ 0:21 kyþ 0:91 coe ð1cÞ

the coefficients being in wt-units and normalized to 1 melt.

When summarized, this yields the following qualitative

reaction:

1 carbonateþ 2 kfsp or phengiteð�cpxÞ
¼ 1 carbonatiteþ 0:3 kyþ 0:9 coeþ 0:7 grt:

The small amount of cpx involved in the reaction and

the Na2O content of\1 wt% of the melts at 8 GPa indicate

a minor role of cpx at the solidus. Instead, the complete

destabilization of phengite or kfsp at the solidus leads to

the crystallization of a large quantity of garnet, kyanite and

coesite, the amount of garnet depending on the Mg# of the

bulk with the lowest Mg# producing most garnet.

From 8 to 13 GPa, the only mineralogical change is the

presence of K-hollandite instead of kfsp or phengite,

nevertheless, the situation is quite different: approaching the

pressure stability of cpx, jadeite becomes essential during

melting as the carbonatite melts at the solidus have

4.7–6.2 wt% Na2O. Furthermore, K-hollandite now coexists

with melt over up to 200�C. Together, this results in a

decrease in the K2O/Na2O ratio of the melt from 26–42 to

2–2.2, and a decrease in total alkalis from 25.9–27.5 to

14.1–20.1 wt%, from 8 to 13 GPa, respectively. Conse-

quently, the K-phase has a lesser and jadeite a more impor-

tant role in the mass balanced solidus reactions at 13 GPa:

AMð1; 100�1; 200�C):

0:44 mgsþ 0:59 aragþ 0:71 K-hollþ 0:36 cpx

¼ 1 meltþ 0:59 grtþ 0:08 corþ 0:43 stish ð2aÞ

DG1ð1; 150�1; 250�C):

0:48 mgsþ 0:46 aragþ 1:03 K-hollþ 0:48 cpx

¼ 1 meltþ 0:61 grtþ 0:15 corþ 0:69 stish ð2bÞ

DG2ð1; 300�1; 400�C):

0:52 mgsþ 0:46 aragþ 0:69 K-hollþ 0:38 cpx

¼ 1 meltþ 0:50 grtþ 0:15 kyþ 0:39 stish ð2cÞ

resulting in the average reaction

1:0 carbonateþ 0:8 K-hollþ 0:4 jadeite

¼ 1 carbonatiteþ 0:6 grtþ 0:1 cor=kyþ 0:5 stish:

For the AM and DG1 compositions, there is additionally

a small amount of H2O-bearing fluid involved on the educt

side. This fluid completely dissolves in the carbonatite; its

main effect is the lowering of the solidus temperature. The

melting reactions for DG1 and AM bulks at 13 GPa have

corundum on the product side because their solidi occur at

the high pressure–low temperature side of the reaction 1

stishovite ? 1 corundum = 1 kyanite (Schmidt et al.

1997).

Discussion

Effect of bulk composition

The differences in bulk composition are reflected in the

position of the solidus and in the amount, composition and

evolution of garnet, clinopyroxene, carbonates and melts as

function of pressure and temperature. The subsolidus

compositions of garnet mostly reflect the X�Ca of the bulk,

while the garnet evolution with temperature reflects the

bulk X�Mg (Fig. 10). The Mg# of the magnesite-siderite

solid solution mainly reflects the Mg# of the bulk (Fig. 9),

a lower Mg# correlating with a lower melting point of this

carbonate. The higher Na2O and lower K2O contents of the

DG bulks (3.2–3.4 wt% Na2O, 2.2–2.4 wt% K2O) com-

pared to the AM composition (2.4 wt% Na2O, 3.6 wt%

K2O) is reflected in the higher amount of cpx (30 vs.

20 wt% in the DG vs. AM bulks) and lower amount of

K-hollandite (16 vs. 24 wt% in the DG vs. AM bulks)

present in the experiments (Table 3). Consequently,

K-hollandite has the widest field of coexistence with melt

in the AM bulk. Melt compositions also strongly reflect

bulk X�Mg and X�Ca, as can be seen when projected into a

ternary FeCO3–CaCO3–MgCO3 diagram (Fig. 5a). In our

compositions, the effects of bulk X�Mg and X�Ca on the

melting temperature cannot be isolated from those of the

H2O and K2O contents, thought to dominate.

