
Visual Comput (2008) 24: 719–726
DOI 10.1007/s00371-008-0252-x O R I G I N A L A R T I C L E

Alejandra Garcı́a-Rojas
Mario Gutiérrez
Daniel Thalmann

Visual creation of inhabited 3D environments

An ontology-based approach

Published online: 17 May 2008
© Springer-Verlag 2008

A. Garcı́a-Rojas (�) · D. Thalmann
Virtual Reality Laboratory,
EPFL, Switzerland
{alejandra.garciarojas,
daniel.thalmann}@epfl.ch

M. Gutiérrez
INAOE,
Puebla, México.
mgutierrez@ccc.inaoep.mx

Abstract The creation of virtual
reality applications and 3D envi-
ronments is a complex task that
requires good programming skills
and expertise in computer graphics
and many other disciplines. The
complexity increases when we want
to include complex entities such as
virtual characters and animate them.
In this paper we present a system
that assists in the tasks of setting up
a 3D scene and configuring several
parameters affecting the behavior
of virtual entities like objects and
autonomous virtual humans.
Our application is based on a visual
programming paradigm, supported
by a semantic representation, an
ontology for virtual environments.
The ontology allows us to store and
organize the components of a 3D
scene, together with the knowledge

associated with them. It is also
used to expose functionalities in the
given 3D engine. Based on a formal
representation of its components,
the proposed architecture provides
a scalable VR system.
Using this system, non-experts can
set up interactive scenarios with
minimum effort; no programming
skills or advanced knowledge is
required.

Keywords Inhabited virtual
environments · Visual programming ·
Authoring tool · Ontologies

1 Introduction

Computer games such as those from EA games [5] offer
users the possibility to create and customize inhabited sce-
narios in their worlds. They provide GUI-based authoring
tools that are easy to use. However, these environments
have limited features, and only expert developers are able
to take advantage of the underlying game engine. Virtual
environments (VE) have many other applications besides
entertainment, for example, the preservation of cultural
heritage, simulation of crowd behavior, simulation of ar-
chitectural buildings, training, etc.

Creating these applications requires experience in
computer graphics, human-computer interaction, artifi-

cial intelligence, animation techniques, etc. In most cases
good programming skills are also needed to put together
all these components. The fact that one relies on expert
programmers when implementing a virtual reality (VR)
application can be an obstacle for designers and other cre-
ative members of the production team [2].

Various software libraries and development environ-
ments have been created to ease the integration task men-
tioned above. However, in the best of the cases, program-
ming skills are still required in order to script animation
sequences, set up interaction paradigms or program au-
tonomous characters.

In this paper we propose the use of a visual program-
ming paradigm that allows us to set up an interactive vir-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159148187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

720 A. Garcı́a-Rojas et al.

tual environment with autonomous characters without the
need of writing a single line of code. Other systems use
similar visualization techniques, but in most cases they are
limited to providing visual aids to understanding low-level
relations between entities such as hierarchies (skeletons),
and other properties (textures, materials).

Our visual programming language aims to represent
different components of a 3D scene as a 2D abstraction,
reducing the complexity of relationships between entities
and concepts inside a VE.

Our approach is based on a semantic representation
of the components of a virtual environment: virtual en-
tities and animation algorithms, the latter including behav-
ior controllers for autonomous virtual humans. Our visual
programming interface is supported by an ontology for
virtual environments and allows us to represent spatial
relations between objects in the scene, and connect anima-
tion controllers to virtual objects.

The paper is organized as follows: the next section de-
scribes some authoring tools for virtual environments; we
discuss how they represent the components of a 3D scene
and what kind of information/knowledge they present to
the user. Section 3 describes the semantic representation
supporting our system; Sect. 4 describes the representation
of virtual entities using visual programming. In Sect. 5 we
present the application, and finally our conclusions and fu-
ture work.

2 Related work

Some domain-specific tools have been created to assist
non-experts in the creation of virtual worlds. As an ex-
ample, Costagliola et al. [4] proposed an authoring tool for
creating virtual exhibitions. This tool uses text-based or
iconic-based interfaces to set up scenarios with basic 3D
objects.

