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Abstract Stochastic models play an important role in the analysis of data
in many different fields, including finance and insurance. Many models are
estimated by procedures that lose their good statistical properties when the
underlying model slightly deviates from the assumed one. Robust statis-
tical methods can improve the data analysis process of the skilled analyst
and provide him with useful additional information. For this anniversary
issue, we discuss some aspects related to robust estimation in the context
of extreme value theory (EVT). Using real data and simulations, we show
how robust methods can improve the quality of EVT data analysis by pro-
viding information on influential observations, deviating substructures and
possible mis-specification of a model while guaranteeing good statistical
properties over a whole set of underlying distributions around the assumed
one.
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1 Introduction

Stochastic models play an important role in the analysis of data in many
different fields, including finance and insurance. In parametric statistics
these models are typically estimated by estimators such as maximum like-
lihood or OLS. However, these methods are generally optimal for an as-
sumed reference model, but slight deviations from the assumed model
may quickly destroy the good statistical properties of the estimator. Since
we can assume that deviation from the model assumptions almost always
occurs in finance and insurance data, it is useful to complement the anal-
ysis with procedures that are still reliable and reasonably efficient under
small deviations from the assumed parametric model and highlight which
observations (e.g. outliers) or deviating substructures have most influence
on the statistical quantity under observation. Robust statistics achieves
this by a set of different statistical frameworks that generalize classical
statistical procedures such as maximum likelihood or OLS. Seminal con-
tributions are Huber (1981) and Hampel et al. (1986). Since then many
different and related approaches have emerged. Dell’Aquila and Ronchetti
(2006) give a comprehensive introduction to the principles of robust sta-
tistics estimation, testing and model selection and apply and extend the
theory to different models used in risk management, asset allocation and
insurance.

In this paper, we discuss some methodological aspects related to robust
estimation in the context of extreme value theory (EVT). Using real data
and simulations, we show how robust methods can improve the quality of
EVT data analysis by providing information on influential observations,
deviating substructures and possible mis-specification of a model, while
guaranteeing good statistical properties over a whole set of underlying dis-
tributions around the assumed one. We have chosen this example as a sort of
‘provocation’, after all it seems that one performs EVT just to consider and
‘emphasize’ the role of extremes and also because the choice of a distribu-
tion is often of heuristic nature. Moreover EVT is of increasing importance
in risk management, see Embrechts et al. (1997) and McNeil et al. (2005).
Specific examples include VaR estimation and quantitative modelling of
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operational risk, see Moscadelli (2004). Throughout the paper, we follow
a rather non-technical style and leave details to the books cited above.

Overall we find that robust statistical methods can improve the data
analysis process of the skilled analyst and provide him with useful addi-
tional information. However, robust statistics is not a framework to apply
blindly. We also at least mention some methodological issues that deserve
more attention and that we cannot fully treat here.

In section 2 we will shortly review some key concepts from EVT and
robust statistics. Then in section 3 we will consider some methodological
issues and show the added value of robust statistics and give a first impres-
sion on how the whole data analysis process can benefit from additionally
using robust statistical procedures. We will use insurance data which are
close to i.i.d. observations to make a case with real data without the com-
plication of truly depending observations. Part of the analyses presented
in this paper were done in parallel with the writing of Dell’Aquila and
Ronchetti (2006).

2 Extreme value theory and robust statistics

2.1 Extreme value theory

Extreme value theory is more and more used in recent years to model
extremes of financial and economic data or natural phenomena. The EVT
framework provides on the one hand asymptotic distributions for the descrip-
tion of (normalized) maxima or minima and on the other hand the asymp-
totic distribution of extremes over a high threshold. Basic references with
a focus on finance and insurance are Embrechts et al. (1997) and McNeil
et al. (2005), Chapter 7. We also refer to these books for further references.