Melting systematics for carbonated lithologies

Compared to other studies on carbonated mafic eclogites

(Hammouda 2003; Dasgupta et al. 2004, 2005; Yaxley and

Brey 2004) and on peridotites (Dasgupta and Hirschmann

2007; Brey et al. 2008; Ghosh et al. 2009), our pelites

exhibit a 100–300�C lower solidus temperature due to the

higher alkali (especially K2O) and water (AM) content

(Fig. 11). Even if compared with recent studies on wet

carbonated peridotites with high potassium and volatiles
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content (Brey et al. 2009; Foley et al. 2009) our solidus

locates at ca. 100�C lower temperatures due to higher

potassium contents and lower X�Mg. Comparing X�Ca and

X�Mg of our carbonatites with those formed from carbonated

eclogites and peridotites (Fig. 6c, d), it becomes apparent

that the carbonatite X�Mg and X�Ca correlates well with the

X�Mg and X�Ca of the bulk. Generally, X�CaðmeltÞ[ X�CaðbulkÞ
and X�MgðmeltÞ\X�MgðbulkÞ, and this correlation could be

used to predict near solidus melt compositions. The car-

bonatite melts from our pelites have very similar X�Mg

(0.09–0.30) and X�Ca (0.51–0.71) as the melts generated

from basaltic eclogites (X�Mg between 0.11 and 0.43; X�Ca

between 0.44 and 0.75) but clearly lower X�Mg and higher

X�Ca than peridotite-derived carbonatites which have X�Mg ¼
0:53�0:81 and X�Ca ¼ 0:12�0:36 at similar pressures.

Similar to melts from carbonated basaltic eclogites, melts

presented in this study at 8 GPa have very low Na2O

contents due to high partition coefficient D
cpx=carbonatite
Na

which reaches its maximum near 8 GPa (Fig. 6a). A simi-

lar trend can be expected also for carbonated peridotitic

systems, but low Na2O contents in peridotitic cpx com-

bined with the difficulties in obtaining accurate analysis of

alkalis in carbonatites led to unrealistic wide ranges of

D
cpx=carbonatite
Na (Fig. 8 in Dasgupta et al. 2005). The SiO2

and Al2O3 content in the carbonatites of this study remains

below 10 wt% even at 400�C above the solidus. Carbon-

atites derived from peridotitic and basaltic systems at

similar pressure (Dalton and Presnall 1998; Dasgupta et al.

2004; Brey et al. 2008) show much higher SiO2 and Al2O3

contents up to 25–30 wt% at \200�C above the solidus.

The most evident reason for this behaviour is the lower

solidus temperature on pelitic alkali-rich systems compared

to basaltic or peridotitic lithologies. Nevertheless, even in

experiments run at similar pressure and temperature con-

ditions, the silica content in alkali-rich carbonatites derived

from sediments shows considerably lower values than that

in other systems. Silica dissolution in carbonatites coexis-

ting with peridotitic or basaltic assemblages with compar-

atively low SiO2 activity is apparently more effective than

in carbonatites coexisting with SiO2-saturated solid

assemblages. The principal structural unit of carbonatite

melts are isolated planar CO3-units (Genge et al. 1995;

Kohara et al. 1998), not dissimilar to the high concentration

of isolated SiO4 tetrahedra in depolymerized low SiO2

silicate melts, but contrasting high SiO2 melts with large

clusters or networks of Si tetrahedra. We thus speculate

that the high SiO2 contents in carbonatites of silica

undersaturated systems could be a result of the higher

structural similarity of carbonatite melt with low Si activity

depolymerized silicate melts.

The carbonated pelite solidus, slab melting and the role

of thermal relaxation

A comparison of calculated subduction geotherms (Kincaid

and Sacks 1997; van Keken et al. 2002) with the solidus of

carbonated pelites yields the following picture. With

respect to the dry solidus (DG2) of carbonated pelite,

melting is only feasible for extremely hot subduction
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Fig. 11 P–T diagram showing a plausible range of subduction

P–T-paths and solidi for (carbonated) pelites, basalts and peridotites.

Comparison of our solidus temperatures with typical subduction paths

(Kincaid and Sacks 1997; van Keken et al. 2002; Peacock 2003) and the

mantle geotherm (Akaogi et al. 1989) yields melting of these pelites

only feasible during very hot subduction or at the end of convergence

when subduction halts and thermal relaxation towards the mantle

adiabat may occur. (1) is the solidus of potassium-rich hydrous

carbonated peridotite compiled from Ghosh et al. (2009), Foley et al.

(2009) and Brey et al. (2009). Note that the curve GS09 of Ghosh et al.

(2009) denotes the carbonate-out of a K-bearing peridotite, but that

Ghosh et al. (2009) argue for a solidus at ca. 200�C lower temperature.