Generic tools propose the use of scripting and XML
languages [10, 13]. Green et al. [6], presented an author-
ing tool that accelerated the creation of content for 3D
environments using Python scripting with some exten-
sion mechanisms. The development framework presented
in [15], also uses Python scripts to configure different li-
braries and extend the system functionality. The developer
is able to create scenes populated with autonomous vir-
tual humans by means of short programs (Python scripts).
A problem with scripts arises when using wrap functions,
like those implemented in Python: we need a good docu-
mentation of functions, and users have to become familiar
with the initialization and internal workflow of the 3D en-
gine. This represents an important learning curve, once
again, people interested in creating a VR application need
some programming skills.

Commercial systems such as Virtools [17] and Quest
3D [1] offer a graphical schematic interface to navigate

and manipulate entities in the 3D scene. This is in fact
a visual representation of the scene graph: a hierarchical
data structure representing the spatial relationships be-
tween 3D objects.

Three-dimensional modeling and animation tools such
as Maya and 3DS Max, also provide this kind of scene
graph visualization, which are helpful when managing the
components of a complex scene.

As we have mentioned, these kinds of visual represen-
tations focus on the geometric aspects of virtual entities.
These representations allow us to see how elements like vir-
tual characters are composed (skeleton, hierarchy of joints
and segments, etc.) and change some of their properties
(size, position, texture, etc). Complex information, such
as animation algorithms, can be manipulated only through
scripts. In order to set up interactive behavior the author still
needs a fair knowledge of computer programming.

To overcome the necessity of specific knowledge, we
propose an intermediary representation that captures rele-
vant concepts and knowledge associated with the creation
of a virtual environment. Ontologies have been success-
fully applied to represent the knowledge and concepts of
specific domains. The description of 3D items using an
ontology has already been described in several works. For
instance, the X3D ontology [9] represents very specific
and low-level concepts associated with a 3D scene.

Ontologies also have the power to represent high-
level properties and knowledge associated with the entities
composing a VE, including geometric properties. For ex-
ample, recent applications in product design aim at captur-
ing conceptual functionalities associated with 3D shapes,
supporting collaboration in the design process [3].

Considering high-level properties is very important
when developing a virtual environment. When we define
the behavior of virtual humans, we are not interested in the
number of bones and degrees of freedom (DOF) of a char-
acter, we rather care about its personality, the description
of its emotional state and the animations that can be used
to express/reflect these properties.

The next section describes the approach we have fol-
lowed to represent high-level properties and knowledge
associated with entities in a VE. When supported by a vi-
sual programming interface, this approach can help VE
designers to create more complex environments with less
effort.

3 Semantics for inhabited 3D environments

We consider that an authoring tool for creating virtual en-
vironments should be flexible, scalable and adaptable to
different needs. Gutiérrez et al. [7] developed the concept
of semantic virtual environments with the goal of creating
environments that can reuse digital items and be scaled in
functionality.

Visual creation of inhabited 3D environments 721

This semantic representation is very helpful in describ-
ing complex environments based on the semantic descrip-
tion of their 3D components. An example of a high-level
description of complex entities is the virtual human ontol-
ogy [8]. This ontology aims at describing virtual humans
as an active semantic entity with features, functionalities
and interaction skills. For this work we have partially used
this ontology.

The development of an ontology that describes the 3D
scene is a crucial task of this work. The information that
an ontology can provide is more than just data, it de-
scribes concepts and their properties, and relations with
other concepts. Our application uses this information to
expose higher-level features to the non-expert user.