The EVT analyses the asymptotic distribution of (normalized) maxima
or minima of i.i.d. samples, i.e. Mn = max(X1, . . . , Xn). It turns out that
under weak conditions, the normalized maximum of n i.i.d. random vari-
ables is distributed as Gumbel, Weibull or Fréchet, depending on the data
generation process. The generalized extreme value (GEV) distributions
can be combined into a single form FGEV

θ where θ = [µ, β, ξ ]T given by

FGEV
θ (x) = FGEV

µ,β,ξ (x) = exp

(
−

(
1 + ξ(x − µ)

β

)−1/ξ
)
,

where 1 + ξ(x − µ)/β > 0 and β > 0. The parameters µ and β are
the location and scale and ξ is the shape parameter. The latter determines
which extreme value distribution is represented: Fisher – Tippett types I,
II and III (Gumbel, Fréchet and Weibull) correspond to ξ = 0, ξ > 0 and
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ξ < 0 respectively. A special case is the Gumbel distribution when ξ = 0,
i.e., (taking the limit ξ → 0)

FGum
µ,β,0(x) = exp (− exp (−(x − µ)/β)) .

The latter is widely used as it is the appropriate limit of maxima from many
common distributions, e.g. normal, lognormal, Weibull and gamma.

Another important result in EVT is related to the distribution function
for exceedances over a given threshold. It turns out that excesses over a high
threshold u have a generalized Pareto distribution (GPD) with distribution
function

FGPD
ξ,β (x) =

{
1 − (1 + ξ x

β
)−1/ξ if ξ �= 0

1 − exp(−x/β) if ξ = 0,

where β > 0, and the support is x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤
−β/ξ when ξ < 0. For ξ = 0 the limiting distribution is exponential.
The GPD distribution is motivated by the so-called Pickands–Balkema–
de Haan Theorem in EVT. The class of distributions for which this result
applies contains essentially all the common continuous distributions of
statistics. These may be further subdivided into three groups according
to the value of the parameter ξ in the limiting GPD approximation to the
excess distribution. The case ξ > 0 corresponds to heavy-tailed distribu-
tions whose tails decay like power functions, such as the Pareto, Student
t , Cauchy, Burr, log-gamma and Fréchet distributions. The case ξ = 0
corresponds to distributions like the normal, exponential, gamma and log-
normal, with tails essentially decaying exponentially. The final group of
distributions (ξ < 0) are short-tailed distributions with a finite right end-
point, such as the uniform and beta distributions.

The parameter θ of a GEV and GPD are typically estimated by maxi-
mum likelihood, i.e. by θ̂ = arg minθ �n

i=1 log fθ (xi ), or finding the zeros

of the estimating equations �n
i=1s(xi ; θ) = 0, where s(x; θ) = ∂ log fθ (x)

∂θ

is the score function.
In particular, for the GEV class, the density function is given by1

f GEV
µ,β,ξ (x) = 1

β

(
1 + ξ

x − µ

β

)−( 1
ξ
+1)

exp

(
−

(
1 + ξ

x − µ

β

)−1/ξ
)
,

where 1 + ξ(x−µ)
β

> 0. In the Gumbel case the density function is given
by

f Gum
µ,β (x) = 1

β
exp(−(x − µ)/β) exp(− exp(−(x − µ)/β)).

1 For notational convenience, we do not limit the domain and assume that score functions
are used where ML in the standard case can be applied.
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In the case of a GPD, the density function is given by (ξ �= 0):

f GPD
ξ,β (x) = 1

β

(
1 + ξ

x

β

)−( 1
ξ
+1)

.

2.2 Some key facts in robust statistics

Consider a parametric model given by a distribution Fθ with density fθ .
In classical statistics, one often chooses an estimation framework that is
optimal at the assumed model distribution (e.g. the maximum likelihood
framework delivers the asymptotically most efficient estimator at the model
distribution). However, as soon as the real underlying model deviates from
the assumed one, the estimator may lose its good statistical properties and
many alternative estimators may perform better.

The aim of robust statistics is to provide statistical procedures

• which are still reliable and reasonably efficient under small deviations
from the assumed parametric model and to quantify the maximal bias on
the statistical quantity of interest when the underlying distribution lies in
a neighborhood of the reference model. In this sense it is a generalization
of the classical statistical procedures.

• At the same time these procedures should highlight which observations
(e.g. outliers) or deviating substructures have most influence on the sta-
tistical quantity under observation. Thus robust statistics can also be
seen as a diagnostic tool describing the bulk of the data and offering an
alternative analysis to the researcher.

To fulfil this aim several related statistical frameworks have been devel-
oped, indeed more than we can discuss here. We will consider only the
most general framework, the M-estimation framework and we refer to
Dell’Aquila and Ronchetti (2006) for a comprehensive discussion.