K-rich carbonatites from subducted sediments, that rise into the mantle

are expected to remain in the liquid state also in the mantle at least until

major reduction to diamond occurs. Lines: solidi of subducted material,

brown: CO2-free pelites, blue: carbonated pelites, red: carbonated

MORB, green: carbonated peridotite. TS08: carbonated pelite (AM

composition) solidus and calcite-out reaction after Thomsen and

Schmidt (2008b). D04, YB04: solidi of carbonated basaltic eclogite

after Dasgupta et al. (2004) and Yaxley and Brey (2004), the former

bulk yields subsolidus dolomite or magnesite, the latter Mg-calcite.

D06, GS09: solidi of dry carbonated peridotite after Dasgupta and

Hirschmann (2006) and Ghosh et al. (2009). S04 and H08: melting and

dissolution curves for potassium-rich wet sediments after Schmidt et al.

(2004) and Hermann and Spandler (2008). The solidus for dry peridotite

is after Hirschmann (2000) and the one for dry MORB after Yasuda

et al. (1994)
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(Fig. 11) over a small pressure window at 7–9 GPa. While

carbonated pelites might melt under these conditions, car-

bonated mafic eclogites or peridotites will not (Fig. 11).

In a system with 1.1 wt% H2O, such as the AM compo-

sition, the solidus is lowered by C100�C, and melting could

take place at temperatures close to average subduction zone

conditions at pressures C7–9 GPa. The slope of the AM

solidus is subparallel to a typical P–T trajectory, implying

that melt would form upon crossing of the P–T trajectory,

but that upon further burial, no significant further melt

production would occur. At C9 GPa, the AM composition

has ca. 1 wt% free H2O supposedly forming a H2O–CO2-

fluid, causing the previously fluid-absent carbonated pelite

to become fluid-present. It is questionable whether this

fluid would be preserved in the carbonated pelite during

further subduction at pressures above the phengite dehy-

dration. If this fluid is not retained in the pelite, then,

melting has either to occur immediately at the phengite

decomposition reaction, or the H2O-bearing fluid would be

lost to the overlying mantle wedge. The further subducting

pelite becomes thus dry. and the solidus of the dry DG2

composition would apply. Cold subduction P–T-paths will

not allow melting of carbonated pelites during ongoing

subduction.

The precision of temperature prediction in subduction

zones does not allow defining an exact depth of melting for

the carbonated pelites, in particular near the slab surface,

where sediments locate at least when oceanic crust enters

into a subduction zone. Nevertheless, the three solidi are

150–300�C below the mantle adiabat. Thermal relaxation

of the slab towards the adiabat becomes important with the

end of surface convergence, when subduction slows down

or stops due to collision or changes in plate configuration,

possibly leading to slab break off. Progressive temperature

increase will promote at first the melting of the most fertile

lithologies, i.e. hydrous and dry carbonated pelites. These

melts will travel into the surrounding mantle leaving a

volatile-free, potassium-poor, peraluminous restitic eclog-

ite assemblage behind. This assemblage would be refrac-

tory and may survive within the mantle for long periods

without being affected by other melting events.

Our experiments were performed under closed system

conditions. In nature, it can be expected that, once formed,

carbonatite melts rapidly escape from their source rock. Thus,

when the solidus reaction is completed due to carbonate

exhaustion, further melting of the residual volatile-free K2O-

poor eclogitic restite can only be expected when reaching the

volatile-free solidus of SiO2-saturated eclogites.

H2O at C9 GPa in CO2-free pelites

Previous studies on SiO2–Al2O3-saturated compositions at

similar P–T-conditions resulted in two hydrous phases at

pressure above the phengite to K-hollandite reaction at

8–9 GPa: Ono (1998) studied average shale and continental

crust compositions with 6 wt% H2O at 6–15 GPa,

800–1,400�C and found, that in peraluminous compositions

topaz-OH (Al2Si4(OH)2, Wunder et al. 1993) forms instead

of kyanite upon phengite breakdown. Nearly 12 GPa

topaz-OH reacts to phase egg (AlSiO3(OH), Eggleton et al.

1978; Schmidt et al. 1998). Although phase egg is stable to

22 GPa in synthetic Al2O3–SiO2–H2O systems (Sano et al.

2003), its temperature stability in natural systems appears

to be limited to between 1,300 and 1,400�C (Ono 1998).

Dobrzhinetskaya and Green (2007) confirmed the presence

of K-hollandite and topaz-OH in continental crust com-

positions at 10–12 GPa, 1,100–1,300�C. At 16–20 GPa,

1,250–1,300�C, Rapp et al. (2008) obtained phase egg in a

pelitic bulk composition with 8 wt% H2O, but not in the

one with 1 wt% H2O. Even in the original synthesis by

Eggleton et al. (1978), phase egg was only obtained from

starting materials containing substantial quantities of water.