The ontology we created is presented in Fig. 1. It
was developed in Ontology Web Language (OWL) [18]
using the Protégé software [16]. The main concept, or
class, is resource; it represents the items that the user
can place in the 3D scene. We have three kinds of
resources: virtual humans, objects and scenarios. Vir-
tual humans have three main properties: hasIndividu-
alDescription (emotional state and personality), has-
MorphologyDescription and canPerformAction. Virtual
HumanActions are human like capabilities, and they are
related to a Controller which is a description of the im-
plementation of the action (e.g., library) available in the

Fig. 1. Ontology diagram

3D engine. VirtualHumanActions can be related to other
resources, for example VirtualHuman hasAction LookAt
targets VirtualHuman.

Figure 2 presents an example of the virtual hu-
man action DanceAction. This action has the property
usesAnimation with the restriction some Animation that
hasCategory Dance. The controller that this action uses is
KeyFramePlayer whose function has the parameters Vir-
tualHumanName and AnimationFile.

The parameters of a controller are also described, and
have the following properties that are dependent of the ac-
tion they are used for:

propertyName gives the name of the action property that
establishes the relationship between the instance and
the property of interest.

classNameSource is the name of the class from where the
parameter will be taken.

propertyNameSource is the name of the property that has
the value for the parameter.

The parameter descriptions are used to send messages
from the 2D to the 3D engine. This is described in the
following section.

The ontology also describes other constrains that can be
used as filters in the application. For example, if a virtual hu-
man has a defined emotional state, then the animations to

722 A. Garcı́a-Rojas et al.

Fig. 2. Description of virtual human ac-
tions and their controllers in the ontol-
ogy

choose are limited to those that express the same emotion.
Something similar happens with the morphology descrip-
tion, the animations available for a specific character are
limited to those suitable for its particular morphology.

Using the ontology we are able to define all function-
alities provided by the 3D engine under use. Different 3D
engines can be utilized, all we have to do is add to the
ontology the instances corresponding to the specific con-
trollers. In the following section we describe how these
functionalities are exposed and used in the visual pro-
gramming language.

4 System description

This section describes the visual programming language
used to represent the 3D scene with the help of the ontol-
ogy. Followed by the system architecture.

4.1 Visual programming language

Visual programming languages allow us to manipulate
elements graphically instead of using text. Elements com-
monly used include: boxes, arrows, cycles, etc. The im-
plementation we propose is not hierarchical as is the
case of the applications described in Sect. 2. Our vi-

sual representation consists of a 2D projection of the 3D
scene and includes a representation of the interactions be-
tween elements, which is closer to the ontology represen-
tation.

Figure 3 shows a screenshot of the interface created
using the NetBeans Visual Library [12], which offers sup-
port for visual modeling. In this scene the main component
is the GraphScene, on top of which we add widget layers.
Each of those layers has a different purpose: adding wid-
gets, making connections, defining the background, mov-
ing widgets, etc.

When the ontology is loaded we get the instances of
the subclasses derived from the resource class. We display

Table 1. Communication protocol between visual and 3D applica-
tions

Function Message

Quit 0
Add resource 1:name:source:

orientation:posx:posz
Remove resource 2:name
Modify resource 3p:name:posx:posz
properties 3y:name:posy

3r:(x/y/z):name:angle
Add/remove action 4(a/r):functionName:parameters
Play animation 5

Visual creation of inhabited 3D environments 723

Fig. 3. Two-dimensional representation using the visual programming interface. (1) Available resources. (2) Controllers for y position and
rotations. (3) Properties of selected resource. (4) Connection layer to define actions between resources using arrows. (5) List of actions.
(6) Independent actions

the available resources as a tree corresponding to the class
hierarchy (1 in Fig. 3). The user can select a resource from
the tree and place it into the scene. This action produces
the creation of a widget in the 2D scene, and it is loaded
and rendered in the 3D scene in real time. The bidimen-
sional space of widgets represents the [x, z] plane of the
3D scene; thus, the user can place objects intuitively as if
looking at the scene from above. For controlling the rest of
the transformations (y position and rotations), the user can
use the provided controls (2 in Fig. 3).

Each subclass derived from the resource class also has
specialized properties that describe them. When a resource
is selected, its properties are displayed in the right box of
the interface (3 in Fig. 3). First, we display data properties
with their values, and after we display recursively object
properties and their values.