M-estimators can be seen as a generalization of the maximum likeli-
hood approach and allow to analyze the robustness properties of estimators
and tests in a unified framework. An M-estimator is defined as the solution
to the minimization problem

θ̂ = arg min
θ∈�

n∑
i=1

ρ(xi ; θ), (1)

for some objective function ρ. If ρ has a derivative �(x; θ) = ∂ρ(x;θ)
∂θ

,
then the M -estimator satisfies the first order conditions

n∑
i=1

�(xi ; θ) = 0. (2)
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An M-estimator can be more generally defined through the estimating
equations (2). In general we restrict to estimators which are Fisher
consistent, i.e. we require a � such that EFθ [�(X; θ)] = 0. Under weak
conditions on � it can be shown that the resulting estimator is normally
distributed with variance–covariance matrix given by

V = M−1 · E[�(X; θ)�(X; θ)T] · M−T, (3)

where M = E[− ∂�(X;θ)
∂θ

].
The classical maximum likelihood estimator corresponds to (1) with

ρ(x; θ) = − log fθ (x) or to ( 2) with �(x; θ) = s(x; θ) = ∂ log fθ (x)
∂θ

,
where s(x; θ) is the score function.

In robust statistics we want to construct estimators and tests that have
good statistical properties (high efficiency, low bias) for a whole neigh-
bourhood of the assumed model distribution Fθ . Such a neighbourhood
can, for example, be formalized by Aε(Fθ ) = {Gε|Gε = (1−ε)Fθ +εG,
G arbitrary} and ε is between 0 and 1 , thought of as a measure for con-
tamination.

General results in robust statistics imply that an estimator with

• a bounded asymptotic bias in a neighbourhood of the reference model
can be constructed by choosing a bounded � function 2 (in x);

• a high asymptotic efficiency can be achieved by choosing a � function
which is similar to the score function s(x; θ) in the range where most
of the observations lie.

As a simple example consider the location model xi = µ+ei . Assuming
normal errors ei , the maximum likelihood estimate is the sample mean µ̂ =
1
n

∑n
i=1 xi , which is non-robust, i.e. small deviations from the assumed

model (e.g. a t9 or a slight mixture of normals) can considerably lower the
efficiency and a single outlying point can highly bias the outcome. Notice
that the mean can be rewritten as an M-estimator by writing

∑n
i=1(xi −

µ) = 0. A simple robust alternative can be constructed by choosing a
bounded � function, e.g. the so-called Huber function3

ψc(r) =
{

r if |r | ≤ c
c · sign(r) otherwise

, (4)

2 More precisely, this is generally the case for small deviations from the assumed reference
model. As a side comment notice that there are estimators with a non-bounded � function
but a bounded asymptotic bias. This situation can typically arise when exogenous variables
are present (e.g. a linear regression model). For details see Dell’Aquila and Ronchetti (2006).
In any case robust estimators can be constructed by choosing a bounded � function.
3 We use lower case ψ for one-dimensional functions.
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where c is a constant which determines the degree of robustness and effi-
ciency. This ψ function leaves the score nearly unchanged where most
of the data lie (and thus delivers a highly efficient estimator), but is still
bounded (which ensures that the maximal bias in a neighbourhood of the
model is bounded). Notice that the estimator can be rewritten as a weighted
estimator, i.e.

∑n
i=1wc(ri )ri = 0, where wc(r) = ψc(r)

r can be seen as
a weight that measures the “outlyingness” of each observation. The tun-
ing constant c is typically chosen by requiring a given efficiency at the
assumed reference model. Typically a lower c will lead to a model which
has a lower maximal bias in a neighbourhood of the reference model and
lower efficiency at the reference model and vice versa.