Our subsolidus experiments at 13 GPa, which locate in the

phase egg stability field, did not yield phase egg in the AM

bulk with 1.1 wt% H2O. A repetition of one experiment at

13 GPa, 1,100�C with ca. 3 wt% H2O confirms the previ-

ous observations that phase egg only crystallizes in pelitic

compositions if larger amounts of water ([5 wt%) are

present. Realistically, subducting slabs at [9 GPa, contain

less than the 1.1 wt% H2O as present in our AM compo-

sition or in the 1 wt% H2O composition of Rapp et al.

(2008). Topaz-OH may be formed at the phengite to

K-hollandite reaction at B1,000�C. At higher temperatures,

a supercritical liquid results which is expected to mostly

escape the system, leaving \0.1 wt% H2O that may be

incorporated into nominally anhydrous minerals (Keppler

and Smyth 2006; Litasov et al. 2007; Wu et al. 2009).

Evidence for subducted carbonates and K-rich

metasomatism in the mantle

The analysis of melt and fluid inclusions in diamonds and

other minerals found in kimberlites generated deep in the

mantle (van Achterbergh et al. 2003; Kamenetsky et al.

2004; Korsakov and Hermann 2006; Tomlinson et al. 2006;

Klein-BenDavid et al. 2007; Guzmics et al. 2008) yielded

compositions very similar to our experimental alkaline

carbonatites. These inclusions are extremely rich in alkalis,

with generally K2O [ Na2O, and also in volatiles (Cl, H2O

and CO2), and show a strong affinity to the cationic com-

position of our melts, especially the carbonate-rich end

members (Fig. 7). Not only fluid and melt inclusions but

also many mineral inclusions in diamonds (Kamenetsky

et al. 2004; Walter et al. 2008) show a correlation with the

phases in which our melts are saturated (carbonates,
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hydrous and potassium-rich phases, K-hollandite, corun-

dum and stishovite). Trace elements and O, C and Sr iso-

topic signatures of carbonatite inclusions in kimberlitic

minerals suggest a crustal or crust-derived metasomatic

provenance of these materials (van Achterbergh et al. 2002;

van Achterbergh et al. 2003; Cartigny 2005).

Mantle metasomatism and origin

of ultra-potassic (UP) volcanism

The solidus for carbonated, wet and K2O-rich peridotites

lies at temperatures between 1,100 and 1,200�C at oxi-

dizing conditions from 8 to 13 GPa (Ghosh et al. 2009;

Brey et al. 2009; Foley et al. 2009) which is about 200�C

below the average mantle geotherm (Akaogi et al. 1989;

Fig. 11). With the end of surface plate convergence, a

decreasing burial rate of the slab results in a relaxation of

subduction isotherms which in turn causes the melting of

the most fertile lithologies within the slab. As temperatures

increase, the carbonated pelites situated at the upper part of

the slab column will melt and generate highly mobile

carbonatites (Hammouda and Laporte 2000), in our case

alkali-rich carbonatite melts with K2O � Na2O. As long

as temperatures remain at C1,100–1,200�C, these carbon-

atites will infiltrate into the overlying mantle and quickly

percolate upwards, thereby concomitantly introducing

large amounts of CO2 and K2O. The absence of any evi-

dence for an accumulation of this kind of melts at the base

of the lithosphere, where temperatures would be low

enough for complete crystallization of the carbonatite

melts, suggests that a redox reaction with the reduced

mantle (Frost and McCammon 2008; Rohrbach et al. 2009)

immobilizes these carbonatites. In fact, diamond crystalli-

zation has been shown to be favored by the catalytic

behaviour of K2CO3-rich melt and fluid (Taniguchi et al.

1996; Palyanov et al. 2007; Klein-BenDavid et al. 2007).

The interaction between incompatible elements, potas-

sium and calcium with the mantle will transform the lat-

ter’s assemblages, introducing incompatible elements,

causing an increase in the clinopyroxene/orthopyroxene

ratio (Green and Wallace 1988; Thibault et al. 1992; Dal-

ton and Wood 1993), and the crystallization of carbonate

and potassic phases such as magnesite, K-rich carbonate,

phlogopite, K-richterite and phase-X (Konzett and Fei

2000). With increasing distance from percolation zones,

this process will produce carbonated wehrlites, carbonated

re-fertilized lherzolites and so-dubbed ‘‘cryptic’’ metaso-

matism (Dawson 1984). Later melting of these metaso-

matic enriched mantle veins (Foley 1992) and domains will

produce alkali-rich carbonatites with high concentrations

of incompatible elements and a hybrid mantle/crust geo-

chemical characteristics. These carbonatites may then

evolve to the different highly alkaline ultrapotassic silicate

melts that form group II kimberlites, lamproites and ail-

likites (Foley et al. 2009; Brey et al. 2009; Francis and

Patterson 2009). Geochemical data of many alkali rocks,

associated carbonatites, and of kimberlites and related

rocks show isotopical characteristics on the mixing line

between the HIMU (recycled altered oceanic crust) and

EM1 (subducted oceanic crust and pelagic sediments)