To define actions between a virtual human and other
resources, the user can draw arrows between them
(4 in Fig. 3) through the connection layer. Actions that are
not related with other resources are displayed when the
user double clicks on them (6 in Fig. 3). Each time the user
creates an action for a virtual human, the action is stored
in a queue. When the user plays the scene, the scheduled
actions are performed (5 in Fig. 3).

Each time the user interacts through the visual pro-
gramming interface, the system sends messages to the 3D
engine in real time. Thus, we have defined a commu-
nication protocol presented in Table 1. Messages for the
programmed actions for the virtual humans are created
using the controller’s description from the ontology. For
example, if the user creates a relationship VirtualHuman
hasAction Interact Gaze with Object Plant, the message is

724 A. Garcı́a-Rojas et al.

the concatenation of the function’s parameters described
in the ontology.

The last functionality provided by the system is saving
and reloading the scene. This is performed serializing the
current items created in the scene into a file that can be
subsequently loaded.

In the following we describe the technical details of
our implementation.

Fig. 4. System architecture

Fig. 5. Animation sequence of virtual humans. Left image shows that Lydia talks and Peter is idle. Center image shows that Peter looks
at the plant. Right image shows that Lydia looks at the plant

4.2 System architecture

To access the ontology we have used the Jena API [11]. In
the visual programming interface we have created classes
to represent concepts from the ontology (OWL Classes).
These classes are rendered in the GUI using the open
source NetBeans Visual Library [12], and can be manipu-
lated with the visual programming language as described
before. The 3D engine that we are using [14] supports
loading virtual humans and has several functionalities
such as key frame animation player and gaze controller.
In Fig. 4 we present a diagram of the system architecture.

The modularity of our system makes the 2D interface
completely independent from the 3D engine; we just need
to implement the messages passed by the interface appli-
cation and describe actions and controllers in the ontology.
However, the 3D engine should support the functionalities
previously defined in the ontology.

5 Creating a 3D scene

The creation of a 3D scene requires an ontology populated
with the instances of 3D entities, such as virtual humans
and 3D objects available in a data repository. The ontology
should also contain instances describing the controllers
(functions) provided by the 3D engine to be used.

In our 3D engine we have two controllers avail-
able: KeyFramePlayer and GazeController. We have de-
fined the following actions: TalkAction, IdleAction and
LookAtAction. These actions can be performed using
the defined controllers with the restrictions described
in Sect. 3. Talk and idle actions use the KeyFramePlayer
controller, and use animations belonging to the talk and
idle categories, respectively. The animation to play is
taken randomly from the available animations that con-
form to the defined restrictions.

Once the ontology has been set up with the informa-
tion, it can be loaded in the application. Now, we can

Visual creation of inhabited 3D environments 725

start placing objects and virtual humans, and program-
ming actions. In our example application we used the fol-
lowing resources: two virtual humans, Lydia and Brian,
and two 3D objects, YupiHouse and Plant. We positioned
the resources in the desired place inside the house. We
programmed actions for Lydia: TalkAction and LookAt-
Action Plant; and for Brian: IdleAction and LookAtAction
Plant. When we play the animation we get the sequence
shown in Fig. 5.

Setting up this scene does not take more than a few
minutes. Until now, the application allows for creating
quite simple scenarios. However, the user can define many
different actions depending on the controls they have im-
plemented in the 3D engine and exposed through the on-
tology.

There are still some issues that can be solved in differ-
ent ways, e.g., handling animation duration, or animation
blending, setting up a time-line, or having an event-based
animation system, etc.

6 Conclusions and future work

In this paper we have presented a preliminary version of
an authoring tool for virtual environments, based on a vis-
ual programming paradigm supported by an ontology for
virtual humans and 3D objects.

The system was designed to facilitate the creation of
inhabited 3D environments, in particular for users with no
or minimal programming skills.

Our tool is supported by an ontology that can describe
3D scenes inhabited by virtual humans with various fea-
tures, such as animations dependent on the personality and
emotional state of the virtual character.