There is an obvious trade off between maximal asymptotic bias in a
neighbourhood of the model distribution Fθ and the asymptotic efficiency
of the estimator at the reference model. Because � enters in the linear
approximation of the asymptotic bias as well as in the asymptotic variance
of the estimator (3), it is possible to solve a general optimality problem to
find the estimator that is the most efficient given a bound on the maximal
bias of the estimator in a neighbourhood of the model. The solution to this
problem is the M-estimator defined by

� A,a
c (x; θ) = hc(A(θ)(s(x, θ)− a(θ))),

where hc(r) := r min(1, c
‖r‖ ) is a multivariate version of the Huber func-

tion seen above and the matrix A and the vector a are determined
simultaneously by solving EFθ [hc(A(θ)(X − a(θ)))] = 0 and EFθ

[� A,a
c (X; θ)� A,a

c (X; θ)T] = I , which, respectively, ensure that the esti-
mator is consistent and the asymptotic bias remains below the chosen
bound. In the one-dimensional location case presented above, the optimal
solution reduces to using the ψc function, in particular in this symmet-
ric case a = 0 . For asymmetric reference models, a(θ) must be typically
found numerically to ensure consistency of the estimator. The computation
of the estimator can typically be performed by a slightly adapted Newton–
Raphson type procedure. For an introduction in a broader context, details,
interpretation of the different estimators and a step-by-step explanation of
the computation along with numerous examples, we refer to Dell’Aquila
and Ronchetti (2006).

Notice that the multivariate Huber function can be rewritten as

� A,a
c (x; θ) = A(θ) [s(x; θ)− a(θ)]wc(A(θ) [s(x; θ)− a(θ)]),

where wc(r, θ) = min
(

1; c
‖r‖

)
are weights attached to each observation.

These weights can be used to trace the “outlyingness” of each observation
and deliver additional information on the observations.
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We would like to stress that different� functions can be meaningful for
different types of data and the kind of question asked on the data. Hence
this procedure does not yield a framework to apply blindly.

For this paper, we will pick out one specific robustness issue and discuss
some aspects of the estimation in the context of EVT. As an illustration,
we take the case of the generalized Pareto model. The score functions are
then given by

sξ (x; θ) = x
(βξ+ξ2x)

(ξ + 1)+ log
(

1 + ξ x
β

) (
1
ξ2

)
,

sβ(x; θ) = − 1
β

+
(

1 + ξ x
β

)−1
x

(
1+ξ
β2

)
.

It is easy to verify that these functions are not bounded in x . A robust ver-
sion can be constructed by means of an estimator with a suitably chosen
� function, e.g. the optimal one described above.

In the next section, we focus on four key messages to give an idea of the
possible added value of robust methods, even in the case of EVT. However,
we also mention some methodological issues that deserve more attention
and that we cannot fully treat here.

3 Applying robust methods to EVT: some key messages

3.1 Message 1: Robust methods do not downweight ‘extreme’
observations if they conform to the majority of the data

As a first example we consider the estimation of a Gumbel model, one of the
GEV distributions. It is easily verified that the score function is unbounded
in x . A robust estimator for estimating (µ, β), respectively, can be found
by applying directly the optimal solution described above, but other robust
estimators could be considered. In this example we would like to highlight
that the robust (in this case the optimal robust) estimator is able to detect
observations that do not conform to the bulk of the data, even in the case
of a very asymmetric model. These observations must not necessarily be
far away. To illustrate this robustness issue, we generate 300 observations
from a contaminated model given by 95% from a Gumbel with µ = 4 and
β = 2 and 5% from a Gumbel with µ = −0.5 and β = 0.2; notice that
the contaminated model puts more mass on the left of the ‘true’ Gumbel
distribution as can be seen in Figure 1, which plots the two densities.

Figure 2 shows that the classical estimator for (µ, β) is clearly attracted
by the contaminating structure and fails to model part of the majority of the
data. The robust estimator (tuned to have approximately 90% efficiency at
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Pdf Gumbel, µ=–0.5, β=0.2 

Fig. 1 Densities of a Gumbel distribution withµ = 4 andβ = 2 (on the le f t) andµ = −0.5
and β = 0.2 on the right
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Illustration classical and robust Gumbel fit

Classical
Robust
True

Fig. 2 Illustration of the classical and robust estimations of the parameters of a Gumbel
distribution. The classical estimator is attracted by the outlying observations around 0

the model) fits the distribution much better where most data are located.
Additionally, the robust estimator explicitly downweights the observations
on the left and thus signals to the analyst that some observations do not
seem to conform to the majority of the other observations when using this
model. An important aspect to notice is that the robust estimator does not
downweight the large observations on the right because they conform to
the majority of the data.