mantle endmembers (Faure 2000; Becker and Le Roex

2006). These characteristics are thought to be generated by

low degree melting of a depleted mantle re-enriched

through a potassic-, CO2 and incompatible element-rich

melt or fluid (Girnis et al. 2006; Becker and Le Roex 2006;

Brey et al. 2008; Agashev et al. 2008). All these charac-

teristics coincide with our pelite-derived alkaline carbon-

atites. The potassium- and CO2-dominated metasomatism

initiating with the melting of carbonated pelites at C8 GPa

would cover most of the important geochemical charac-

teristics deduced for the generation of ultrapotassic and

related rocks in the deep upper mantle.

Application for the genesis of group II kimberlites

Kimberlites are ultrapotassic, ultramafic and at the same

time extremely enriched in most of the incompatible trace

elements and volatile including CO2 and H2O. Both kim-

berlite groups (group I and group II) are thought to be

generated at pressure higher than 5–6 GPa from a depleted

mantle source re-enriched through volatile-rich melts or

fluids containing high trace elements concentrations (Brey

et al. 2008). Group II kimberlites differ from group I in

their mineralogy, major and trace elements concentrations

and isotopic composition (Mitchell 1995; Becker and Le

Roex 2006). Trace element characteristics of group II

kimberlites show an affinity to calc-alkaline mafic magmas

and thus to subduction-related fluids and melts (Coe et al.

2008). Moreover, their Hf, Sr and Nd isotopic composi-

tions with low eHf, eNd and highly radiogenic 87Sr/86Sr

(Mitchell 1995; Becker and Le Roex 2006; Coe et al. 2008)

match well with the one of ancient sediments (Rehkamper

and Hofmann 1997; Vervoort and Blichert-Toft 1999).

Compared to group I kimberlites, group II kimberlites are

characterized by higher K2O and H2O contents, higher

K2O/TiO2- and K2O/Na2O (Fig. 12) ratios and higher CaO

for a given SiO2 concentration (Mitchell 1995; Becker and

Le Roex 2006).

McCandless (1999) presented a model where kimberlitic

magmatism was attributed to deep-seated subduction,

based on age data for kimberlite magmatism combined

with seismic images and thermal models of subducted

slabs. Our carbonatite melts generated from a phengite

bearing carbonated pelite at 8 GPa is able to explain all

these observed characteristics of group II kimberlites. They

contain large amounts of volatiles (CO2 and H2O), are
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extremely enriched in potassium, and are characterized by

sedimentary and subduction-related geochemical signa-

tures inherited from their source and subduction history. In

the clan of ultramafic ultrapotassic rocks, group I kimber-

lites are the most enriched in CO2 followed by group II

kimberlites and by lamproites, which indicate compara-

tively low CO2 contents. This observation shows a positive

correlation with the CaO/Al2O3 wt% ratio (Fig. 12c) of

these magmas and with the CaO content within a single

rock type (Becker and Le Roex 2006; Coe et al. 2008). The

higher amounts of CaO for a given SiO2 content observed

in group II kimberlites could thus be ascribed to the

metasomatic effect of carbonatites with higher X�Ca, as the

ones generated from carbonated sediments (Fig. 6c, d).

Figure 12 shows the positive correlation between the

potassium enrichment and the radiogenic 87Sr/86Sr isotopic

composition of group II kimberlites thus linking both

characteristics with a single subduction-related meta-

somatic process involving a sedimentary source.

Conclusion

When heating subducted carbonated pelites towards a

mantle adiabat, melting results into alkaline dolomitic to

ferro-magnesian carbonatites that provide a genetic link

between CO2 and potassic metasomatism of the mantle.

Residual jadeite in the pelite holds back Na and strongly

fractionates the K/Na ratios, leading to an ultrapotassic

character of the melts. When entering the mantle, the

relatively oxidized carbonatites will react with the rela-

tively reduced mantle forming diamond and K2O- and

CO2-rich metasomatic zones, which are the most likely

source regions for highly potassic kimberlites.
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