The visual programming paradigm is used to represent
3D entities and their relationships on a 2D plane, to facili-
tate their management.

The authoring tool allow us to rapidly create simple 3D
scenarios with active virtual humans. Inside the 3D scene,
virtual humans are able to perform different actions, which
are limited to those that the 3D engine can provide. How-
ever, the system is scalable thanks to the ontology. Each
time a new functionality is available on the 3D engine, it
can be described in the ontology and exposed through the
visual programming interface. Moreover, using the ontol-
ogy we are able to program virtual humans in a higher
level of semantics, and as a consequence, we can focus on
higher-level tasks.

Our system presents some challenges for the developers
of 3D engines who may want to use it as authoring tool. It re-
quires an understandable formalization of features, and ad
hoc interfaces should be used (e.g., Protégé). Using ontol-
ogy expressiveness to configure systems is a novel applica-
tion of semantics. Ontology manipulation systems are not
designed with virtual environments development in mind,
thus interfacing the knowledge in the ontology with a VE
application is no trivial task. However, once the ontology is
set up, the application provides a user-friendly tool for the
development of VR applications.

Future work includes addressing the problems cited
before. We plan to develop new tools that automate the
population of the ontology and its maintenance.

Acknowledgement We would like to thank Philippe Mazouer for
his help in the development of this application. This research has
been funded by the EC and the Swiss Federal Office for Educa-
tion and Science in the framework of the European Network of
Excellence IST-AIM@SHAPE (http://www.aimatshape.net).

References
1. Act-3D: Quest 3D.

http://www.quest3d.com. Accessed (2006)
2. Celentano, A., Pittarello, F.:

A content-centered methodology for
authoring 3D interactive worlds for cultural
heritage. In: ICHIM (2), pp. 315–324.
Archives and Museum Informatics,
Pittsburgh, PA (2001)

3. Cera, C., Regli, W., Braude, I.,
Shapirstein, Y., Foster, C.: A collaborative
3D environment for authoring design
semantics. IEEE Comput. Graph. Appl.
22(3), 43–55 (2002)

4. Costagliola, G., Martino, S.D.,
Ferrucci, F., Pittarello, F.: An approach for
authoring 3d cultural heritage exhibitions
on the web. In: SEKE ’02: Proceedings of
the 14th International Conference on
Software Engineering and Knowledge
Engineering, pp. 601–608. ACM, New York
(2002). doi: 10.1145/568760.568865

5. EA Inc.: EA games. http://www.ea.com.
Accessed (2007)

6. Green, M.: Towards virtual environment
authoring tools for content developers. In:
VRST ’03: Proceedings of the ACM
Symposium on Virtual Reality Software
and Technology, pp. 117–123. ACM, New
York (2003). http://doi.acm.org/10.1145/

1008653.1008675
7. Gutiérrez, M.: Semantic virtual

environments. Dissertation, EPFL,
Lausanne (2005)

8. Gutiérrez, M., Garcı́a-Rojas, A.,
Thalmann, D., Vexo, F., Moccozet, L.,
Magnenat-Thalmann, N., Mortara, M.,
Spagnuolo, M.: An ontology of virtual
humans: Incorporating semantics into
human shapes. Visual Comput. 23(3),
207–218 (2007)

9. Kalogerakis, E., Christodoulakis, S.,
Moumoutzis, N.: Coupling ontologies with

graphics content for knowledge driven
visualization. In: VR ’06: Proceedings of
the IEEE Virtual Reality Conference (VR
2006), p. 6. IEEE Computer Society,
Washington, DC (2006).
http://dx.doi.org/10.1109/VR.2006.41

10. Klesen, M., Kipp, M., Gebhard, P., Rist, T.:
Staging exhibitions: methods and tools for
modelling narrative structure to produce
interactive performances with virtual actors.
Virtual Reality 7(1), 17–29 (2003)