Similar robustness issues apply for other EVT distributions such as the
Weibull and GPD distribution and for other distributions such as gamma,
beta, etc.
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3.2 Message 2: Robust methods can guarantee a stable efficiency, MSE
and a bounded bias over a whole neighbourhood of the assumed
distribution

Consider for example the Pareto model defined by the density fα(x) given
by

fα(x) = αx−(α+1)xα0 , 0 ≤ x0 ≤ x < ∞ and α > 0.

It is easily verified that in this case too, the score function is unbounded.
The maximum likelihood estimator α̂M L E = ( 1

n

∑n
i=1 log( xi

x0
))−1 is not

robust. In this example we would like to highlight the differences of the
robust and classical estimates on the mean squared error (MSE) when the
underlying data vary over a whole set of underlying distributions.

As an illustration, we plot the MSE E[(θ − θ̂ )2] of the classical and the
(optimal) robust estimator of the parameters of a Pareto model for different
c and different levels of contamination. To illustrate the point we generate
300 observations from a Pareto distribution with α = 5 (and x0 = 1). We
contaminate the Pareto distribution by 100ε% of observations from α = 5
and x0 = 10. Figure 3 plots the MSE for the classical and two robust esti-
mators (with c = 1.3 and c = 2.0, respectively) for various values of ε.
These choices of c correspond to estimators which have about 85 and 75%
of efficiency at the model.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.5

1

1.5

ε

M
S

E

Classical
Rob75
Rob85

Fig. 3 MSE of the parameter estimates in a Pareto model
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Figure 3 shows the MSE in the uncontaminated and contaminated case
averaged over 1,000 simulation runs. When the data are uncontaminated
(ε = 0), the bias and MSE are similar. However, a slight contamina-
tion (less than 1%) is sufficient to make some alternative robust estimator
more appealing in terms of low MSE. Furthermore when contamination
increases, the bias and MSE of the classical ML estimator explodes, while
the robust estimators remain stable. Similar results are obtained for bias and
efficiency and for different distributions such as the exponential, Gamma,
GPD, Gumbel, Weibull and other distributions. Notice that in the case of
outlying points, the variance of the estimator tends to shrink, i.e. it seems
that the estimation is more precise (which is particularly dramatic when
the outlying point distorts the estimates).

In this context, we would like to briefly mention that there is a rather
involved methodological issue that arises when the underlying ‘real’ dis-
tribution has clearly fatter tails than the assumed one. In particular, we
have to understand clearly which parameter we would like to estimate.
This is a very important issue in a risk management context, especially
for volatility and variance–covariance estimation. We refer to Dell’Aquila
and Ronchetti (2006) for further discussion of this issue.

3.3 Message 3: Robust methods can identify influential points in real data

As an empirical illustration of robust methodology to insurance and fi-
nance data, we apply the robust estimation procedures to the Danish Fire
Loss dataset, which is analysed in Embrechts et al. (1997) and McNeil et
al. (2005), p. 275. We have chosen this example because of its importance
and because we would like to make the issue in a case with i.i.d. data and
avoid the complications that arise for dependent data.

The data consist of 2156 fire insurance losses over one million Danish
Krone from the years 1980 to 1990 inclusive. The loss figure represents
a combined loss for a building and its contents, as well as in some cases
a loss of business earnings; the numbers are inflation adjusted to reflect
1985 values. Looking at a mean excess plot, Embrechts et al. (1997) and
McNeil et al. (2005) choose a threshold of u = 10 and fit a GPD to the
109 excess losses. Replicating the classical analysis we obtain the esti-
mates (̂ξ , β̂) = (0.50, 6.98) with standard errors (0.13, 1.17). The robust
estimates, tuned to have about 95% efficiency 4 at the model, are given

4 From a methodological point of view we suggest to use a high tuning constant, especially
in the presence of very heavy tailed models.
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Classical fit
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Fig. 4 Empirical distribution of excesses and the classical (solidline) and robust
(dashedline) GPD fits

by (̂ξ , β̂) = (0.37, 7.28) with standard errors (0.11, 1.16). Figure 4 plots
the empirical distribution of excesses and the classical- and robust-fitted
GPD. The curves at a first glance look similar, however, major differences
occur for larger values; it seems that the classical estimator does not fit well
some proportion of the data. The robust fit performs well in this respect
and models accurately the majority of the data. In particular it seems that
some of the most extreme observations ‘attract’ the classical estimator.
In the robust case these are heavily downweighted. Because these points
are additionally leverage points, our interpretation is that the analyst has
to decide how to cope with these observations or whether to change the
model, based on his/her knowledge of the data and being aware that this
is a judgemental decision. In any case, the analyst should be aware of this
issue and make this choice explicit.