11. McBride, B.: Jena: a semantic web toolkit.
IEEE Internet Comput. 6(6), 55–59 (2002).
doi: 10.1109/MIC.2002.1067737

12. NetBeans: Visual library.
http://www.w3.org/tr/owl-features/.
Accessed (2007)

13. Perlin, K., Goldberg, A.: Improv: A system
for scripting interactive actors in virtual
worlds. Comput. Graph. 30(Annual
Conference Series), 205–216 (1996)

726 A. Garcı́a-Rojas et al.

14. Peternier, A., Thalmann, D., Vexo, F.:
Mental vision: a computer graphics
teaching platform. In: Edutainment 2006.
Lect. Notes Comput. Sci., vol. 3942,
pp. 223–232. Springer, Berlin Heidelberg
(2006)

15. Ponder, M., Papagiannakis, G., Molet, T.,
Magnenat-Thalmann, N., Thalmann, D.:

VHD++ development framework: Towards
extendible, component based VR/AR
simulation engine featuring advanced
virtual character technologies. In:
Proceedings Computer Graphics
International 2003, pp. 96–104. IEEE
Computer Society, Los Alamitos, CA
(2003)

16. Protégé: (c) 2005 Stanford Medical
Informatics.
http://protege.stanford.edu/index.html.
Accessed (2007)

17. Virtools, S.: Virtools.
http://www.virtools.com. Accessed (2006)

18. W3C: Owl Web Ontology Language.
http://graph.netbeans.org. Accessed (2007)

ALEJANDRA GARCÍA-ROJAS received her
Master’s degree in Digital Interactive Technolo-
gies from the University Complutense of Madrid
in 2004. She graduated as a Computer Scientist
from Instituto Tecnológico y de Estudios Supe-
riores de Monterrey Campus Toluca in México.
Since January 2005 she has been a Ph.D. can-
didate in The Virtual Reality Laboratory at the
École Polytechnique Fédérale de Lausanne.

MARIO GUTIÉRREZ is a researcher at the Com-
puter Science Department of the National In-
stitute for Astrophysics, Optics and Electronics
in México. He received his Ph.D. in Computer
Science from the École Polytechnique Fédérale
de Lausanne, Switzerland. His research interests
include: semantic representations of virtual envi-
ronments, human-computer interaction, robotics
and virtual reality.

PROFESSOR DR. DANIEL THALMANN is a pro-
fessor and Director of The Virtual Reality Lab
(VRlab) at EPFL, Switzerland. He is a pioneer in
research on virtual humans. His current research
interests nclude real-time virtual humans in vir-
tual reality, networked virtual environments, arti-
ficial life, and multimedia. Daniel Thalmann has
been a professor at the University of Montreal
and visiting professor/ researcher at CERN, Uni-
versity of Nebraska, University of Tokyo, and
Institute of System Science in Singapore.
He is Co-Editor-in-Chief of the Journal of Visu-
alization and Computer Animation, and member
of the editorial board of The Visual Computer
and four other journals. Daniel Thalmann was
a member of numerous Program Committees,
Program Chair and Co-Chair of several confer-
ences. He is Program Co-Chair of CGI 2007,
Virtual Rehabilitation 2007, ACM VRST 2008
and the Conference Co-Chair of CASA 2007 and

SCA 2007. He has also organized five courses at
SIGGRAPH on human animation. Daniel Thal-
mann has also been a member of Eurographics
since 1980. He is a member of the Stearing
Committee of the Symposium on Computer Ani-
mation, a joint Eurographics-SIGGRAPH initia-
tive. Daniel Thalmann has published more than
400 papers in graphics, animation, and virtual re-
ality. He is coeditor of 30 books, and coauthor
of several books including the Handbook on Vir-
tual Humans, published by Wiley. He was also
co-director of several computer-generated films
with synthetic actors including a synthetic Mari-
lyn shown on numerous TV channels all over the
world.
He received his Ph.D. in Computer Science in
1977 from the University of Geneva and an Hon-
orary Doctorate (Honoris Causa) from Univer-
sity Paul-Sabatier in Toulouse, France, in 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