A common misconception that we have often encountered when dis-
cussing about EVT and robustness, particularly in this example, is that
after all in EVT you want to model extremes, so if it turns out in the anal-
ysis that just one of the most extreme observations is downweighted, it
seems that one leaves away important information. It is fair to say that
we are particularly interested in the most extreme observations, especially
from a business point of view. However, from a model and statistical point
of view all the observations are equal.
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We have seen in the preceding examples that observations are down-
weighted only if, given a specific model, they do not conform to the major-
ity of the data. (And indeed in the case of the AT&T weekly loss data in
McNeil et al. (2005), p. 280, we get comparable results between classi-
cal and robust estimates.) It is perfectly legitimate to think that the most
extreme observations should be fitted well, but the analyst should know
that he/she has to state this preference explicitly at the level of model
formulation and in the final wording.

3.4 Message 4: Not all � functions are adequate

Although in the M-estimation framework the analyst is free to choose the�
function, the choice should be made with care. Reiss and Thomas (2001)
briefly mention M-estimators for estimating the parameters of distribu-
tions. For example, for the exponential model given by fβ(z) = 1

β
e−z/β

with β > 0, the maximum likelihood estimator for β is the sample
mean. Reiss and Thomas (2001) propose to use the function ψRT

b (x) :=
b (− exp(−x/b)+ b/(1 + b)) , where b is a tuning constant. While this
leads to a robust and consistent estimator, we can question whether the
proposed estimator is satisfactory. At first sight the function seems quite
arbitrary. Indeed Figure 5 (on the left) plots the ψRT

b (x) function for the
exponential model with β = 10 and for different values of b. The straight
line represents the classical score function for the exponential model, while
others correspond to ψRT

b (x) for different values of b. It is apparent from
these shapes that they can substantially deviate from the classical score
function, already for the central values, and the analyst may have difficul-
ties to justify the choice of the ψ function. The optimal solution (for an
efficiency of about 95%) is plotted on the right. As is apparent, it is similar
to the classical score function where most of the data lie, but bounded for
larger values of x . (And for lower tuning constants or higher levels of β the
score function is also truncated on the left, avoiding that small values bias
the estimator.) Compared to the estimator defined by ψRT

b (x), the optimal
solution has a lower maximal bias when choosing the tuning constant such
that both estimators have the same efficiency at the reference model and a
better efficiency at the reference model when the tuning constants are cho-
sen such that both estimators have the same maximal bias. (However, we
are not dogmatic, every analyst is obviously free to choose the ψ function
of his/her choice as long as the implications are clear. We have made this
point just to look a bit deeper into the construction of a particular estima-
tor.) In general, differentψ functions may be useful in different situations.
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Fig. 5 Comparision of the classical score function of the exponential model with ψRT
b (x)

as chosen in Reiss and Thomas (2001) (graph on the left) and with the optimal solution
(graph on the right)

For exampleψ functions that completely downweight outlying points (and
correct for obtaining consistency) can be useful in the presence of a high
contamination.

4 Conclusions

In this contribution we have sketched how robust statistics may improve the
data analysis process in the specific case of EVT. We have seen that robust
methods can help to identify deviating structure, influential observations
and guarantee good statistical properties over a whole set of underlying
distributions, therefore considerably enhancing the data analysis. In this
sense there is no ’obvious’ contradiction between robustness and EVT.
Overall we find that robust statistical methods can improve the data analy-
sis process of the skilled analyst and provide useful additional information.

As a final note, we would like to stress that robustness issues are not
specific to EVT. Indeed similar robustness issues arise for many other
models such as linear regression, generalized linear models, multivariate
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models and virtually all time series models. The robustness issues are even
more severe in these cases because of the presence of exogenous variables
and higher dimensions. For example an application for the estimation and
testing of short rate interest rate models can be found in Dell’Aquila et
al. (2003); further applications and extensions to many models used in
risk management and asset allocation can be found in Dell’Aquila and
Ronchetti (2006).
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